Impact of Trade Agreements on Canada's Transportation System

Chris Bachmann, PhD Assistant Professor, University of Waterloo

Freight Day IV Symposium Tuesday February 10th, 2015

UTTRI University of Toronto Transportation Research Institute

Background

Objectives:

- 1. Review research related to trade and transportation interactions
- 2. Identify potential models
- 3. Describe the pros, cons, risks and results of the alternatives
- 4. Provide detailed implementation requirements for the proposed modelling framework

Sponsor:

- Transport Canada
- Researchers:
 - Chris Bachmann
 - Matthew J. Roorda
 - Chris Kennedy

Motivation

• Trade relative to GDP increased by over 1,000% in some sectors between 1988 and 1999 (following CUSFTA and NAFTA)

Analysis Requirements

Functions

- 1. Predict how Canada's economy will perform in the future as a consequence of a trade agreement
- 2. Predict how Canada's transportation system will perform in the future as a consequence of changes in trade, production, and consumption
- Objectives and Constraints
 - Assumptions should be conceptually and theoretically consistent
 - Implementation requirements must be reasonable

Literature Review

	Ex-ante ("before the event")	Ex-post ("after the event")
Impact of Trade Agreements on Transportation Systems	 A couple of recent studies (2013, 2014) Focus on emissions 	 A few older studies discussing NAFTA Difficult to attribute temporal changes to trade agreements
Impact of Transportation Costs on Trade Flows	 Very large literature Multiple methods in parallel development 	 Large literature using gravity models Recent studies using innovative approaches

Potential Trade Models

- Partial Equilibrium (PE) models
- Computable General Equilibrium (CGE) models
- Random-Utility-Based Multi-Region Input-Output (RUBMRIO) models
- Gravity models

Trade Model Trade-Offs

Criterion	CGE Models	PE Models
Captures economy-wide linkages among producers and consumers	\checkmark	
Conceptual consistency that recognizes resource and budget constraints	\checkmark	
Consistent with economic theory	\checkmark	
Avoids complexity in data and parameters		\checkmark
Disaggregates sectors into fine categories		\checkmark
Uses timely data		\checkmark
Captures short- and medium-run effects		\checkmark
Captures long-run effects	\checkmark	

Civil Engineering UNIVERSITY OF TORONTO

Potential Freight Models

- Aggregate/Disaggregate
- Aggregate

Freight Model Trade-offs

Civil Engineering UNIVERSITY OF TORONTO UTTRI University of Toronto Transportation Research Institute

Trade Models Assessment

	CGE	PE	RUBMRIO	Gravity	
Functions					
Simulate the effects of complicated trade policy mechanisms observed in practice	•	0	0	0	
Disaggregate sectors and regions to a degree that represents important underlying relationships	0	•	0	•	
Include the consequences of trade policy changes by multiple countries	•	0	•	0	
Incorporate the interdependency of important economic variables	•	0	0	0	

*Legend: Poor **OOOO** Excellent

Freight Models Assessment

	Commodity	Agent	ADA		
Functions					
Convert resulting trade flows into multi- modal vehicle flows (i.e., conversion from production-consumption matrices to origin-destination trip matrices)	•	•	•		
Include explicit treatment of various decisions that firms make (e.g., routing of flows through distribution centers)	0	•	0		
Estimate origin-destination vehicle flows on a seamless multimodal network	•	•	•		
Calculate generalized transportation costs throughout the transport network model	•	•	•		

*Legend: Poor **OOOO** Excellent

Proposed Modelling Framework (part 1)

Proposed Modelling Framework (part 2)

From trade model

Implementation Requirements

- 1. Simulate the changes in the global economy
- 2. Apportion changes in Canadian production, consumption, and trade to Canada's ten provinces and three territories
- 3. Convert trade flows from monetary values to quantities
- 4. Split trade flows among transportation modes
- 5. Convert mode-specific trade flow quantities into shipments [*optional*]
- 6. Assign transportation demands to a freight network model
- 7. Feedback new transportation costs to the economic simulation and repeat until trade flows and trade costs converge [*optional*]
- 8. Conduct verification and validation
- 9. Conduct a sensitivity analysis [optional]

Step 7: Feedbacks

Step 8: Verification and Validation

- Establish model correctness and credibility
- Verification
 - Determines if the model was 'built right'
 - Compare the model's base case outputs with the base case data
 - Check code regularly to ensure the model has been programmed as intended
- Validation
 - Determines if the 'right thing was built'
 - Compare model outputs to real-world observations for the current year and/or for a forecast year that has passed
 - Transportation models can be validated with external data such as traffic counts

Step 9: Sensitivity Analysis

- Determine the **robustness** of the model results
- Start with the most plausible assumptions and most realistic specifications
 - Make reasonable changes in model assumptions and parameter values
 - Or sample from a distribution of parameter values and produce a distribution of model results
 - Assess confidence in important results

Concluding Remarks

- No previous studies of a potential free trade agreement's impacts on a country's domestic infrastructure
- A spatial economic and transportation interaction modelling framework is required
- A computable general equilibrium (CGE) model and a commodity-based freight model are recommended
- Models need to be designed and applied carefully – they are imperfect simplifications of the real world and are subject to inaccuracies

Transportation Economic Center (TEC) at the University of Waterloo (UW)

Big picture

Transportation Economic Center (TEC) at the University of Waterloo (UW)

- Mission Statement
 - 1. Conduct transportation economics research to address timely transportation projects and policies
 - 2. Advance the state-of-the-art in transportation economics by undertaking ongoing data collection and methodological research
 - 3. Assist government agencies and private industry by providing state-of-the-art modelling capabilities
 - 4. Provide education and training to undergraduate and graduate students in transportation economics
 - 5. Facilitate the sharing of information and best practices through a collaborative research network, journal publications, conference presentations, a website, and other communication techniques

Transportation Economic Center (TEC) at the University of Waterloo (UW)

- Prospective Research Activities
 - Economics:
 - Modelling Spatial Economic Transportation Interactions (SETI), optimizing infrastructure investments, measuring and maximizing social welfare, infrastructure valuation and resiliency, globalization
 - Finance:
 - Internal Rates of Return (IRR), Public Private Partnerships (PPP), equitable financing mechanisms, value of time, quantification of risk, congestion and transit fare pricing, willingness to pay (WTP)
- Methods/Models
 - Input-Output (IO) and Computable General Equilibrium (CGE) analysis, Agent-based Computational Economics (ACE), Cost-Benefit Analysis (CBA), Random Utility Maximization (RUM) models, Revealed Preference (RP) and Stated Preference (SP) surveys

Question and Discussion

