Measuring air pollution along Toronto's bicycle network

LAURA MINET, JONATHAN STOKES, JAMES SCOTT, JUNSHI XU, MARIE-FRANCE VALOIS, MARIANNE HATZOPOULOU

December 2, 2016

DISCLAIMER

THE BENEFITS OF CYCLING FAR OUTWEIGH THE RISKS

IF YOU ARE A HEALTHY INDIVIDUAL, THE PHYSICAL ACTIVITY BENEFITS LARGELY OFFSET AIR POLLUTION EXPOSURE

IF YOU HAVE ASTHMA, DIABETES, A CARDIOVASCULAR CONDITION, YOU MAY NOT WANT TO RIDE ON POOR AIR QUALITY DAYS

IN FACT, WE HAVE IDENTIFIED SMALL YET MEASURABLE CARDIOVASCULAR EFFECTS ASSOCIATED WITH AIR POLLUTION AMONG A PANEL OF HEALTHY CYCLISTS

Motivation and objectives

Why are we doing this research?

- Because air pollution remains a concern in Canadian cities
- Because generally cyclists have the highest exposure among other road users

And also because we can!

Aeroqual sensor (NO2 and O3)

DiscMini (UFP)

MicroAeth (BC)

Technology is an enabler of personal exposure studies

Data collection

Cycling routes

- 10 routes, 24 to 31 km each
- Each route was repeated 6 to 8 times, at least once per time block
- 270 km of unique roads
- Total of 1860 km (approx. 60Km/day per cyclist!)
- 3,895 unique road segments
- 19,465 observations segments/visits

Time block	Time
1	7 am to 9 am
2	9 am to 11 am
3	11 am to 1 pm
4	1 pm to 3 pm
5	3 pm to 5 pm
6	5 pm to 7 pm

Database

- Every GPS point is given a unique ID and associated with:
 - Road segment
 - Day
 - Time
 - Meteorology (wind speed, direction, RH, temperature)
- Average air pollutant concentration per segment per visit is the outcome variable (UFP, BC, noise)
- Coefficient of variation for each segment/visit

Allocating GPS points to road segments

Land-use and built environment around each road segment

Land-use and built environment around each road segment

List of road segment characteristics

Buffers of 25, 50, 100, 200, 300, 500, 1000m

- Distance from the shore (m) (d_shore)
- Distance from the closest railline (m) (d_railline)
- Distance from the closest major road (m) (d_majrd)
- Distance from the closest highway (m) (d_highway)
- Distance from the closest airport (m) (d_airport)
- Distance to the closest NOx emitting chimney (m) (d_NPRI_NOx)
- Distance to the closest PM emitting chimney (m) (d_NPRI_PM)
- Area of the buildings (m2) (build_25m to build_1000m)
- Area of the commercial land use (m2) (com_25m to com_1000m)
- Area of the governmental and institutional land use (m2) (gov_25m to gov_1000m)
- Area of the resource and industrial land use (m2) (ind_25m to ind_1000m)
- Area of the open area land use (m2) (open_25m to open_1000m)
- Area of the parks land use (m2) (park_25m to park_1000m)
- Area of the residential land use (m2) (resid_25m to resid_1000m)
- Area of the waterbody land use (m2) (water_25m to water_1000m)
- Length of the bus routes (m) (busline_25m to busline_route_1000m)
- Length of the major roads (type 4) (m) (majrd_25m to majrd_1000m)
- Length of the highways (types 1, 2 and 3) (m) (highway_25m to highway_1000m)
- Length of the roads (types 1, 2, 3, 4, 5 and 6) (m) (roads_25m to roads_1000m)
- Number of bus stops (count) (bus_25m to bus_1000m)
- Number of intersections (count) (inter_25m to inter_1000m)
- Number of trees (count) (trees_25m to trees_1000m)
- Population (count) (pop_500m to pop_1000m)
- Average height of buildings (m) (build_height_25m to build_height_100m)
- Maximum height of buildings (m) (max_build_height_25m to max_build_height_100m)
- Number of NOx emitting chimneys (count) (NPRI_NOx_25m to NPRI_NOx_1000m)
- Number of PM emitting chimneys (count) (NPRI_PM_25m to NPRI_PM_1000m)
- Length of rail lines (m) (rai_25m to rail_1000m)
- Traffic volumes based on EMME2 (count) (traffic_25m to traffic_100m)

Descriptive Results

Average UFP levels across selected corridors

Measurement on	From (cross street)	To (cross street)	Average UFP concentration (particles/cm3)
Adelaide	Bathurst	Parliament	39,000
Richmond	Bathurst	Parliament	33,000
Wellington/Front East	John	Parliament	41,600
King	John	Parliament	25,700
Bloor West	Royal York	Yonge	30,700
Anette/Dupont	Jane	Yonge	17,600
Spadina	College	Queen	30,400
Beverley	College	Queen	30,000
McCaul	College	Queen	28,300
Huron/Soho	College	Queen	13,000

Distribution of UFP levels across facility types

Distribution of BC levels across facility types

Comparison with Montreal study

Montreal (n=4058 segments)

Toronto 2016 (n=3895 segments)

20,000 - 30,000

>40,000

Montreal (n=4058 segments)

Downtown Montreal

Average UFP (part/cm3) 0.00 - 20,000 20,000 - 30,000 30,000 - 40,000 >40,000

Linear mixed effects models

Linear mixed-effects model (19,465 obs. with 3,895 different segments)

	AIC = 31611.28 Adjusted R ^{2 =} 0.2892		For In(UFP)		
			for increase of IQ if not otherwise indicated		
		Mean Change	95% CI for Mean Change		
Meteorology -	Wind Speed	-0.247	-0.266, -0.229		
	Temperature	0.038	0.021, 0.056		
	Relative Humidity	-0.113	-0.131, -0.094		
	Timeblock - A (6, 7 and 8) - Reference	1			
	Timeblock - B (9 and 10)	-0.308	-0.347, -0.270		
	Timeblock - C (11 and 12)	-0.057	-0.099, -0.014		
	Timeblock - D (13 and 14)	0.034	-0.007, 0.074		
	Timeblock - E (15 and 16)	-0.293	-0.335, -0.251		
Day and time	Timeblock - F (17, 18 and 19)	-0.295	-0.340, -0.250		
	Day of the week - A-Weekend - Reference	1			
	Day of the week - B-Monday	0.178	0.125, 0.232		
	Day of the week - C-Tuesday	0.434	0.389, 0.478		
	Day of the week - D-Wednesday	0.183	0.140, 0.226		
	Day of the week - E-Thursday	0.431	0.391, 0.472		
	Day of the week - F-Friday	0.306	0.263, 0.349		
	Distance to Pearson airport	-0.187	-0.200, -0.174		
	Distance to the shore	-0.057	-0.069 <i>,</i> -0.046		
	Building footprint (within 1000m buffer)	0.058	0.045, 0.071		
Built environment	Park area (within 1000m buffer)	-0.026	-0.041, -0.011		
Bailt environment	Max building height (within 25m buffer)	0.030	0.007, 0.053		
	Number of trees (within 750m buffer)	0.072	0.052, 0.092		
	Open area (within 1000m buffer)	0.030	0.020, 0.040		
	Length of highways (within 25m buffer)	0.0009	0.0006, 0.0012		
Road type -	Type of road - A - Major and Cycle track - Reference	1			
	Type of road - B - Multi-Use	-0.310	-0.340, -0.280		
	Type of road - C - Bike lane	-0.130	-0.160, -0.101		
	Type of road - D - Minor	-0.178	-0.220, -0.136		
	Type of road - E - Trail	-0.277	-0.337, -0.218		
	Type of road - G - Other	-0.188	-0.278, -0.099		

Meteorology effects

Negative effects (decreases UFP)

- Wind speed
- Relative humidity

Positive effects (increases UFP)

• Temperature (unexpected)

Day and Time

Day of the week

- Weekend is best
- Monday is best day of working week
- Tuesday and Thursday are the worst

Time of day (temperature adjusted)

- 6-8am is worst
- 11-2pm is best

Built environment effects

Negative effects (decreases UFP)

- Distance to Pearson
- Distance to the shore
- Parks

Positive effects (increases UFP)

- Building footprint
- Maximum building height
- Number of trees
- Open area
- Proximity to highways

Road type

Worst to best

- Major roads and cycle tracks
- Bike lanes and minor roads (no facility)
- Trails and multi-use pathways

OLS regressions of mean UFP concentrations for the purpose of building a LUR model

Results of OLS regression on average UFP per segment

	For LN of UFP average	
$\Delta divised R^2 = 0.3548$	for increase of IQ if not otherwise	
N = 3,411 different segments (10% hold-out sample)	Mean Change	95% CI for Mean Change
Wind Speed	-0.132	-0.144, -0.119
Relative Humidity	-0.071	-0.085, -0.056
Temperature	0.039	0.024, 0.054
Distance to Pearson airport	-0.100	-0.121, -0.078
Distance to the shore	-0.057	-0.077, -0.037
Distance to the nearest major road	-0.027	-0.037, -0.016
Building footprint (within 1000m buffer)	0.107	0.087, 0.127
Number of trees (within 750m buffer)	0.183	0.150, 0.215
Open area (within 1000m buffer)	0.031	0.013, 0.048
Residential area (within 200m buffer)	-0.039	-0.067, -0.010
Length of highways (within 25m buffer)	0.0007	0.0001, 0.0012
Traffic volume (within 300m buffer)	0.040	0.025, 0.055

Summer of OLS regression on various "sub-samples" based on coefficient of variation of the mean UFP across the different visits

Segments included	Number of different segments	Mean number of visits	Adjusted R ²
All segments	3791	5.10	0.3528
90% sample used	3412	5.13	0.3495
Segments with CV_UFP < 90% (from the 90% sample)	3411	5.13	0.3548
Segments with CV_UFP < 80% (from the 90% sample)	3403	5.13	0.3616
Segments with CV_UFP < 70% (from the 90% sample)	3376	5.12	0.3792
Segments with CV_UFP < 60% (from the 90% sample)	3345	5.11	0.3880
Segments with CV_UFP < 55% (from the 90% sample)	3307	5.11	0.3906
Segments with CV_UFP < 50% (from the 90% sample)	3251	5.11	0.3955
Segments with CV_UFP < 45% (from the 90% sample)	3176	5.10	0.4056
Segments with CV_UFP < 40% (from the 90% sample)	3064	5.10	0.4130
Segments with CV_UFP < 35% (from the 90% sample)	2909	5.06	0.4166
Segments with CV_UFP < 30% (from the 90% sample)	2613	4.92	0.4279
Segments with CV_UFP < 25% (from the 90% sample)	2192	4.64	0.4261
Segments with CV_UFP < 20% (from the 90% sample)	1649	4.00	0.4085
Segments with CV_UFP < 15% (from the 90% sample)	1149	2.68	0.3947
Segments with CV_UFP < 10% (from the 90% sample)	872	1.55	0.3874
Segments with CV_UFP < 5% (from the 90% sample)	795	1.21	0.3901

Predictions for hold-out sample using estimates from different models

	Number of different segments	Pearson Corr. between observed and predicted LN of UFP	RMSE between observed and predicted LN of UFP
10% Hold-out sample - using estimates from all of 90% sample	379	0.6015	0.4307
10% Hold-out sample - using estimates from CV_UFP < 90%	379	0.6017	0.4306
10% Hold-out sample - using estimates from CV_UFP < 80%	379	0.6014	0.4310
10% Hold-out sample - using estimates from CV_UFP < 70%	379	0.6021	0.4314
10% Hold-out sample - using estimates from CV_UFP < 60%	379	0.6026	0.4318
10% Hold-out sample - using estimates from CV_UFP < 55%	379	0.6024	0.4322
10% Hold-out sample - using estimates from CV_UFP < 50%	379	0.6035	0.4324
10% Hold-out sample - using estimates from CV_UFP \leq 45%	379	0.6021	0.4337
10% Hold-out sample - using estimates from CV_UFP < 40%	379	0.6013	0.4348
10% Hold-out sample - using estimates from CV_UFP < 35%	379	0.6009	0.4358
10% Hold-out sample - using estimates from CV_UFP < 30%	379	0.6011	0.4386
10% Hold-out sample - using estimates from CV_UFP \leq 25%	379	0.5989	0.4401
10% Hold-out sample - using estimates from CV_UFP < 20%	379	0.5750	0.4500
10% Hold-out sample - using estimates from $CV_UFP \le 15\%$	379	0.5326	0.4697
10% Hold-out sample - using estimates from CV_UFP < 10%	379	0.4777	0.4920
10% Hold-out sample - using estimates from CV_UFP < 5%	379	0.4608	0.5014

Variations in coefficient sizes across the different models

CUUTP ~ 15%

CU-UFP-210%

C1-1FP-15910

Lower CI — Upper CI — Base model Lower CI — Base model Upper CI

Variations in coefficient sizes across the different models

Variations in coefficient sizes across the different models

Objective of LUR modelling is to generate a surface, to spatially interpolate our measurements and achieve full coverage of the city

Other relevant work

• Fixed points

Pedestrians

Cyclists

Panel

• Fixed points

Four data collection protocols conducted in

the same campaign (May-Sept 2016)

Panel study

- Gold standard for measuring exposure
- Recruiting participants from the general population
- Personal exposure measured throughout the day, monitors are close to the body
- Physiological measures conducted to relate with acute health effects

Fixed points

Pedestrian routes designed to overlap with fixed locations

Conclusions and final thoughts

Air pollution remains a concern in Canadian cities even at levels below standards

Rapid changes in vehicle technology have led to gains in fuel efficiency but not necessarily in the emissions of air pollutants

Exposure while commuting largely affects one's mean daily exposure

Policies encouraging active transportation should be fair: cyclists and pedestrians who are responsible for the success of these policies should not carry the burden

THANK YOU

THE BENEFITS OF CYCLING FAR OUTWEIGH THE RISKS