Optimal Discount Policies for Transit Agencies: The Case of Pass-Programs and Loyalty-Programs

Mehdi Nourinejad, Ph.D. Candidate
Amir Gandomi, Professor at Ryerson University Joseph Y. J. Chow, Professor at New York University Matthew J. Roorda, Professor at University of Toronto

Membership Growth: 2012 to 2014
$2012 \quad 2.6$ вйом

COLLOQUY

 $2014 \quad 3.3$ BILLION
COLLOQUY

COLLOQUY

Membership Growth: 2012 to 2014

Loyalty Program in Public Transportation Agencies

Agency	Adult	Senior	Child	Student	GO cofare?	Period Pass?	Loyalty Program?
Brampton Transit	\$2.90	\$1.55	\$2.50	\$2.50	\$0.75	Yes	No
Burlington Transit	\$2.70	\$1.85	\$1.85	\$1.85	\$0.70	No	Yes ${ }^{1}$
Durham Region Transit	\$3.05	\$2.00	\$2.00	\$2.70	\$0.75	Yes	No
GO Transit	\$5.30	\$2.70	\$2.70	\$5.30	N/A	No	Yes
Hamilton Street Railway	\$3.00	\$1.80	\$1.80	\$1.80	\$0.50	Yes	Yes
MiWay (Mississauga)	\$2.90	\$1.90	\$1.65	\$2.25	\$0.80	No	Yes
Oakville Transit	\$2.80	\$1.80	\$2.20	\$2.20	\$0.75	No	Yes
OC Transpo	\$2.84	\$2.14	\$1.57	\$2.84	N/A	Yes	No
Toronto Transit Commission	\$2.90	\$1.95	free	\$1.95	No	Yes	Yes
Union Pearson Express	\$9.00	\$5.64	free	\$9.00	No	Planned	No
York Region Transit	\$3.40	\$2.10	\$2.10	\$2.60	\$0.75	Yes	Planned

Loyalty Program in Private Transportation Agencies

accelerate

Premier Driver Rewards

As a driver on the Lyft platform, you enjoy special access to Accelerate, our driver rewards program. The more rides you give each month, the more you'll reward yourself - and not
just when you're behind the wheel.

Research Questions

1. Are loyalty-programs beneficial to transit agencies?
2. Are loyalty-programs better or worse than pass-programs?
3. How to design the discount policy?

Overview

- Literature on loyalty programs
- Motivation
- Pass Programs
- Loyalty Programs
- Comparison between pass and loyalty programs

Loyalty Program Literature

LP Literature

Theoretical Studies

[1] Kim, B. D., Shi, M., \& Srinivasan, K. (2001). Reward programs and tacit collusion. Marketing Science, 20(2), 99-120.
[2] Lal, R., \& Bell, D. E. (2003). The impact of frequent shopper programs in grocery retailing. Quantitative Marketing and Economics, 1(2), 179-202.
[3] Kim, B. D., Shi, M., \& Srinivasan, K. (2004). Managing capacity through reward programs. Management Science, 50(4), 503-520.
[4] Caminal, R., \& Claici, A. (2007). Are loyalty-rewarding pricing schemes anti-competitive?. International Journal of Industrial Organization, 25(4), 657-674.
[5] Singh, S. S., Jain, D. C., \& Krishnan, T. V. (2008). Research Note-Customer Loyalty Programs: Are They Profitable?. Management Science, 54(6), 1205-1211.
[6] Caminal, R. (2012). The design and efficiency of loyalty rewards. Journal of Economics \& Management Strategy, 21(2), 339-371.
[7] Gandomi, A., \& Zolfaghari, S. (2013). Profitability of loyalty reward programs: An analytical investigation. Omega, 41(4), 797-807.
[8] Sayman, S., \& J. Hoch, S. (2014). Dynamics of price premiums in loyalty programs. European Journal of Marketing, 48(3/4), 617-640.
[9] Lim, S., \& Lee, B. (2015). Loyalty programs and dynamic consumer preference in online markets. Decision Support Systems, 78, 104112.

LP Literature

Study	Market setting	Social welfare included?
$[1]$	Duopoly	No
$[2]$	Duopoly	No
$[3]$	Duopoly	No
$[4]$	Monopolistic competition/Duopoly	No
$[5]$	Duopoly	No
$[6]$	Monopoly	No
$[7]$	Monopoly	No
$[8]$	Duopoly	No
$[9]$	Duopoly	No

Motivation

- Growing popularity of loyalty-programs in transit agencies
- Social welfare is not considered in the existing loyalty-program literature
- No comparison between pass-programs and loyalty-programs in terms of profit and social welfare
- Analytical solutions are limited in the loyalty-program literature
- Very few studies on the optimal design of pass-programs
- No studies on the simultaneous presence of pass-programs and loyalty-programs

The Model

Mandatory and Non-mandatory Trips

Profit (without discount policy)

c: Cost of one ride incurred by the transit agency
f: fare
m: mandatory trips

Profit $\quad \pi=f m-c m$

Social Welfare (without discount policy)

The social welfare :

$$
s=\int_{0}^{m} u(t) d t-c m
$$

The Pass Program

Pass price $=\$ p$

Rider behavior under the pass-policy

A user only purchases a pass if the cost justifies the benefit $\frac{n f}{2}-p \geq m f$
This is equivalent to $\frac{n f}{2}-m f \geq p$

Optimal pass-policy to Maximize Profit/Welfare

Profit maximization under the pass-policy

The pass-program improves profit if $c<\frac{f}{2}$

Social welfare maximization under the pass-policy

The pass-program improves social welfare if is only viable when $c<f / 2$.

Optimal pass-policy to Maximize Profit/Welfare

First-best and second-best solutions are obtained at the same pass price.

Loyalty-Program

Users get a discount of α (i.e., they pay αf dollars per trip) after completing a total of l trips.

number of rides	Discount+
$1-30$	18.40% off**
$31-40$	95% off**
$41+$	100% off**

++ Discount is based on direct routes with no transfers, off a single adult GO fare paper ticket.
" Actual discount may be 1% lower due to rounding.

User behavior under loyalty-program

A rider will only use the loyalty program if $l \leq m+(1-\alpha) n / 2$

Profit maximization under the loyalty program

$$
\pi_{L}=l f+\alpha f[m+n(1-\alpha)-l]-c_{L}[m+n(1-\alpha)]
$$

The function π_{L} is strictly concave, so it is maximized at a unique solution $\left(\alpha^{*}, l^{*}\right)$.

The optimal discount rate for profit maximization is $\alpha^{*}=c_{L} / f$.

The optimal discount rate for profit maximization is $l^{*}=m+\left(1-c_{L} / p\right) n / 2$.
The optimal profit of the loyalty program is $\pi_{L}^{*}=\left[m+\frac{\left(1-\frac{c_{L}}{f}\right) n}{2}\right]\left(f-c_{L}\right)$

$$
m=10 ; n=25 ; f=4 ; c=1.5
$$

Social-welfare maximization under the loyalty program

$$
s_{L}=f(1-\alpha)[m+n(1-\alpha) / 2-l]-[m+n(1-\alpha)] c_{L}
$$

Social-welfare maximization under the loyalty program

$s_{L}=f(1-\alpha)[m+n(1-\alpha) / 2-l]-[m+n(1-\alpha)] c_{L}$

Function $s_{L}(\alpha, l)$ is strictly convex. Given that we want to maximize s_{L}, the optimal solution ($\alpha^{\circ}, l^{\circ}$) falls on the boundaries.

Point A: $(\alpha, l)=(1, m) \rightarrow s_{L}(\alpha, l)=-m c_{L}$
Point B: $(\alpha, l)=(0, m) \rightarrow s_{L}(\alpha, l)=\frac{n f}{2}-(m+n) c_{L}$

It is clear that point B has a higher
social welfare. Hence, $\left(\alpha^{\circ}, l^{\circ}\right)=(0, m)$
and $s_{L}^{\circ}=\frac{n f}{2}-(m+n) c_{L}$

$$
m=10 ; n=25 ; f=4 ; c=1.5
$$

Comparison Between the Loyalty Program and the Pass Program

Comparison of Profit

$$
\pi_{L}^{*}=m\left(f-c_{L}\right)+n\left[\frac{\left(1-\frac{c_{L}}{f}\right)}{2}\right]\left(f-c_{L}\right)
$$

$$
\pi_{P}^{*}=m(f-c)+n(f / 2-c)
$$

The loyalty program generates higher profit than the pass-program if and only if $m / n \leq \phi\left(c_{L}, c_{L}, f\right)$ where $\phi\left(c_{L}, c_{L}, f\right)=\frac{\left(f-c_{L}\right)^{2}-f^{2}+2 f c}{2 f\left(c_{L}-c\right)} \equiv \frac{c_{L}{ }^{2}}{2 f\left(c_{L}-c\right)}-1$.

Comparative analysis of the social-welfare in the Loyalty-Program and the Pass-Policy

$$
s_{L}^{\circ}=\frac{n f}{2}-(m+n) c_{L} \quad s_{P}^{\circ}=\frac{n f}{2}-(m+n) c
$$

The optimal social-welfare from the pass-program is always higher than the loyalty-program.

Analysis of Existing Pass Programs and Loyalty Programs

Burlington

$$
\text { Policy 1: } l_{\text {monthly }}=\frac{p_{\text {monthly }}}{f}, l_{\text {weekly }}=\frac{p_{\text {weekly }}}{f}
$$

Age	Tickets	Monthly Pass		
Adults	$10 / \$ 27.50$	$\$ 97.00$	Adults	Travel free after $\mathbf{3 6}$ single fare rides in same calendar month
Students	$10 / \$ 19.00$	$\$ 71.00$	Students	Travel free after $\mathbf{3 8}$ single fare rides in same calendar month
Seniors	$10 / \$ 19.00$	$\$ 59.25$	Seniors	Travel free after $\mathbf{3 2}$ single fare rides in same calendar month
Children	$10 / \$ 18.50$		Children	Travel free after $\mathbf{3 8}$ single-fare rides in the same calendar month

Age	PRESTO Price
Adults	$\$ 2.70$
Students	$\$ 1.85$
Seniors	$\$ 1.85$
Children	$\$ 1.85$

```
97.00/2.70=35.93
71.00/1.85=38.38
59.25/1.85=32.03
```


Hamilton

$$
\text { Policy 2: } l_{\text {weekly }}=\frac{p_{\text {monthly }} / 4}{f}, l_{\text {weekly }}=\frac{p_{\text {monthly }} / 4.33}{f}
$$

Example:

| Fare class | Single
 PRESTO fare | Weekly frequent rider discount | PRESTO Passes |
| :--- | :--- | :--- | :--- | :--- |
| Adult | $\$ 2.30$ | Free after 11 PRESTO trips in same week (Monday to Sunday) | Monthly: $\$ 101.20$ |
| Child | $\$ 1.90$ | Free after 11 PRESTO trips in same week (Monday to Sunday) | Monthly: $\$ 83.60$ |
| Student | $\$ 1.90$ | Free after 11 PRESTO trips in same week (Monday to Sunday) | Monthly: $\$ 83.60$ |
| Senior | $\$ 1.90$ | Free after 11 PRESTO trips in same week (Monday to Sunday) | Monthly:\$26.50 |

$$
\begin{aligned}
(101.20 / 4) / 2.30 & =11.00 \\
(83.60 / 4) / 1.90 & =11.00 \\
(83.60 / 4) / 1.90 & =11.00 \\
(26.50 / 4) / 1.90 & =\underline{3.49}
\end{aligned}
$$

Mississauga- MiWay

Policy 3: Set l and m independently.

Example:

Fare class	Single PRESTO fare	Weekly frequent rider discount	PRESTO Passes
Adult	$\$ 3.00$	Free after $\mathbf{1 2}$ full-fare trips in same week (Mon. to Sun.)	Monthly: $\$ 130$
Child	$\$ 1.65$	Free after $\mathbf{1 2}$ full-fare trips in same week (Mon. to Sun.)	-
High School Student	$\$ 2.25$	Free after $\mathbf{1 2}$ full-fare trips in same week (Mon. to Sun.)	
Post-Secondary Student	$\$ 2.85$	Free after $\mathbf{1 2}$ full-fare trips in same week (Mon. to Sun.)	
Senior	$\$ 2.00$	Free after $\mathbf{1 2}$ full-fare trips in same week (Mon. to Sun.) Monthly: $\$ 61$	

$\left.\begin{array}{c}(130.00 / 4.00) / 3.00=10.83 \\ (130.00 / 4.33) / 3.00=10.01 \\ (61.00 / 4.00) / 2.00=7.63 \\ (61.00 / 4.33) / 2.00=7.03\end{array}\right\} \neq 12$

Simulation Model for Complex Cases

Simulation Results: Pass Program

Simulation Results: Loyalty Program

Profit per rider

Social-welfare
per rider

Both Programs are Offered

c) Social-welfare per rider

(b) Ratio of riders in loyalty-program

(d) Profit per rider

Key findings

- Pass-policy is viable only when the cost per user is lower than half the fare
- Pass-policy simultaneously maximizes social welfare and profit
- First-best and second-best social welfare solutions coincide in the pass-program
- The optimal discount rate in the loyalty-program is ratio of cost (per user) over fare for profit maximization and it is equal to zero for welfare maximization
- The optimal discount rate in the loyalty-program is zero for welfare maximization
- Profit is generated in the loyalty program only from the first l trips (i.e., trip threshold after which the users get a discount)
- According to the ratio m / n (mandatory over non-mandatory trips) one of the discountpolicies generates higher profit
- The pass-program always generates higher social-welfare than the loyalty program

Future research

- Multi-tier loyalty programs
- Crowding costs
- Peak and off-peak periods\spatial structure of the transit network
- Risk-behavior
- Empirical validation

