Modelling the Spatio-Temporal Distribution of Ambient Nitrogen Dioxide and Investigating the Effects of Public Transit Policies on Population Exposure

Maryam Shekarrizfard, Marianne Hatzopoulou



## Introduction

INTRODUCTION

METHODOLOGY

RESULTS

## Challenges

Transportation is associated with air pollution.



People are living and working close to busy streets and individual exposure remains a concern.



INTRODUCTION

METHODOLOGY

RESULTS

## Challenges

 In Canada, air pollution yearly is associated about with 5500 deaths yearly



## 10 million Canadians at risk from exposure to traffic pollution: researchers



A poor air quality sign is posted over a highway, in Salt Lake City, Jan. 23, 2013. (AP / Rick Bowmer)

INTRODUCTION

#### METHODOLOGY

RESULTS

CONCLUSIONS

## Background



Health & Place

Volume 34, July 2015, Pages 287–295



Spatial analysis of exposure to traffic-related air pollution at birth and childhood atopic asthma in Toronto, Ontario

K. Shankardass<sup>a, p</sup>, A., M. Jerrett<sup>c,</sup> A., S.D. Dell<sup>d, e,</sup> A., Foty<sup>f,</sup> A., D. Stieb<sup>g,</sup> A.



Environment International

Volume 74, January 2015, Pages 240–248



Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: A case-control study

Perry Hystad<sup>a,</sup> 📥 🖾 , Paul J. Villeneuve<sup>b</sup>, Mark S. Goldberg<sup>o, d</sup>, Dan L. Crouse<sup>e</sup>, Kenneth Johnson<sup>f</sup>, the



INTRODUCTION

Environmental Research

Volume 115, May 2012, Pages 18-25



Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren \*

Elise van Kempen<sup>a,</sup> • • • • Paul Fischer<sup>a</sup>, Nicole Janssen<sup>a</sup>, Danny Houthuijs<sup>a</sup>, Irene van Kamp<sup>a</sup>, Stephen Stansfeld<sup>b</sup>, Flemming Cassee<sup>a</sup>

METHODOLOGY

#### Journal of Toxicology and Environmental Health, Part A: Current Issues

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uteh20

#### The Association Between Chronic Exposure to Traffic-Related Air Pollution and Ischemic Heart Disease

Bernardo S. Beckerman <sup>a</sup> , Michael Jerrett <sup>a</sup> , Murray Finkelstein <sup>•</sup> , Pavlos Kanaroglou <sup>c</sup> ,



Crouse, Dan L; Goldberg, Mark S; Ross, Nancy A; Chen, Hong; Labrèche, France. Environmental Health Perspectives 118.11 (Nov 2010): 1578-83.

# Traffic-related air pollution and prostate cancer risk: a case–control study in Montreal, Canada

Marie-Élise Parent<sup>1</sup>, Mark S Goldberg<sup>2,3</sup>, Dan L Crouse<sup>4</sup>, Nancy A Ross<sup>5</sup>, Hong Chen<sup>6</sup>, Marie-France Valois<sup>2,3</sup>, Alexandre Liautaud<sup>7</sup>

#### Results

Tools



### INTRODUCTION

METHODOLOGY

CONCLUSIONS

We have developed a transportation emission dispersion model to:

I. Demonstrate the impact of population mobility on air pollution exposure



Objective

II. Assess the effects of transit investments in the metropolitan area on air quality and exposure

# Methodology

INTRODUCTION

METHODOLOGY

RESULTS



**M**ETHODOLOGY

RESULTS

CONCLUSIONS

### Study area



10

### INTRODUCTION

### METHODOLOGY

#### RESULTS

## NO<sub>x</sub> emissions at link level



INTRODUCTION

METHODOLOGY

### RESULTS

CONCLUSIONS

## Simulation of winds



INTRODUCTION

METHODOLOGY

RESULTS

CONCLUSIONS

| Total number of links sources                          | 375200                                                                                          |         |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|--|
| Spatial Resolution                                     | 1x1km                                                                                           |         |  |
|                                                        |                                                                                                 | January |  |
| Simulation pariod                                      | Awaaka                                                                                          | April   |  |
| Simulation period                                      | 4 weeks                                                                                         | August  |  |
|                                                        |                                                                                                 | October |  |
| Jobs submitted to super computers of Compute<br>Canada | 4 weeks x 2 (base and horizon year) x<br>2 (scenarios) = 16 jobs                                |         |  |
| Computational time                                     | Each jobs takes 24hours of runtime<br>Approx. 16 to 20 days in total (without<br>time in queue) |         |  |

| NIT |    |    | CTI | OM |
|-----|----|----|-----|----|
| INT | RΟ | טט |     |    |

## Hourly NO<sub>2</sub> concentrations



INTRODUCTION

### METHODOLOGY

RESULTS

CONCLUSIONS

14

102 (ppb)

## Monthly average NO<sub>2</sub> concentrations

15





INTRODUCTION

METHODOLOGY

RESULTS

## Validating against fixed stations



RESULTS

| Performance measures                 | January | April | October | August | Acceptable Value |
|--------------------------------------|---------|-------|---------|--------|------------------|
| Normalized absolute difference (NAD) | 0.39    | 0.34  | 0.28    | 0.40   | <0.5             |
| Fractional mean bias (FB)            | 0.23    | 0.67  | 0.46    | 0.56   | -0.67 to 0.67    |
| Normalized mean-square error (NMSE)  | 1.23    | 1.45  | 1.01    | 6.92   | <6               |

**M**ETHODOLOGY

INTRODUCTION

CONCLUSIONS

## Methodology

### Comparison of dispersion and LUR model outputs



Crouse et al. 2009 (NO2-LUR 1)

Deville-Cavellin et al. 2015 (NO2-LUR 2)

| Simulated NO <sub>2</sub> |                             |                                             |                                                                |
|---------------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|
| Yearly                    | Weekly                      | Daily                                       | Hourly                                                         |
| 87060                     | 87060                       | 87060                                       | 87060                                                          |
| $0.78^{**}$               | $0.77^{**}$                 | $0.76^{**}$                                 | $0.62^{**}$                                                    |
| $0.76^{**}$               | $0.74^{**}$                 | $0.72^{**}$                                 | $0.62^{**}$                                                    |
|                           | 87060<br>0.78 <sup>**</sup> | Yearly Weekly   87060 87060   0.78** 0.77** | Yearly Weekly Daily   87060 87060 87060   0.78** 0.77** 0.76** |

\*\*Correlation is significant at the 0.01 level

### INTRODUCTION

### METHODOLOGY

### RESULTS

### Individual Trajectories



H: Home

W (Work) and S (Shopping): Activity stops

H, W and S: Stops

 $\square 24-hour mobility = H + Trip_1 + W + Trip_2 + S + Trip_3 + H$ 

$$C_{NO_{2}}^{i} = \frac{\sum_{t=1}^{n} \left( \sum_{k=1}^{m} \left[ C_{NO_{2}}^{k} - t(t) \times t_{trip}^{k}(t) + C_{NO_{2}}^{k} - s(t) \times t_{stop}^{k}(t) \right] \right)_{t}}{N}$$

where N is the sum of trip and stop durations

 $t_{trip}^{k}(t)$  total time an individual spent at every trip (in hours)  $t_{stop}^{k}(t)$  total time an individual spent at every stop (in hours)  $C_{NO_{2}-s}^{k}(t)$  is the NO<sub>2</sub> concentration during stop time at end of trip k at time t  $C_{NO_{2}-t}^{k}(t)$  is the NO<sub>2</sub> concentration for part of trip k at time t

### □Sample of 29,219 Individuals



INTRODUCTION

METHODOLOGY

RESULTS

### Scenario Analysis

- i. 2008-baseline year
- ii. 2031-business-as-usual (BAU)
- iii. 2008-Transit scenario
- iv. 2031-Transit scenario



 By 2031, region's projected growth would be about 600,000 new residents

Plan Métropolitain d'Aménagement et de Développement (PMAD; 2011)

#### INTRODUCTION

#### METHODOLOGY

#### RESULTS

# Results

INTRODUCTION

METHODOLOGY

RESULTS

## Number of trips by mode

| Trips Categories      | Base 2008 | Transit 2008 | BAU 2031  | Transit 2031 |
|-----------------------|-----------|--------------|-----------|--------------|
| Drive                 | 3,626,805 | 3,599,976    | 4,833,805 | 4,809,305    |
| Passenger             | 761,791   | 750,495      | 984,546   | 978,194      |
| Transit               | 1,190,343 | 1,224,232    | 138,8346  | 1,416,476    |
| Walk                  | 754,025   | 746,965      | 866,582   | 861,138      |
| Bike                  | 143,321   | 143,321      | 174,224   | 172,409      |
| Park/Kiss and Ride    | 150,381   | 160,266      | 207,798   | 218,687      |
| Other mode            | 433,494   | 434,906      | 618,858   | 617,950      |
| Total number of trips | 7,060,161 | 7,060,161    | 9,074,160 | 9,074,160    |

 The VKT reduction is1.8% and 1% in 2008 and 2031 transit scenarios compared to their corresponding base years

INTRODUCTION

CONCLUSIONS

### Difference in number of driving trips and hourly $NO_x$ emissions

24



INTRODUCTION

METHODOLOGY

RESULTS

## NO<sub>2</sub> concentrations



# NO<sub>2</sub> concentrations



## NO<sub>2</sub> exposures





## Mobility vs Home Exposure



INTRODUCTION

METHODOLOGY

RESULTS

## Conclusion

- We observed significant reductions in NO<sub>2</sub> concentrations in downtown due to transit scenario compared to baseline year
- Individual exposures were reduced throughout all TAZs, including the suburbs due to population mobility patterns
- Ignoring population mobility would result in daily exposures that are underestimated/overestimated for individuals living in peripheral areas and downtown respectively
- The impact of the transit policy in either year is smaller than the impact of technology

## Acknowledgements

### **Collaborators**

Montreal Department of Public Health

### **Funding sources**

 This research was funded by a grant from the Canadian Institutes of Health Research

# Thank you!

# Questions?

Maryam Shekarrizfard Postdoctoral Fellow Civil Engineering- University of Toronto maryam.shekarrizfard@utoronto.ca

### INTRODUCTION

H

T

7

H

T

### METHODOLOGY

### RESULTS