Identifying Multimodal Conflicts with Machine Learning

Nancy Hui, MASc Candidate

Supervisors: Eric Miller & Matt Roorda

Agenda

- 1. Why conflict analysis?
- 2. Data collection and processing
- 3. Conflict analysis on Bloor Street
- 4. Training machine learning classifiers
- 5. Improving classifier performance
- 6. Conclusion

1. Why conflict analysis?

- 2. Data collection and processing
- 3. Conflict analysis on Bloor Street
- 4. Training machine learning classifiers
- 5. Improving classifier performance
- 6. Conclusion

Multimodal safety

- Typically analyzed with collision frequency
- However...
 - Highway Safety Manual's method of collision frequency estimation not designed for complex urban streets
 - Collisions are not always reported
 - Takes a long time to collect data
 - Need to wait for collisions to happen

A potential solution?

- Surrogate safety measures: Relate to events that occur more frequently than collisions
 - Separation distance between modes
 - Time to departure on a roadway
 - Headway
 - Conflicts!

Conflicts

 "An observable situation in which two or more road users approach each other in time and space for such an extent that there is risk of collision if their movements remain unchanged"

The "figure one" of traffic conflict techniques (Hyden, 1987)

Potential difficulties with multimodal conflict analysis

- Conflict identification criteria may not be appropriate for unmotorized modes
- Not all criteria are appropriate for complex, non lanebased movements
- Correlation to collisions for non-vehicle users is not established

Why machine learning?

- Conflict analysis is time consuming if done manually.
- Machine learning: training a computer to automatically recognize a pattern

Thesis objectives

- To apply conflict analysis to analyze the safety impacts of the Bloor Street bike lane project
- To investigate the use of machine learning algorithms in conflict identification

Why conflict analysis?
 Data collection and processing
 Conflict analysis on Bloor Street
 Training machine learning classifiers
 Improving classifier performance
 Conclusion

Summary of data collection and processing

Video footage collection

- June 14th-June 16th, 2016
- October 11th-October 13th, 2016
- 7AM-7PM periods only
- Interactions between curbs only
- Focussed on midblocks
- Overall, 284 hours of videos were studied

Monitoring locations

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Transportation Research Institute

Manual identification of events

- Need to make a dataset of conflicts and nonconflicts
- Manually classified events based on probability of collision and the potential consequences had a collision occurred

Identifying conflicts

- Severity of braking or swerving manoeuvers (Baguley, 1984).
- Control and rapidity in the braking or lane change behaviour (Older & Spicer, 1976)
- Distance between two users, speeds of the two users, the strength of acceleration and deceleration, the time span available with which to perform an evasive manoeuver (Erke, 1984)
- Available time and distance with which to perform an evasive manoeuver (Muhlrad & Dupre, 1984)
- Awareness of the two road-users to their potential collision (Hyden, 1987)
- Consequences of a potential collision (Kraay, van der Horst, and Oppe, 2013)

Manual identification of events

Event type	Normal interaction	Slight conflict	Severe conflict
Description	A user observes typical user behaviour well in advance and is able to react smoothly and comfortably. Low collision probability.	An unexpected action occurs, but users still have adequate time and space to react and manoeuvre, such that the manoeuvre is unlikely to fail and result in a collision. Higher collision probability.	There is also an increased chance for evasive manoeuvre to fail, and an elevated potential for road user to be seriously injured if evasive manoeuvre fails. High collision probability and high chance of injury.
Example	A jaywalker times their crossing to right after a car passes	A car slows down to avoid hitting a jaywalker in the roadway	A pedestrian runs across the path of a moving car, which does not slow down, and with little temporal clearance between users.

878 events identified

Measuring user trajectories

Matrix transformation

$$X = \frac{ax + by + c}{gx + hy + 1}$$
$$dx + ey + f$$

$$Y = \frac{ax + ey + f}{gx + hy + 1}$$

Where:

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1X_1 & -y_1X_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2X_2 & -y_2X_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3X_3 & -y_3X_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4X_4 & -y_4X_4 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1Y_1 & -y_1Y_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2Y_2 & -y_2Y_2 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3Y_3 & -y_3Y_3 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4Y_4 & -y_4Y_4 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{bmatrix}$$

 Resultant coordinates can be used to calculate relevant indicators

Parameters of interest

- Status quo: thresholds for time-to-collision and post-encroachment time
 - Do not take into account user mode, which can affect a user's maneuverability and their vulnerability in event of a collision
- Machine learning can take into account many potentially influential variables

Conflict characterization TTC • T_1 , T_2 , and TAdv **Conflict** point • PET

Composition of event dataset

Why conflict analysis? Data collection and processing Conflict analysis on Bloor Street Training machine learning classifiers Improving classifier performance Conclusion

Bloor Street between Clinton Street and Manning Avenue

Bloor Street between Walmer and Sussex Mews

Bloor Street between Bedford Road and Devonshire Place

Conflicts before and after

Bike/pedestrian

Bike/bike

- Motorized vehicle / pedestrian
- Motorized vehicle / bike
- Motorized vehicle / motorized vehicle

* Counts have been normalized to 36h for Bloor at Clinton after bike lane installation, where only 32 hours of footage were available. All other locations have 36 hours of footage.

User behaviours during conflicts

- Conflicts involving pedestrians:
 - Jaywalking
 - Loading/unloading behaviour
 - Other: walking in bike lane, mounting bicycle in bike lane...
- Conflicts not involving pedestrians:
 - Lane changes as a result of parked vehicle
 - Lane changes other
 - Parking and loading
 - Tailgating
 - Turning across the path of another user (e.g. out of driveway, Uturn)
 - Other: Wrong-way movement, unexplained swerving

Behaviours during conflicts

Significance

- Use Hauer's 1996 techniques to determine significance
- Conflicts as a poisson process
- Used 90% significance level

Bloor Street between Clinton Street and Manning Avenue

- **84%** decrease in vehicle-vehicle conflicts
 - Conflicts between motorized vehicles during lane changes: 49%
- **80%** decrease in pedestrian/vehicle conflicts
 - Jaywalking-related conflicts between pedestrians and motorized vehicles: -78%
- **111%** increase in pedestrian/bike conflicts
 - Jaywalking-related conflicts with bikes +144%
- The number of motorized vehicle/bike conflicts during lane changes decreased significantly (-49%).

Bloor Street between Walmer and Sussex Mews

- **86%** decrease in vehicle/vehicle conflicts
 - Conflicts between motorized vehicles during lane changes (-100%), parking (-67%), and tailgating (-60%).
- 72% decrease in vehicle/bike conflicts
 - Conflicts between motorized vehicles and bikes during lane changes (-72%), turning (-100%), and parking (-80%).
- **62%** decrease in vehicle/pedestrian conflicts
 - Jaywalking-related conflicts between motorized vehicles and pedestrians (-67%)
- No significant change in frequency in bike/bike conflicts or bike/pedestrian conflicts

Bloor Street between Bedford Road and Devonshire Place

- -56% Motorized vehicle/motorized vehicle conflicts
 - Conflicts between motorized vehicles during lane changes:
 -80%
- **+250%** Bicycle/pedestrian conflicts
- Significant decrease (-70%) in vehicle/bike conflicts caused by lane changes.
- The total number of and behaviour during vehicle/pedestrian conflicts and bike/bike conflicts did not change significantly.

The takeaway

- Total number of conflicts decreased slightly
 - Driven by decreases in vehicle-related conflicts and lane-changing behaviours
 - Motorized/motorized conflicts decreased at all locations
 - Saw significant increases in bike/pedestrian conflicts in two locations (Clinton, Bedford) even though motorized/ped conflicts decreased in all locations

However...

- Conflicts only reflect 125m of the 2.3km bike lane installation
 - Study area included only three legal parking spaces (all at Bloor and Walmer) but parking on bike lanes and bike lane buffer is very common
- Also recommend additional study of jaywalking behaviour and volumes.

Why conflict analysis? Data collection and processing Conflict analysis on Bloor Street Training machine learning classifiers Improving classifier performance Conclusion

Classifiers trained

Ordinal logit model	 Good explanatory power Monotonic variable relationships only Parametric
Decision tree	 Nonparametric Good explanatory power
	Good for non-linear relationships between variables
K-nearest neighbours	 "Black box" Nonparametric Good for non-linear relationships between variables

Classifiers

- 3 classifiers trained on full set of explanatory variables
- 3 classifiers trained on T₁, T₂, and TAdv only
- 1 ruleset representing conventional conflict classification methods
- Trained classifiers on 80% of dataset
- Tested classifiers on 20% of dataset

Ordered logit model POLR-0

Logit Model Fit		
Log likelihood of full model	-1072.3	
Log likelihood of constant-only model	-1173.3	
Number of observations	1068	
Rho-squared value	0.086	
Variables	Coefficient	T-stat
Time-to-conflict point of trailing user (T ₂)	0.187	4.567
Time advantage (TAdv)	0.444	7.193
Intercepts	Coefficient	T-stat
Severe Conflict / Slight Conflict	0.309	2.752
Slight Conflict / Normal Interaction	1.915	14.792

Ordered logit model POLR-1

Logit Model Fit		
Log likelihood of full model	-1013.7	
Log likelihood of constant-only model	-1173.3	
Number of observations	1068	
Rho-squared value	0.136	
Variables	Coefficient	T-stat
Time-to-conflict point of trailing user (T ₂)	0.182	4.230
Time advantage (TAdv)	0.480	7.336
Acceleration of leading user (a1)	0.130	3.635
Speed of trailing user (v2)	-0.055	-2.380
Mode of leading user – pedestrian (m1ped)	-0.433	-3.167
Mode of trailing user – pedestrian (m2ped)	1.234	5.824
Mode of trailing user – bicycle (m2bik)	0.966	7.046
Intercepts	Coefficient	T-stat
Severe Conflict / Slight Conflict	0.262	1.297
Slight Conflict / Normal Interaction	2.022	9.395

Transportation Research Institute

Marginal effect of variables in POLR-1

Decision tree DT-0

K-nearest neighbours KNN-0

- K=13
 - T1
 - Time advantage

K-nearest neighbours

• K=14

- Time-to-conflict point of leading vehicle
- Time advantage
- Leading user is a vehicle
- Leading user is a pedestrian
- Trailing user is a vehicle

Conventional conflict classification

Interaction type	Original criteria	Modified criteria
Severe conflict	TTC < 1.5s	$0s < T_2 < 1.5s$ and TAdv < 0.5s
	OR	OR
	PET <1s	PET <1s
Slight conflict	1.5s < TTC <3s	$1.5s < T_2 < 3s$ and TAdv < 0.5s
	OR	OR
	1s < PET < 3s	1s < PET < 3s
Normal interaction	All other	All other interactions.
	interactions.	

Classifier predictions

Ordinal Logit Model (POLR-1)					
		Reference			
		Source	Clight	Non-	
		Severe	Silgrit	conflict	
ted	Severe	12	18	14	
gdict	Slight	6	28	28	
Pre	Non-conflict	1	21	46	

Decision Tree (DT-1)

		Reference			
		Sovoro	Slight	Non-	
		Severe Slight		conflict	
ted	Severe	15	18	13	
edic:	Slight	4	31	28	
Pre	Non-conflict	0	18	47	

K-Nearest Neighbours (KNN-1)

	Reference	ce				Reference	e
	Severe	Slight	Non- conflict			Severe	Sli
Severe	13	18	11		Severe	12	
Slight	4	32	31	cted	Slight	7	
Non-conflict	2	17	46	Predi	Non-conflict	0	
	Severe Slight Non-conflict	Reference Severe Sight Non-conflict	ReferenceSevereSlightSlight13Slight4Non-conflict12	ReferenceReferenceNon- conflictSevere13118Slight14318Non-conflict231	Reference Reference Severe Slight Non- conflict Severe 113 118 111 Slight 143 32 311 Non-conflict 12 17 46	Reference Non- Severe Slight Severe 118 Slight 111 Slight 318 Non-conflict 31 Non-conflict 31	Reference Reference Severe Slight Non- conflict Evere Reference Severe 13 18 11 Slight 13 18 11 Slight 13 31 11 Non-conflict 2 31 Slight 7 Non-conflict 12 16 Non-conflict 0

Ordinal Logit Model (POLR-0) Reference Non-Severe Slight conflict Severe 15 27 17 **Predicted** Slight 30 24 4 Non-conflict 16 41 0

Decision Tree (DT-0)

		Reference		
		Severe	Slight	Non- conflict
ted	Severe	15	18	13
ădici	Slight	4	33	36
Pre	Non-conflict	0	16	39

K-Nearest Neighbours (KNN-0)

				e	
:t			Severe	Slight	Non- conflict
11	σ	Severe	12	18	11
31	icte	Slight	7	29	32
46	Pred	Non-conflict	0	20	45

Conventional conflict classification

thresholds (CR-1)

		Reference			
		Severe	Slight	Non- conflict	
ted	Severe	15	26	27	
edic	Slight	4	31	33	
Pr	Non-conflict	0	10	28	

FACULTY OF APPLIED SCIENCE & ENGINEERING

Transportation Research Institute

Precision, recall, and F1 scores

 $Recall = \frac{True \ Positives}{True \ positives + False \ negatives}$

Precision, recall, and F1

Ordinal Logit Model (POLR-1)					
	Severe	Slight	Non-Conflict		
Precision	0.273	0.452	0.676		
Recall	0.632	0.418	0.523		
F1 Score	0.381	0.434	0.590		

Ordinal Logit Model (POLR-0)						
	Severe	Slight	Non-Conflict			
Precision	0.254	0.414	0.719			
Recall	0.789	0.358	0.466			
F1 Score	0.385	0.384	0.566			

Conventional conflict classification								
thresholds (CR-1)								
	Severe	Slight	Non Conflic					
Precision	0.221	0.456	0.737					

0.463

0.459

0.318

0.444

0.789

0.345

Recall

F1 Score

Decision Tree (DT-1)				Decision	Tree (D	Т-0)	
	Severe	Slight	Non-Conflict		Severe	Slight	Non-Conflict
Precision	0.326	0.492	0.723	Precision	0.326	0.452	0.709
Recall	0.789	0.463	0.534	Recall	0.789	0.493	0.443
F1 Score	0.462	0.477	0.614	F1 Score	0.462	0.471	0.545

K-Nearest Neighbours (KNN-1)		K-Nearest Neighbours (KNN-0)					
	Severe	Slight	Non-Conflict		Severe	Slight	Non-Conflict
Precision	0.310	0.478	0.708	Precision	0.293	0.426	0.692
Recall	0.684	0.478	0.523	Recall	0.632	0.433	0.511
F1 Score	0.426	0.478	0.601	F1 Score	0.400	0.430	0.588

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Transportation Research Institute

1. Why conflict analysis?

- 2. Data collection and processing
- 3. Conflict analysis on Bloor Street
- 4. Training machine learning classifiers
- 5. Improving classifier performance
 6. Conclusion

Changing classifier structure

- Boosted trees
- Two-stage classifiers

Dataset improvements

- Bigger dataset
- More observers -> better consistency in training set
- More explanatory variables...

Awareness and predictability

Intent

Solution: Automated video analysis

- Automated video analysis is a natural complement to machine learning
- Can use it to easily increase size of training dataset
- Can use it to develop more explanatory variables

1. Why conflict analysis?

- 2. Data collection and processing
- 3. Conflict analysis on Bloor Street
- 4. Training machine learning classifiers
- 5. Improving classifier performance
- 6. Conclusion

Contributions

- Affirmed usefulness of conflict analysis through Bloor Street bike lane case study
- Machine learning classifiers: useful for identifying conflicts in multimodal streets
- Considering user mode, speed, and acceleration can improve performance of machine learning methods over that of conventional conflict identification methods

Future Research

- Improve classifier performance through increasing size of training dataset and improved trajectory analysis
- Combine with automated trajectory analysis from video to identify conflicts on a large scale
- Explore correlation between non-motorized conflicts and collisions

The End

Thank you for listening!

