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Our Hierarchical Traffic Control Approach

= Networkwide:

« Demand Management Focus
3. Dynamic Trip Pricing

= Nodes and Junctions:
1. Adaptive Traffic Signals on Arterials
2. Freeway Control
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Deep Learning for Adaptive Traffic Signal Control

Soheil Alizadeh and Baher Abdulhai
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Can Traffic Lights Learn?
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New Opportunities:

Emergence of New Technologies and Deep Reinforcement Learning

* Emergence of Deep Neural Networks

* Emergence of Deep Learning
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New Opportunities:

Emergence of New Technologies and Deep Reinforcement Learning

Emergence of Deep Neural Networks

Emergence of Deep Learning

Evolution of sensor technologies

Rich Microdata and Deep Learning:
* No need for defining or measuring queue
* No need for data pre-processing
e Straight from rich sensory data to control




Why Deep Convolutional Neural Networks?

Low-Level - Mid-Level __I-Iigh-Level | Trainable
Feature Feature Feature Classifier
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Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Why Deep Learning?




Intelligent Traffic Signal with VACs and DRL
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Like Image Inputs to a Deep Neural Network




Like VACs Inputs to a DRL Traffic Signal Controller

Discretization
for each lane

second dimension
speed

Discretization First dimension

every S meters number of passengers
in each cell



The Resulting System
MIND: Multimodal intelligent Deep ATSC

| Poli
Deep CNN RL * Control Policy

Sensors

Environment _



Performance
in Simulation

[sec]/

100% 80% 60% 40% 20%
Intersection Delay 7.0 56.6 54.3 53.8 55.0 56.4 65.0
: (21.39%) (24.62%) (25.34%) (23.59%) (21.62%) (9.78%)
Network Travel Time 153.2 137.2 135.2 134.6 135.6 137.7 147.2
: (10.44%) (11.42%) (12.14%) (11.54%) (10.15%) (3.97%)
] MIND (40% penetration)
Precision 5m 10 m
Noise 0% 10% 0% 10%
Intersection Delay 56.4 58.1 57.0 57.1
) (-3.01%) (-0.95%) (-1.24%)
Network Travel Time 137.7 139.0 137.5 137.5

(-0.97%) (0.15%) (0.15%)

0%

263.5
(-266%)

1182.0
(-263.7%)



Part 11
Freeway Management with Vehicle Automation
and Communication Systems (VACS)

Lina Elmorshedy and Baher Abdulhai
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Motivation

= \VACS evolved with focus on the individual vehicle
— convenience & safety

= May or may not help traffic
= Why?

= QOpportunities and challenges

= What is needed?
1. Modelling VACS (Quantifying Transformation)
2. Control with VACS (Enabling Positive Transformation)
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Traffic Management (TM)
Components with VACS

1. Adaptive Cruise
Control (ACC).

2. Cooperative Adaptive
Cruise Control
(CACC).

3. Dynamic Speed
Adaptation (DSA).

4. Cooperative merging

and lane changing
(CM & LC)
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ACC

= Adaptive Cruise Control (ACC)
— Maximum Speed + Time gap.
— Gap/Headway sensors.
— Speed control mode.
— Headway/Space control mode.

without preceding vehicle maintain constant speed
@ p (ﬂ - 2 = “

with preceding vehicle maintain safe distance
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ACC Challenges & Opportunities

= ACC: Efficiency depends on system parameters selected.

3800

3100

2400
1700
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Time Gap (s)

Ntousakls et al., 2515-

Flow (veh/h)

= Challenges:
— 2 sec default time-gap (vs. 1.2 sec for manual vehicles).
— Capacity reduction.

= Opportunities:
— Capacity increase for time-gaps <1.2 sec

-
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CACC Challenges & Opportunities

= Cooperative ACC (CACCQC)
— Communication among vehicles
— Follow the platoon

— Smaller headway
e e.0.0.5sec

= Challenges
—  Needs high market penetration rates. VenAremetal., 2007
— \ery small time gaps: merging problems.
— Need for modified infrastructure: dedicated CACC lanes.
— Underutilized dedicated lanes problem.

= Opportunities
— Very small time-gaps: Capacity increase
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DSA Challenges & Opportunities

= Dynamic Speed Adaptation
—Variable Speed Limits (VSLSs)
— Regulate mainstream flow to
avoid capacity drop.

—With VACS: automatic
compliance.

= Challenges
— No automation: VSLs Compliance Rates.

= Opportunities
— Imposing VSLs — more strict AV compliance.
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CMLC Challenges & Opportunities

Merging Zone
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Cooperative merging and lane changing
= Cooperative Merging (CM): Assist drive

to merge E&los Torres et al.,
= Cooperative lane changing: Equalizing

densities across lanes

= Challenges |
— Capacity reduction if more conservative merging or lane-changing systems.
= Opportunities
— Capacity Increase: Merging sequence algorithms to minimize unnecessary
decelerations

— Equalize densities/flows across lanes.
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VVACS for Traffic Control

Promising Early Results in Literature

= ACC Exploitation 28 e ——
— Kesting et al., 2008. Free traffic- = 24t 5% ACC—
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VVACS for Traffic Control

Promising Early Results in Literature

= Ramp Meterina (RM) + VSLs + Lane Chanae

—323m—323m—323m—323m—275m—275m=—27 5m—27 5m=—27 5m=—27 5Sm—27 5m=—27 5Sm=—307m—28 2m—28 2m—28 2m—259m—259m—259m—314m—

~=20—19—18—17—16—15—14—13—12—11—10—9 8 7 6 5 4 3 2 L

Roncoli et al., (2015)

km'h

Segment index
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ICIty - CATTS — In progress

Phase 1 Phase 2
Quantifying Enabling Positive
Transformation Transformation
[ - ) (. - )
Project 1.5: Project 2.2:
o Dynamic transportation o Traffic control and
system modelling of the management of
GTHA in the context of transportation systems
automation. under automation.
. W, . W,

UNIVERSITY OF TORONTO
I

ACULTY or APPLIED SCIENCE & ENGINEERING




Enabling Positive Transformation
on the Gardiner and QEW

= Ramp Metering with Fow Dreosr T TTIIIIIIIIITIIIIIII
Variable Speed Limits B
(Point-level- Cooperative) =z
= Optimization of ACC - L—ﬁ
systems parameters B W R —
— Time-Gap, other [ " =1
parameters (acceleration,

deceleration)

= Automated merging
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Enabling Positive Transformation
Desired Collective Behaviour
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VSL a

Bottleneck downstream:

*  Minimum headways
* Increase acceleration

at head of congestion

Bottleneck (Merging vehicles):

Approaching congestion:
P 3o * Increase headways

 Reduce speed via
VSLs

e Reduce deceleration
*  Minimum headways
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Methodology

= Exploring deep learning.
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average traffic speeds
time
input traffic feature extraction

convolution pooling
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Part |11
Trip Reservation Integrated with Trip-Level

Congestion Pricing (TRIP):

The Context of Pervasive Connectivity, Driving Automation and MaaS

Ahmed Aqgra and Baher Abdulhai
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Motivation

2. The pervasive connectivity will make
the implementation of the new strategies
of demand management possible

1. A potential sharp increase in vehicles kilometre
travelled (VKT)
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Potential Impacts of Disruptive Mobility

= Increase in Vehicle Kilometers Traveled (VKT)
— Roaming: The current hired rate of ride sourcing companies is only 50%.
— Zero Occupant Vehicles (ZOV) are coming with autonomous vehicles.

— Latent demand (more people will have an access to cars)

— Mode shift to the car (potentially away from transit)
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Enabling Positive Transformation:
From RaaS to Maa$S and XaaS
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Road as a
Service

Raa$S

Road Vehicle
Service Service
Providers Providers

1. Ministry
Transportation

2 Municipalities
3. Private Road
Operators (i.e 407)

Cons#d By
7
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Ride as a
Service

RlaaS

Ride
Service
Providers

Consumed By - Consumed By

Mobility
Service
Providers




Trip Reservation integrated with trip-level

@
1
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congestion Pricing (TRIP)

TRIP Is a network-wide traffic control and management
mechanism In the era of Pervasive Connectivity, Driving
Automation and MaaS

TRIP aims to dynamically distribute travel demand over

space(path choice), time (departure time choice) and
mode (sharing ride choice) to prevent demand for auto
travel from exceeding the capacity.
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Protect Capacity
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TRIP as a Traffic Control Strateqgy

Intersection Traffic Signal

Freeway Ramp Metering

TRIP Metering
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TRIP as Congestion Pricing Methodology
RaaS

ma Facility Based (Tolled Expressway)

mm Zone (Cordon) Based (Stockholm)

mad ZONe (Area) Based (London)

Network wide (TRiP)
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Potential Pricing Structure

(1) Location and time-dependent dynamic trip pricing
(2) Price-escalating reservation system
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Research Questions

Disaggregate Level
(Link Price)

Aggregate Level
(Zone Price)

Spatiotemporal

Reserve time slot and
Disaggregate Level path / Spatiotemporal

(Link Level Capacity) |demand pacing to protect
capacity of all links.

Reserve time slot and

Aggregate Level path / Spatiotemporal
(Network Capacity) demand pacing to protect
the network capacity.
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Temporal

Reserve a time slot /

Temporal demand pacing
to protect capacity of the

busy links.

Reserve a time slot /

Temporal demand pacing
to protect the network

capacity.




Q&A

Thank you
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