Optimization Framework for Recovery from Railway Freight Network Disruptions

Elkafi Hassini

DeGroote School of Business, Computational Science & Engineering, MacDATA
McMaster University

Freight Day VI Symposium
March 1, 2017

joint work with:
Manish Verma, McMaster University
Nader Azad, Saint Mary’s University
Change in Management Philosophy?

- Japan’s Tsunami in March 2011
Change in Management Philosophy?

- Japan’s Tsunami in March 2011
- Just-in-time to Just-in-case
Railroad Freight Networks and Disruptions

- Railroads shipped over 1600 million tons of goods in the United States (DOT, 2013) and 337 million tons in Canada (TC, 2013).
Railroad Freight Networks and Disruptions

- Railroads shipped over 1600 million tons of goods in the United States (DOT, 2013) and 337 million tons in Canada (TC, 2013).

- Disruptions to railroad operations, are not infrequent. For example, 61 disruptions were registered for just the Seattle-Vancouver Amtrak operation between 2009 and 2013.
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
 - *Example*: Accidents, Natural hazards
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
 - *Example*: Accidents, Natural hazards
 - *Goal*: Minimize the expected damage on the system
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
 - *Example*: Accidents, Natural hazards
 - *Goal*: Minimize the expected damage on the system

- **Premeditated Disruption Risks**: They are deliberately planned to inflict the network with maximum damages
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
 - *Example*: Accidents, Natural hazards
 - *Goal*: Minimize the expected damage on the system

- **Premeditated Disruption Risks**: They are deliberately planned to inflict the network with maximum damages
 - *Example*: Terrorist attacks
Types of Disruption Risks

- **Random Disruption Risks**: They may occur at any physical point of the network.
 - *Example*: Accidents, Natural hazards
 - *Goal*: Minimize the expected damage on the system

- **Premeditated Disruption Risks**: They are deliberately planned to inflict the network with maximum damages
 - *Example*: Terrorist attacks
 - *Goal*: Minimize the maximum damage on the system
Strategies for Disruption Risk Management

- **Mitigation Strategies:** They are used before a disruption occurs.
Strategies for Disruption Risk Management

- **Mitigation Strategies:** They are used before a disruption occurs
 - Their cost is imposed on the network regardless of the disruption occurrence
Strategies for Disruption Risk Management

- **Mitigation Strategies**: They are used before a disruption occurs
 - Their cost is imposed on the network regardless of the disruption occurrence
 - *Example*: Adding redundant capacity, new routes
Strategies for Disruption Risk Management

- **Mitigation Strategies**: They are used before a disruption occurs
 - Their cost is imposed on the network regardless of the disruption occurrence
 - *Example*: Adding redundant capacity, new routes

- **Recovery Strategies**: They are only used after the disruption
Strategies for Disruption Risk Management

- **Mitigation Strategies:** They are used before a disruption occurs
 - Their cost is imposed on the network regardless of the disruption occurrence
 - *Example:* Adding redundant capacity, new routes

- **Recovery Strategies:** They are only used after the disruption
 - *Their cost is imposed on the network after the disruption, and is usually higher than the mitigation cost*
Strategies for Disruption Risk Management

- **Mitigation Strategies**: They are used before a disruption occurs
 - Their cost is imposed on the network regardless of the disruption occurrence
 - *Example*: Adding redundant capacity, new routes

- **Recovery Strategies**: They are only used after the disruption
 - Their cost is imposed on the network after the disruption, and is usually higher than the mitigation cost
 - *Example*: Re-routing strategy
Assumptions

- Disrupted train loses capacity (i.e., some or all railcars are destroyed).
Assumptions

- Disrupted train loses capacity (i.e., some or all railcars are destroyed).
- Non-disrupted portion of the train (i.e., railcars with contents intact) could still be used to meet a portion of the overall demand.
Research Goals

- Develop a methodology to aid decision makers in both pre- and post-disruption periods
Research Goals

- Develop a methodology to aid decision makers in both pre- and post-disruption periods
 - **Identifying critical service legs in the network**
Research Goals

- Develop a methodology to aid decision makers in both pre- and post-disruption periods
 - Identifying critical service legs in the network
 - Developing appropriate mitigation and recovery strategies
Research Methodology

- We represent a disrupted train as a virtual node
Research Methodology

- We represent a disrupted train as a virtual node
- **Consider four distinct recovery strategies:** re-routing from the point of disruption, re-sending from the origin nodes, repairing the disrupted rail segments, and using third party services
Research Methodology

- We represent a disrupted train as a virtual node
- Consider four distinct recovery strategies: re-routing from the point of disruption, re-sending from the origin nodes, repairing the disrupted rail segments, and using third party services
- **Predictive model to identify critical service legs**
Research Methodology

- We represent a disrupted train as a virtual node
- Consider four distinct recovery strategies: re-routing from the point of disruption, re-sending from the origin nodes, repairing the disrupted rail segments, and using third party services
- Predictive model to identify critical service legs
 - Prescriptive model to find optimal recovery strategy with the least cost
Flowchart

Start

Step 1: Calculate base-case (normal network) cost

Step 2: Conduct what-if disruption scenarios for each service leg and calculate related costs

Step 3: Identify base-case significant explanatory variables to predict disruption costs. Calculate estimation errors.

Step 4: Is the estimation error significant?

No

Step 5: Add it to the list of critical service legs and apply mitigation

Yes

Step 6: Update the network structure.

Step 7: Collect data and solve post-disruption model and apply recovery strategies.

End
Start

Step 1: Calculate base-case (normal network) cost

Step 2: Conduct what-if disruption scenarios for each service leg and calculate related costs

Step 3: Identify base-case significant explanatory variables to predict disruption costs. Calculate estimation errors.

Step 4: Is the estimation error significant?

Pre-Disruption Period

No
Flowchart

Pre-Disruption Period

Step 4: Is the estimation error significant?

No

Yes

Step 5: Add it to the list of critical service legs and apply mitigation strategies.

Step 6: Update the network structure.

Post-Disruption Period

Step 7: Collect data and feedback.
Flowchart

Step 6: Update the network structure.

Step 7: Collect data and solve post-disruption model and apply recovery strategies.

End
Pre-disruption:
100 railcars have to be sent every week from yard A to yard E. The time to delivery before disruption is seven days. The current network has two itineraries: A-B-E; and, A-B-C-D-E. We assume that the itinerary A-B-E is being used before disruption.
Disruption:
A disruption occurs for a train service passing the service leg B-E with capacity of 100 railcars. The disruption occurs at site K on the third day of the week, and results in the loss of 40% of railcars.
Post-disruption:
Add the disruption point K as a virtual node to the network whose capacity is equal to the 60 undamaged railcars. The time to delivery post-disruption is only 4 days. The available itineraries are: A-B-E, A-B-C-D-E (existing itineraries from pre-disruption), K-B-C-D-E (re-routing strategy) and K-E (repair strategy). Capacity for KB and KE is 60 railcars.
Case Study: Railroad Network in the Midwest United States

The yards are connected by thirty-one train services, which amongst them share 53 service legs.
Case Study: Railroad Network in the Midwest United States

- 25 yards in the network, and each is both a supply and demand point for the others.
Case Study: Railroad Network in the Midwest United States

- 25 yards in the network, and each is both a supply and demand point for the others.
- **600 origin-destination pairs,** and each has between 1 to 4 itineraries for a total of 1338.
Case Study: Railroad Network in the Midwest United States

- 25 yards in the network, and each is both a supply and demand point for the others.
- 600 origin-destination pairs, and each has between 1 to 4 itineraries for a total of 1338.
- The yards are connected by thirty-one train services, which amongst them share 53 service legs.
Case Study: Predictive Model Results

- We run the pre-disruption model (Step 1) and for each service leg the post-disruption model is implemented (Step 2).
Case Study: Predictive Model Results

- We run the pre-disruption model (Step 1) and for each service leg the post-disruption model is implemented (Step 2).
- Run a multiple regression model where the optimal volume of shipment (i.e., X1) and the ratio of itineraries (i.e., X2) using a service leg before disruption are used to predict the post-disruption cost (i.e., Y) associated with a service leg.

<table>
<thead>
<tr>
<th>Regression statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Square</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error</td>
<td>90729.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>15654518.21</td>
<td>21225.82093</td>
<td>737.5223914</td>
</tr>
<tr>
<td>X1</td>
<td>1173.187205</td>
<td>284.365879</td>
<td>4.125625792</td>
</tr>
<tr>
<td>X2</td>
<td>-2468066.471</td>
<td>1048047.249</td>
<td>-2.354919088</td>
</tr>
</tbody>
</table>
Case Study: Predictive Model Results

- We run the pre-disruption model (Step 1) and for each service leg the post-disruption model is implemented (Step 2).
- Run a multiple regression model where the optimal volume of shipment (i.e., X_1) and the ratio of itineraries (i.e., X_2) using a service leg before disruption are used to predict the post-disruption cost (i.e., Y) associated with a service leg.

<table>
<thead>
<tr>
<th>Regression statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Square</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error</td>
<td>90729.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Standard Error</th>
<th>T Stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>15654518.21</td>
<td>737.5223914</td>
<td>1.3639E-102</td>
</tr>
<tr>
<td>X1</td>
<td>1173.187205</td>
<td>4.125625792</td>
<td>0.000139654</td>
</tr>
<tr>
<td>X2</td>
<td>-2468066.471</td>
<td>-2.354919088</td>
<td>0.022493017</td>
</tr>
</tbody>
</table>
Case Study: ABC Analysis

Plot Residuals (cost from post-disruption model cost from predictive model)
Case Study: ABC Analysis

Plot Residuals (cost from post-disruption model vs. cost from predictive model)
Case Study: ABC Analysis
Case Study: Mitigation Strategy

Mitigation strategy for critical service legs: Add new itineraries by renting the tracks owned by competing railroad operators
Case Study: Mitigation Strategy
Case Study: Results
The mitigation strategy implementation results in significant enhancement to the railroad transportation resiliency with minimal changes to the existing infrastructure and insignificant increase in the pre-disruption transportation costs.