

Traffic Management for the 21st Century

Dr. Markos Papageorgiou Professor Technical University of Crete Chania, Greece

Traffic Management for the 21st Century

Prof. Markos Papageorgiou

Dynamic Systems and Simulation Laboratory, Technical University of Crete, Chania, Greece

1. WHY TRAFFIC MANAGEMENT (TM)?

- Motorised road vehicle: A highly influential invention → Vehicular traffic
- Vehicles share the road infrastructure among them, as well as with other (vulnerable) users: TM needed
- Few vehicles: Static TM for safety
- Many vehicles: Dynamic TM for efficiency

Basic elements of an automatic control system

Technology (Sensors, communications, computing, actuators): Skeleton **Methodology** (Data processing, control strategy): erc

Intelligence

Current TM Systems (ITS)

- Process: conventional vehicle flow
- Sensors: spot sensors (loops, vision, magnetometers, radar, ...)
- Communications: wired
- Computing: distributed/hierarchical
- Actuators: road-side (TS, RM, VSL, VMS, ...)

- 2. EMERGING VACS (Vehicle Automation and Communication Systems)
- Significant efforts: Automotive industry, Research community, Government agencies
- Mostly vehicle-centric: safety, convenience
- In-vehicle systems (automated vehicles), e.g. ACC
- VII or cooperative systems (connected vehicles), e.g. CACC

Future TM Systems (C-ITS)

- Process: enhanced-capability vehicle flow
- Sensors: vehicle-based
- Communications: wireless, V2V, V2I, I2V
- Computing: massively distributed
- Actuators: in-vehicle, individual commands

Implications/Exploitation for traffic flow efficiency?

TRAMAN21: TRAffic MANagement for the 21st Century (ERC Advanced Investigator Grant) <u>http://www.traman21.tuc.gr/</u>

- Intelligent vehicles may lead to dumb traffic flow (efficiency decrease ⇒ congestion increase)
- Why?

— ...

- ACC with long gap (\rightarrow capacity)...
- ... or sluggish acceleration (\rightarrow capacity drop)
- Conservative lane-change or merge assistants
- Underutilized dedicated lanes
- Inefficient lane assignment
- Uncoordinated route advice
- What needs to be done in advance/parallel to VACS developments?

3. MODELLING

- Currently not sufficient traffic-level penetration of VACS → no real data available
- Analysis of implications of VACS for traffic flow behaviour
- Also needed for design and testing of traffic control strategies
- Microscopic/Macroscopic traffic flow modelling

Microscopic Modelling

- No ready available tools
- Research (open-source) tools: documentation,
 GUI, ...
 - e.g. SUMO: an expanding open-source tool (DLR, Germany)
- Commercial tools: closed; or elementary coding of VACS functions

ACC traffic efficiency

From: Ntousakis, I.A., Nikolos, I.K., Papageorgiou, M.: On microscopic modelling of adaptive cruise control systems. *4th Intern. Symposium of Transport Simulation (ISTS'14)*, 1-4 June 2014, Corsica, France. Published in *Transportation Research Procedia* 6 (2015), pp. 111-127.

Macroscopic Modelling

- Few research works
- Different penetration rates
- Macroscopic lane-based models
- Validation based on microscopic simulation data

4. MONITORING/ESTIMATION

- Prerequisite for real-time traffic control
- Conventional detectors are:
 - spot sensors (local information)
 - costly (to acquire, install, maintain)
- Exploitation of new real-time information from connected vehicles:
 - abundant in space
 - "cost-free" → ask TomTom, Google, Gaode, …
 - suffices for speed and travel time
 - not for total flow or density

- Mixed traffic, various penetration levels
- Fusion with conventional detector data
- Reduction (...replacement) of infrastructurebased sensors
- OD estimation
- Incident detection

Freeway traffic estimation scheme

highway traffic state estimation - Case studies on NGSIM data and Highway A20, Netherlands. *Transportation Research Record* No. 2559 (2016), pp. 90-100.

16

Urban road/network traffic estimation (with new data)

- Road queue length estimation
- Total flow estimation
 - Data fusion with conventional detectors
- Paradigm shift in signal control:
 - Strongly reduced (or no) detector hardware, cost for real-time signal control
 - Performance evaluation for fixed signals update

5. TRAFFIC CONTROL

- Which conventional traffic control measures can be taken over? – In what form?
- Which new opportunities arise for more efficient traffic control?
 - Increased control granularity (e.g. by lane, by destination, flow splitting)
 - Arbitrary space-time resolution
 - Efficient lane assignment
- Various control levels: vehicle, local, link, network

Vehicle-level tasks

- What is the movement strategy of automated cars? (in a manually driven world)
- How would traffic look like if all vehicles were automated?
- Can automated cars be exploited as actuators to improve the traffic flow?
- Space-time dependent change (control) of vehicle behaviour?
 - ACC gap and acceleration
 - Lane-changing behaviour
- Vehicle trajectory control

Vehicle-optimal advancement versus Traffic-optimising vehicle behaviour

Real-time ACC Time-Gap Control (section-based)

Simulation results: without ACC exploitation

Simulation results: with ACC exploitation

Local-level tasks:

- Urban intersection
 - Speed control (reduction of stops)
 - Eco-driving
 - Platoon-forming while crossing urban intersections
 → increased saturation flow
 - Dual vehicle $\leftarrow \rightarrow$ traffic signal communication
 - No/virtual traffic signals
 - Crossing sequence
 - Safe and convenient vehicle trajectories
 - Vulnerable road users
 - Mixed traffic?

Rush Hour by Fernando Livschitz https://www.youtube.com/watch?v=MRPK1rBI_rI

Too difficult?

- Individual drivers act autonomously
 - Monitor: other arriving vehicles on higher-priority approaches
 - Communicate: turn blinker
 - Predict: ego and other vehicles trajectories; potential conflicts
 - Decide: go or non-go
 - Repeat: whole loop, if non-go decision
 - Emergency reaction: in real time, if go decision

- Video in lapse time

- Automated/Connected vehicles?
 - Monitor: with sensors \rightarrow all around, simultaneously, fast
 - Communicate: V2V, V2I \rightarrow comprehensive, fast
 - Predict: computation based on assumptions \rightarrow fast
 - Decide: go or non-go
 - Repeat: whole loop, if non-go decision → high frequency (real-time MPC)
 - Emergency reaction: in real time, if go decision
 - Overall fast, reliable
 - Weak point: Prediction uncertainty (disturbances)
 - Stochasticity margins
 - Physical inertia
 - \rightarrow reduced efficiency for higher reliability

Application Example (lane changing only)

From: Roncoli, C., Bekiaris-Liberis, N., Papageorgiou, M.: Optimal lane-changing control at motorway bottlenecks. *IEEE 19th Intern. Conference on Intelligent Transportation Systems (ITSC)*, Rio de Janeiro, Brazil, November 1-4, 2016, pp. 1785-1791.

Without Control

With Control

Link/Network-level tasks:

- Route guidance
- Urban road networks
 - Offset control (reduction of stops)
 - Platoon-forming: Stronger intersection interconnections (increased saturation flow, queues)
 - Saturated traffic conditions?
 - Handling?
 - Storage space? Where?

Motorway Link-level control

Control actuators

From: Roncoli, C., Papageorgiou, M., Papamichail, I.: Traffic flow optimisation in presence of vehicle automation and communication systems – Part II: Optimal control for multi-lane motorways. *Transportation Research Part C* 57 (2015), pp. 260-275.

Link control: Model-based Optimisation (case study)

Monash Freeway (M1), Melbourne, Australia (data: courtesy VicRoads)

Link control results

erc 35

6. FUNCTIONAL/PHYSICAL ARCHITECTURE Conventional TM Architecture

Various options for task share among RSC and TCC

Decentralised Vehicle-Embedded TM

- Self-organisation (e.g. bird flock or fish school)
- Single vehicle sensors: Is this sufficient information for sensible TM actions?

Decentralised Vehicle-Embedded TM

- V2V Communication: Extended traffic flow information
- How far ahead/behind should a vehicle be able to "see" for sensible TM?
- Where is data aggregation taking place?
- What about network-level TM? (ramp metering, route guidance)

- Vehicle level: ACC, obstacle avoidance, lane keeping, …
- V2V level: CACC, cooperative lane-changing, cooperative merging, warning/alarms, platoon operations
- Infrastructure level: speed, lane changing, time-gaps, platoon size, ramp metering, route guidance

7. CONCLUSIONS

- Intelligent vehicles may lead to dumb traffic flow – if not managed appropriately
- Connect VACS and TM communities for maximum synergy
- TM remains vital while VACS are emerging

See also: Papageorgiou, M., Diakaki, C., Nikolos, I., Ntousakis, I., Papamichail, I., Roncoli, C. : Freeway traffic management in presence of vehicle automation and communication systems (VACS). In *Road Vehicle Automation 2*, G. Meyer and S. Belker, Editors, Springer International Publishing, Switzerland, 2015, pp. 205-214.

Markos Papageorgiou Traffic Management for the 21st Century February 1

Sponsored by

#TrafficSolution

R

