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A Network-Based Parking Model for Recurrent Short-Term Trips 

Abstract  

Efficient parking management strategies are vital in central business districts of mega-cities where 

space is restricted and congestion is intense. Variable parking pricing is a common parking 

management strategy in which vehicles are charged based on their dwell time. In this paper, we 

show that road pricing and variable parking pricing are structurally different in how they influence 

the traffic equilibrium with elastic demand. Whereas road pricing strictly reduces demand, parking 

pricing can reduce or induce demand. Under special scenarios, the demand only increases with 

respect to parking price when parking dwell time time shows increasing returns to scale with 

respect to the variable parking price. The emergent traffic equilibrium with parking is formulated 

as a Variational inequality and a heuristic algorithm is presented to find the solution. Numerical 

experiments are conducted on two networks. Analysis of the first network, with elastic demand and 

variable parking capacity, shows that parking capacity is only influential in the equilibrium when 

the variable parking price is low. The second network, a grid network with fixed demand and 

parking capacity, depicts a larger parking search time at the center of the network with parking 

zones that are accessible more travelers. 
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1 Introduction  

Efficient parking management strategies are vital in Central Business Districts (CBDs) of 

mega-cities where space is restricted and congestion is intense. A great deal of parking demand in 

these regions is dedicated to travelers who need to visit their final destination for some specified 

period called dwell time before returning to their origin location (Anderson and de Palma, 2007). 

Shopping trips in CBDs are an example of these trips. Travelers who engage in such parking 

behavior incur a cost which is comprised of traveling to a chosen parking area, searching for a spot, 

paying the parking fee, and walking to the final destination.  In day-to-day equilibrium conditions or 

in the presence of information systems such as mobile apps, travelers adjust their trips to minimize 

their costs. This adjustment includes choosing an affordable parking area in the vicinity of the final 

destination. Parking areas are underground or multi-floor parking garages, surface lots, or a 

collection of on-street parking spots. They can be public or private and generally require a fee 

admission which can include both a fixed and a variable price component. The variable price 

component plays a key role in parking management as its impact on parking behavior is twofold. 

First, increasing the variable fee of a particular parking area increases costs and can directly abate 

demand. Second, the same increase in the parking fee motivates travelers to shorten their dwell 

time which can lead to lower parking occupancy, lower searching time and cost, and finally higher 

demand. The role of variable parking pricing is amplified in the presence of multiple public and 

private parking management authorities who are generally in competition with each other (Anott 

and Rowse, 2009; Arnott and Rowse, 2013). This paper investigates the role of time-based parking 

pricing (hereafter referred to as variable parking pricing) on traffic equilibrium conditions and 

parking search time.  

Parking studies are broadly categorized based on modeling framework, search mechanism, 

and context. The two main modeling frameworks include simulation and analytic approaches. 

Simulations capture complex dynamics of parking but require detailed data for calibration. Often, 

lack of sufficient data is justified through applying behavioral rules which are mostly inconsistent 

among different studies (Benenson et al., 2008; Gallo et al., 2011; Nourinejad et al., 2014). In 

Benenson et al. (2008), for instance, parking seekers relinquish their on-street parking search after 

some time threshold (10 minutes) and head for off-street parking instead and in Nourinejad et al. 

(2014), parking seekers start the cruising process when within 500 meters of their final 

destination. In comparison, analytic models, with a few exceptions, are less data-hungry and 

insightful but are generally aggregate and not amenable to detailed results (Arnott and Inci, 2006; 

Arnott and Rose, 1999; Anderson and de Palma, 2004). In Arnott and Inci (2006), for instance, a 

parking model is developed for downtown areas with equal-sized blocks and a constant demand 

over the region. Although aggregate, the model provides very useful insights such as “it is efficient 

to raise the on-street parking fee to the point where cruising for parking is eliminated without 

parking becoming unsaturated”. More recently, there is growing advocacy for network-based 

analytical models that allow for a finer level of policy-making. Two such studies of such, to our 

knowledge, are Boyles et al. (2014) and Qian and Rajagopal (2014). Both studies develop an 

equilibrium assignment of parking seekers to spatially disaggregate parking areas but use different 

search mechanisms. 



 Searching mechanisms are divided into zone-based1 searching and link-based searching. In 

zone-based searching, seekers only start searching for a spot when they reach a zone and each zone 

is associated with a search time which is assumed to be a function of the zones occupancy (i.e. ratio 

of the total number of parked vehicles over the total number of available spots) (Qian and 

Rajagopal, 2014). Applications of zone-based searching are not limited to parking. In taxi 

equilibrium models, taxi drivers search for passengers in different zones and incur a searching cost 

which is generally assumed to be a function of the total number of searching taxis and passengers in 

that zone. Taxi searching time is usually lower with more passengers and less taxis in each zone 

(Yang and Wong, 1998; Yang et al., 2002; Yang et al., 2010a; Yang et al., 2010b; Yang and Yang, 

2011). In link-based searching, seekers search for a spot in any of the links that are on their route to 

a final destination zone. One of the interesting implications of a link-based search model, as is 

shown in Boyles et al. (2014), is the smooth transition of the vehicles from “driving” to “searching 

for parking” which is inherent in the equilibrium structure of the model. The computational load of 

the model, however, hinders its power in policy-making.  

 Parking studies can also be classified based on context into zero and non-zero turnover rate 

models. Turnover refers to the rate at which vehicles leave a parking area which is also an 

indication of parking duration (also known as parking dwell time). Hence, zero turnover parking 

indicates that vehicles only enter parking areas without leaving. This type of parking is common in 

the morning commute context where the one’s major concern is the dynamic arrival pattern of the 

vehicles at the parking zones. These studies are usually defined for stylized settings such as a single 

bottleneck linear city (Zhang et al., 2008; Qian et al., 2012) or a parallel bottleneck city with several 

corridors (Zhang et al., 2011). A more general network-based zero turnover model is developed by 

Qian and Rajagopal’s (2014). Non-zero turnover models are more appropriate for short duration 

activities such as shopping. In these models, one is concerned with both the arrival and departure 

rate of vehicles from each parking area. Under steady-state conditions, the arrival rate should be 

equal to the departure rate of vehicles from each parking area (Arnott, 2006; Arnott and Rowse, 

2009; Arnott an Inci, 2010; Arnott and Rowse, 2013; Arnott, 2014; Arnott et al., 2015). In non-zero 

turnover simulation models such as Guo et al. (2013) and Nourinejad et al. (2014), the sum of 

vehicles entering and leaving each parking area are equal.  

 The policy implications of parking have also been the subject of many studies. Among the 

more innovative ones are parking permit schemes which involve distributing a number of permits 

between travelers and restricting vehicles to spend the permits for parking (Zhang et al., 2011; Liu 

et al., 2014). In another novel policy, He et al. (2015) study the optimal assignment of vehicles to 

parking spots while considering the competition game between the vehicles. The authors show the 

existence of multiple equilibria and propose a robust pricing scheme. Qian and Rajagopal (2014) 

study parking pricing strategies using real-time sensors to manage parking demand. Using parking 

pricing and information provision systems, Qian and Rajagopal (2014) propose a dynamic 

stabilized controller to minimize the total travel time in the system. Parking prices are then 

adjusted in real-time according to occupancy information collected from parking sensors.   

                                                             
1 By zone, we refer to either an off-street parking lot or a collection of on-street parking spaces.  



In this paper, we present a non-zero turnover, zone-based search, analytical model for 

parking systems. Given the non-zero turnover rate, we consider both arrival and departure rates of 

vehicles to parking areas which are assumed to be equal under steady-state conditions. Our model 

is therefore distinguished from Qian and Rajagopal (2014) which is a zero turnover model. 

Contrary to Boyle et al. (2014), we use the zone-based search mechanism which, due to its 

simplicity, helps derivation of the analytical results and improves policy evaluation. The presented 

model is also distinguished from the analytical models of Arnott and Inci (2006), Arnott (2014), and 

Arnott et al. (2015) since it considers the topological network of parking.  

We particularly focus on unassigned parking where drivers have to cruise to find a spot. 

These trips have shorter dwell times and belong to frequent drivers such as shoppers. We study 

cases where parking supply can be varied and cases where parking supply is fixed and exogenous 

and represented by zones in a network. Each parking zone has a specified capacity and can either 

be an off-street lot or a group of on-street parking spots. The modeled network is assumed to be a 

CBD where travelers reside far away. This assumption is previously imposed by Anderson and de 

Palma (2004) as well.  

The remainder of this paper is organized as follows. The model is presented in Section 3. 

Equilibrium conditions are discussed in Section 4. Parking competition is explained in Section 5. 

Examples are provided in Section 6. Conclusions are presented in Section 7. 

2 The model 

2.1 The network 

Consider a transportation network 𝐺(𝑁, 𝐴) with node and arc sets N and A, respectively. To 

model the parking process we further partition the node set N into external nodes denoted by 𝑅, 

parking zones denoted by 𝐼, and internal zones denoted by  𝑆 so that 𝑁 = 𝑅 ∪ 𝐼 ∪ 𝑆. Let 𝑅 =

{1, . . , 𝑟, . . , |𝑅|}, 𝑆 = {1, . . , 𝑠, . . , |𝑆|}, and 𝐼 = {1, . . , 𝑖, . . , |𝐼|}. External zones are the origin location of 

travelers (say home) and internal zones are their destination zones (say a shopping center). Each 

traveler is associated with one external zone and one internal zone and can park at any of the 

parking zones. For modeling non-zero turnover parking, we consider two types of trips called 

inbound and outbound.  Inbound trips involve travelers who leave an external zone from where 

they drive to a parking zone. After parking, the inbound traveler walks from the parking zone to an 

internal zone as is shown in Fig. 1a. Hence, the path of every inbound traveler includes the 

sequence 𝑟 → 𝑖 → 𝑠. Each inbound trip is associated with a return outbound trip. That is, outbound 

trips are the reverse direction of inbound trips. The path of every outbound traveler includes the 

sequence 𝑠 → 𝑖 → 𝑟. Fig. 1a depicts the general inbound and outbound trip trajectories and Fig. 1b 

illustrates an example of internal and external zones where the internal zones represent 

destination locations in the CBD of a city and the external zones represent the gateways to the CBD. 

Let us also partition the link Set A into 𝐴𝑑  and 𝐴𝑤 representing the driving and walking links, 

respectively, as is also shown in Fig. 1a. 



 

Fig. 1. a: Inbound and outbound trip trajectories; b: An example for the three zone types. 

 

The following sets are now defined. Let 𝑉 = 𝑅 × 𝑆 represent the set of Origin-Destination 

(O-D) pairs. For each O-D pair (𝑟, 𝑠), let Ω(𝑟, 𝑠) be the set of parking zones that are within the 

parking zone choice-set of these travelers. The Set Ω(𝑟, 𝑠) can be defined according to features such 

as walking distance from parking i to destination s and the cost of parking. Clearly, parking zones 

that are too far from the internal destinations zones are less likely to be included in the choice set. 

For every O-D pair (𝑟, 𝑠) ∈ 𝑉 and parking zone 𝑖𝜖Ω(𝑟, 𝑠), let 𝜓(𝑟, 𝑠, 𝑖) represent the set of routes for 

the segments of the journey which include driving links. Each route is comprised of a set of driving 

links connecting the zone r to i and zone i to s. For instance, in Fig. 1a there is only one route of this 

nature which includes the following sequences of zones: 𝑟 → 𝑖 → 𝑠. 

 Let 𝑑𝑟𝑠,𝑎
𝑖  denote the flow of vehicles belonging to O-D pair (𝑟, 𝑠) ∈ 𝑉 who choose 

parking 𝑖𝜖𝛺(𝑟, 𝑠) via route 𝑎𝜖𝜓(𝑟, 𝑠, 𝑖). Let 𝑥𝑏 be the flow and 𝜏𝑏(𝑥𝑏) the travel time of driving link 

𝑏 ∈ 𝐴𝑑  and let 𝑤𝑏 represent the walking time on link 𝑏 ∈ 𝐴𝑤 . It is commonly assumed that the 

travel time on driving link 𝑏 ∈ 𝐴𝑑  is a continuous and monotonically increasing function of link flow 

𝑥𝑏 and the travel time on walking link 𝑏 ∈ 𝐴𝑤  is independent of the flow. Let △ represent the path-

link incidence matrix where △𝑎,𝑏= 1 if link 𝑏 ∈ 𝐴𝑑 is included in route 𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) and △𝑎,𝑏= 0, 

otherwise. Hence we have 𝑥𝑏 = ∑ ∑ ∑ 𝑑𝑟𝑠,𝑎
𝑖 △𝑎,𝑏𝑎∈𝜓(𝑟,𝑠,𝑖)𝑖𝜖Ω(𝑟,𝑠)(𝑟,𝑠)∈𝑉 .      



2.2 The non-zero turnover parking process 

The parking search process is explained in this section. First, the following assumption is 

imposed: 

Assumption 1: Under equilibrium conditions travelers will choose to park at a zone with the 

lowest perceived cost.  

Assumption 1 is justified under at least two conditions. First, if the trips are recurrently 

performed, travelers become familiar with the process and choose to park at a zone with the lowest 

generalized cost. Second, when parking information such as parking occupancy is provided to users 

via apparatus such as mobile apps, travelers are better informed about which zone to choose for 

parking. In essence, Assumption 1 implies that travelers will not hop between parking zones and 

will instead choose the one with the lowest perceived cost. The cost of parking is comprised of the 

cost of traveling from the external zone to a parking zone, the cost of searching for parking, the 

parking fee which can include both a fixed and a variable component, the cost of walking from the 

parking area to the internal zone, the cost of walking from the internal zone to the parking area, and 

the cost of driving from the parking area to the origin zone.    

Using Assumption 1, we can now analyze the parking pattern of travelers. Let 𝑑𝑟𝑠
𝑖 , ∀(𝑟, 𝑠) ∈

𝑉, 𝑖 ∈ Ω(𝑟, 𝑠), represent the flow of vehicles that originate at zone r, terminate at zone s, and park at 

zone i and let 𝑑𝑟𝑠 = ∑ 𝑑𝑟𝑠
𝑖

𝑖∈Ω(𝑟,𝑠)  represent the total flow from r to s. We assume that all travelers 

belonging to the origin-destination pair (𝑟, 𝑠) who choose parking i will remain there for a period of 

ℎ𝑟𝑠
𝑖  called the dwell time. This assumption is justified as travelers belonging to the same origin-

destination pair are likely to be homogenous (Yang and Huang, 2005).  

Let 𝑞𝑖 be the total occupancy of parking 𝑖 ∈ 𝐼 under equilibrium and let 𝑘𝑖 be the capacity of 

parking i measured in vehicles. Note that 𝑘𝑖 is a given whereas 𝑞𝑖 is obtained from the equilibrium.  

Given the flow of vehicles and their dwell time, we have:   

𝑞𝑖 = ∑ 𝑑𝑟𝑠
𝑖 ℎ𝑟𝑠

𝑖
(𝑟,𝑠)     ∀𝑖 ∈ 𝐼      (1) 

Parking search time is typically assumed to be a convex function of parking occupancy 𝑞𝑖 

and capacity 𝑘𝑖 (Axhausen et al., 1994; Anderson and de Palma, 2004; Levy et al., 2012; Qian and 

Rajagopal, 2014). The general form of this function 𝐹𝑖(𝑞𝑖) as explained in Axhausen et al. (1994) is: 

𝐹𝑖(𝑞𝑖) =
𝑙𝑖𝜇𝑖

1−
𝑞𝑖
𝑘𝑖

     ∀𝑖 ∈ 𝐼      (2) 

where 𝑙𝑖 is the is the average searching time in parking area i when occupancy is low or 

medium and 𝜇𝑖  is a constant representing how drivers adopt occupancy information. When 𝜇𝑖 = 0, 

drivers are unaware of the searching time and when 𝜇𝑖 = 1 drivers are completely aware of 

searching time. Axhausen et al. (1994) estimated the search function with a coefficient of 

determination 𝑅2 = 0.91 for Frankfurt, Germany. The searching time function 𝐹𝑖(𝑞𝑖) asymptotically 

goes to infinity as 𝑞𝑖 approaches 𝑘𝑖, i.e. 𝑙𝑖𝑚𝑞𝑖→𝑘𝑖
𝐹𝑖(𝑞𝑖) = ∞. This implies that a driver entering a full 

occupancy parking will never find a spot.  



2.3 Generalized travel costs  

The cost of parking 𝑖 ∈ 𝐼 is assumed to consist of a fixed cost 𝑔𝑖 measured in dollars and a 

variable cost of 𝑝𝑖  dollars per each hour of dwell time. Hence, for the O-D pair (𝑟, 𝑠) a traveler who 

chooses parking i will incur a total of 𝑔𝑖 + 𝑝𝑖ℎ𝑟𝑠
𝑖  dollars in parking costs. Let 𝑃 =

{(𝑝1, 𝑔1) … , (𝑝𝑖 , 𝑔𝑖), … , (𝑝|𝐼|, 𝑔|𝐼|)} be the set of fixed and variable parking costs. We can now derive 

the generalized travel costs. Let 𝐶𝑟𝑠,𝑎
𝑖  be the generalized travel cost for travelers of O-D pair (𝑟, 𝑠) 

who choose parking 𝑖𝜖𝛺(𝑟, 𝑠) via route 𝑎𝜖𝜓(𝑟, 𝑠, 𝑖). This cost is composed of the following six terms: 

(i) traveling from external zone r to parking i via route a with a travel time 𝑡𝑟𝑖,𝑎, (ii) searching for 

parking for a period of 𝐹𝑖(𝑞𝑖), (iii) a parking cost of 𝑔𝑖 + 𝑝𝑖ℎ𝑟𝑠
𝑖  dollars, (iv) walking from parking i to 

zone s, (v) walking from zone s to parking i, and (vi) traveling from parking i to external zone r via 

route a: 

𝐶𝑟𝑠,𝑎
𝑖 = 𝛼𝑡𝑟𝑖,𝑎 + 𝛽𝐹𝑖(𝑞𝑖) + (𝑔𝑖 + 𝑝𝑖ℎ𝑟𝑠

𝑖 ) + 𝛾𝑤𝑖𝑠 + 𝛾𝑤𝑠𝑖 + 𝛼𝑡𝑖𝑟,𝑎  

∀(𝑟, 𝑠) ∈ 𝑊, ∀𝑖 ∈ Ω(𝑟, 𝑠), ∀𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖)  (3) 

 In Eq. 3, 𝛼, 𝛽, and 𝛾 represent the marginal cost of each hour of travel time, each hour of 

parking search time, and each hour of walking time, respectively. For the first term on the right-side 

of Eq. 3, we have 𝑡𝑟𝑖,𝑎 = ∑ 𝜏𝑏 △𝑎,𝑏𝑏 .  

Using Eq. 3, the corresponding minimum cost via the shortest route for a O-D travelers 

(𝑟, 𝑠) ∈ 𝑉  parking at zone 𝑖 ∈ Ω(𝑟, 𝑠) is 𝐶𝑟𝑠
𝑖 = min

𝑎∈𝜓(𝑟,𝑠,𝑖)
𝐶𝑟𝑠,𝑎

𝑖 . However, 𝐶𝑟𝑠
𝑖  only represents the 

observed cost of O-D pair (𝑟, 𝑠) ∈ 𝑉  travelers who choose parking 𝑖 ∈ Ω(𝑟, 𝑠). Let us also assume an 

additional unobserved cost of 𝜀𝑟𝑠
𝑖  which is independently and identically Gumbel distributed for all 

parking zones 𝑖 ∈ 𝐼 that can be chosen by travelers of O-D pair (r,s). With this assumption, the 

probability that an O-D pair (𝑟, 𝑠) ∈ 𝑉 traveler chooses parking 𝑖 ∈ Ω(𝑟, 𝑠) is denoted by 𝜋𝑟𝑠
𝑖  which 

can be obtained using the following logit-based probability function: 

 𝜋𝑟𝑠
𝑖 =

exp(−𝜃𝐶𝑟𝑠
𝑖 )

∑ exp(−𝜃𝐶𝑟𝑠
𝑗

)𝑗∈Ω(𝑟,𝑠)

       ∀𝑖 ∈ Ω(𝑟, 𝑠)  (4) 

where 𝜃 is a dispersion parameter representing the variation in the cost perception of travelers. 

Note that Eq. 4 benefits from the following assumption: 

 Assumption 2: Travelers are stochastic in choosing a parking area but deterministic in 

choosing routes. This assumption is justified due to the availability and accuracy of route-guidance 

advanced traveler information systems. 

We also assume that the O-D pair demand is a continuous and decreasing function of the 

expected, perceived travel cost of each O-D pair. The O-D pair demand function is denoted by 𝐷𝑟𝑠 

and the expected, perceived travel cost is denoted by 𝜂𝑟𝑠 for each (𝑟, 𝑠) ∈ 𝑉. Hence, we have: 

𝑑𝑟𝑠 = 𝐷𝑟𝑠(𝜂𝑟𝑠)        ∀(𝑟, 𝑠) ∈ 𝑊  (5) 

Given the logit-based parking choice model in Eq. 4, the expected minimum cost for each 

(𝑟, 𝑠) ∈ 𝑉 is: 

𝜂𝑟𝑠 = 𝐸 ( min
𝑖∈Ω(𝑟,𝑠)

{𝐶𝑟𝑠
𝑖 }) = −

1

𝜃
ln (∑ exp (−𝜃𝐶𝑟𝑠

𝑖 ))𝑖∈Ω(𝑟,𝑠)   ∀(𝑟, 𝑠) ∈ 𝑊  (6)  



2.4 Parking dwell time 

Recall that parking dwell time ℎ𝑟𝑠
𝑖  is the time spent by travelers of O-D pair (𝑟, 𝑠) at parking 

zone 𝑖𝜖Ω(𝑟, 𝑠). The following assumption is now imposed: 

Assumption 3: The dwell time of travelers of O-D pair (𝑟, 𝑠) at parking zone 𝑖𝜖Ω(𝑟, 𝑠)is 

assumed to be a function of the variable parking cost 𝑝𝑖  of parking i.  

Let  𝐻𝑟𝑠(𝑝𝑖) denote this function which is assumed to be convex and monotonically 

decreasing with 𝑝𝑖 . Moreover, it is also sound to assume that dwell time approaches zero as 𝑝𝑖  tends 

to infinity, i.e. lim
𝑝𝑖→∞

𝐻𝑟𝑠(𝑝𝑖) = 0. Hence, we have:  

ℎ𝑟𝑠
𝑖 = 𝐻𝑟𝑠(𝑝𝑖)      ∀(𝑟, 𝑠) ∈ 𝑊, ∀𝑖 ∈ Ω(𝑟, 𝑠)  (7) 

According to Eq. 7 and Eq. 3, the variable parking price 𝑝𝑖  influences the parking behaviors 

in two ways. First, increasing the 𝑝𝑖  leads to a higher generalized cost of parking at parking area i as 

imposed by the term 𝑝𝑖ℎ𝑟𝑠
𝑖  in Eq. 3. Second, increasing 𝑝𝑖  leads to a lower dwell time as implied by 

Eq. 7, which can in turn reduce the generalized cost of parking at parking area i as imposed by the 

term 𝑝𝑖ℎ𝑟𝑠
𝑖  in Eq. 3.   

3 Comparative analysis of road pricing and parking pricing  

 We show here that road pricing and parking fares are structurally different in how they 

influence the traffic equilibrium. Whereas road pricing reduces demand, parking fares can reduce 

or induce demand. Mathematically, we have 
dD

d𝑝
< 0 where 𝑝̂ is the road toll and 

dD

d𝑝
< > 0 where p is 

the variable parking price and D is the demand function. Consider the network of Fig. 1a which has 

one origin r, one destination s, and one parking area i. A toll 𝑝̂ is imposed on the driving link (𝑟, 𝑖) 

and a variable parking price p is imposed on parking area i. The demand function is defined such 

that the generated demand is strictly decreasing with respect to the generalized cost, i.e. 
d 𝐷𝑟𝑠(𝜂𝑟𝑠)

d 𝜂𝑟𝑠 
<

0.  

The following two lemmas are now defined and later used to prove Proposition 1.  

Lemma 1: Demand is strictly decreasing with respect to the road toll, i.e. 
dD

d𝑝
< 0. 

Proof: 

Let us rewrite 
dD

d𝑝
 as 

 
d𝐷𝑟𝑠

d𝑝
=

d 𝐷𝑟𝑠

d 𝜂𝑟𝑠 
.

d 𝜂𝑟𝑠 

d 𝑝 
          (8) 

It is already assumed that 
d 𝐷𝑟𝑠

d 𝜂𝑟𝑠 
< 0 as demand is strictly decreasing with respect to the generalized 

cost. It is also evident that 
d 𝜂𝑟𝑠 

d 𝑝 
> 0 because 𝑝̂ is the out-of-pocket money paid by travelers to 

traverse road (𝑟, 𝑖).  Hence, the product of the two terms on the RHS of Eq. (8) is negative and  
d𝐷𝑟𝑠

d𝑝
 < 0.  ∎ 



Lemma 2: Changing the parking fare may induce or reduce demand, i.e. 
d𝐷

d𝑝
< > 0. 

Proof: 

Let 𝐷 = 𝐷𝑟𝑠, ℎ =  ℎ𝑟𝑠
𝑖 , 𝜂 = 𝜂𝑟𝑠, 𝑘 = 𝑘𝑖, and 𝜇 = 𝜇𝑖. 

Let us rewrite 
dD

d𝑝
 as 

 
d𝐷

d𝑝
=

d 𝐷

d 𝜂 
.

d 𝜂 

d 𝑝 
           (9) 

It is already assumed that 
d 𝐷

d 𝜂 
< 0 as demand is strictly decreasing with respect to the generalized 

cost. Hence, we focus on the second term on the RHS of Eq. (9). By taking the derivative of Eq. (3), 

we have 

d 𝜂 

d 𝑝 
=

d (ℎ𝑝)

d 𝑝
+

d 𝐹

d 𝑝
          (10) 

By taking the derivative of Eq. (2), the second term on the RHS of Eq. (10) can be rewritten as 

d 𝐹

d p
=  

𝜇[(d ℎ d 𝑝⁄ )𝐷+(d 𝐷 d⁄  p)ℎ]

𝑘(1−ℎ𝑑 𝑘⁄ )2          (11) 

By inputting Eq. (11) into Eq. (10), inputting Eq. (10) into Eq. (9), and simplifying the terms, we 

have 

d𝐷

d𝑝
=

d𝐷

d𝜂 
[

(d(ℎ𝑝) d⁄ 𝑝)+𝜔(dℎ d⁄ 𝑝)𝐷

1−𝜔ℎ(d𝐷 d𝜂 ⁄ )
]         (12) 

where  𝜔 = 𝜇 [𝑘(1 − ℎ𝐷 𝑘⁄ )2]⁄ > 0. Analysis of Eq. (12) concludes the following: 

d𝐷

d𝑝
> 0               𝑖𝑓     𝐷 > 𝐷∗         (13a) 

d𝐷

d𝑝
< 0               𝑖𝑓     𝐷 < 𝐷∗         (13b) 

in which 𝐷∗ =
−(d ℎ𝑝 d⁄ 𝑝)

 𝜔 (dℎ d⁄ 𝑝)
. Eq. (13) shows that marginal change of demand with respect to the 

variable parking cost depends on the value of the materialized demand D. ∎ 

Lemma 1 has the following two remarks: 

Remark 1: The variable parking prices has the same effect as the road toll when travelers dwell 

time is insensitive to variable parking price.  

Proof: 

When traveler dwell time time is insensitive to the variable parking cost (i.e. dℎ d⁄ 𝑝 → 0), we have 

𝐷∗ =
−ℎ

 𝜔 (dℎ d⁄ 𝑝)
→ ∞ which, according to Eq. (13b) indicates, that demand is strictly decreasing with 

respect to the variable parking price. In other words, when  dℎ d⁄ 𝑝 → 0, the variable parking cost 

has a similar impact on demand as a road toll. ∎ 

Remark 2: Demand is strictly increasing with respect to parking dwell time when parking dwell 

time is highly elastic to variable parking price.  



Proof: 

Let 𝑒𝑝
ℎ ≤ 0 be the parking dwell time elasticity with respect to the variable parking price. Given that 

𝑒𝑝
ℎ =

𝜕ℎ

𝜕𝑝

𝑝

ℎ
 and 

𝜕(𝑝ℎ)

𝜕𝑝
= ℎ(1 + 𝑒𝑝

ℎ), we can rewrite 𝐷∗ in Eq. (13) as 𝐷∗ = − 𝑝(1 + 𝑒𝑝
ℎ) 𝜔𝑒𝑝

ℎ⁄ .  

Consider the two scenarios where −1 < 𝑒𝑝
ℎ ≤ 0 and 𝑒𝑝

ℎ ≤ −1. Under Scenario I when −1 < 𝑒𝑝
ℎ ≤ 0 , 

we have 𝐷∗ > 0 indicating that the demand both increases and decreases. Under Scenario II when  

𝑒𝑝
ℎ ≤ −1, however, we have 𝐷∗ ≤ 0 which according to Eq. (13) indicates that the demand is strictly 

increasing with respecting to the variable parking price. ∎ 

The following proposition is readily derived from Lemma 1 and 2. 

Proposition 1: Whereas road pricing reduces demand, variable parking pricing can reduce or 

induce demand depending on the values of the materialized demand.  

4 Equilibrium conditions 

4.1 A variational inequality formulation 

In this section, we formulate the equilibrium problem using Variational Inequality (VI). The 

VI formulation is defined for a given Set 𝑃 = {(𝑝1, 𝑔1) … , (𝑝𝑖, 𝑔𝑖), … , (𝑝|𝐼|, 𝑔|𝐼|)}. Hence, according to 

Assumption 3, the dwell times of each O-D pair traveler at each parking zone is known as well. Let 

us define the feasible region Γ of the demands and route flows of the equilibrium model as the 

following set of equations in which 𝑑𝑖 is the flow of vehicles into parking zone 𝑖 ∈ 𝐼 and the 

variables in brackets are the dual variables.  

∑ 𝑑𝑟𝑠,𝑎
𝑖

𝑎𝜖𝜓(𝑟,𝑠,𝑖) = 𝑑𝑟𝑠
𝑖   [𝑢𝑟𝑠

𝑖 ]  ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)   (14a) 

∑ 𝑑𝑟𝑠
𝑖

𝑖∈Ω(𝑟,𝑠) = 𝑑𝑟𝑠  [𝜆𝑟𝑠]  ∀(𝑟, 𝑠) ∈ 𝑉     (14b) 

𝑑𝑖 = ∑ 𝑑𝑟𝑠
𝑖

(𝑟,𝑠)∈𝑉   [𝛿𝑖]  ∀𝑖 ∈ 𝐼      (14c) 

𝑑𝑟𝑠,𝑎
𝑖 ≥ 0   [𝜑𝑟𝑠,𝑎

𝑖 ]  ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)   (14d) 

Constraints (14a) and (14b) represent conservation of flow, constraints (14c) represent 

occupancy of parking i, and constraints (14d) represent non-negativity of path flows. For clarity, let 

us now partition the cost 𝐶𝑟𝑠,𝑎
𝑖  (as shown in Eq. 3) into the following terms: 

𝐶𝑟𝑠,𝑎
𝑖 = 𝜍𝑟𝑠,𝑎

𝑖 + 𝛽𝐹𝑖(𝑞𝑖)    ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠), ∀𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) (15) 

where 𝜍𝑟𝑠,𝑎
𝑖 = 𝛼𝑡𝑟𝑖,𝑎 + 𝛾𝑤𝑖𝑠 + 𝛾𝑤𝑠𝑖 + 𝛼𝑡𝑖𝑟,𝑎 + (𝑔𝑖 + 𝑝𝑖ℎ𝑟𝑠

𝑖 ) represents the total observed travel cost 

including the cost of driving from r to i, walking from i to s, walking from s to i, and driving from i to 

r. With Eq. (15) defined, the VI program is given as follows. Let 𝒅 = {𝑑𝑟𝑠,𝑎
𝑖 , (𝑟, 𝑠)𝜖𝑊, 𝑖 ∈ Ω(𝑟, 𝑠), 𝑎 ∈

𝜓(𝑟, 𝑠, 𝑖)}. Find (𝒅∗, 𝑞𝑖
∗, 𝑑𝑟𝑠

∗ , 𝑑𝑟𝑠
𝑖∗

) ∈ Γ, (𝑟, 𝑠)𝜖𝑊, 𝑖 ∈ Ω(𝑟, 𝑠), 𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) as the equilibrium solution 

such that: 



∑ (∑ (∑ 𝜍𝑟𝑠,𝑎
𝑖 (𝒅)(𝑑𝑟𝑠,𝑎

𝑖 − 𝑑𝑟𝑠,𝑎
𝑖∗

)𝑎𝜖𝜓(𝑟,𝑠,𝑖) +
1

𝜃
ln 𝑑𝑟𝑠

𝑖∗
(𝑑𝑟𝑠

𝑖 − 𝑑𝑟𝑠
𝑖∗

))𝑖𝜖Ω(𝑟,𝑠) −
1

𝜃
ln 𝑑𝑟𝑠

∗ (𝑑𝑟𝑠 − 𝑑𝑟𝑠
∗ ) −(𝑟,𝑠)𝜖𝑉

𝐷𝑟𝑠
−1(𝑑𝑟𝑠

∗ )(𝑑𝑟𝑠 − 𝑑𝑟𝑠
∗ )) + 𝛽 ∑ 𝐹𝑖(𝑞𝑖

∗)(𝑑𝑖 − 𝑑𝑖∗
)𝑖 ≥ 0 ∀((𝒅∗, 𝑞𝑖

∗, 𝑑𝑟𝑠
∗ , 𝑑𝑟𝑠

𝑖∗
)) ∈ Γ  (16) 

The Karush-Kuhn-Tucker (KKT) conditions of the VI program in Eq. 16 are derived as 

𝑑𝑟𝑠,𝑎
𝑖  :  𝜍𝑟𝑠,𝑎

𝑖 (𝒅∗) − 𝑢𝑟𝑠
𝑖 − 𝜑𝑟𝑠,𝑎

𝑖 = 0   ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)  (17) 

𝑑𝑟𝑠
𝑖    : 𝑢𝑟𝑠

𝑖 + 𝛿𝑖 − 𝜆𝑟𝑠 +
1

𝜃
ln 𝑑𝑟𝑠

𝑖 = 0   ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)  (18) 

𝑑𝑟𝑠   : 𝜆𝑟𝑠 − 𝐷𝑟𝑠
−1(𝑑𝑟𝑠) −

1

𝜃
ln 𝑑𝑟𝑠 = 0   ∀(𝑟, 𝑠) ∈ 𝑉    (19) 

𝑑𝑖      : 𝛽𝐹𝑖(𝑞𝑖) − 𝛿𝑖 = 0    ∀𝑖 ∈ 𝐼     (20) 

The complementarity conditions include constraints (14a) to (14d) and the following two 

conditions: 

𝑑𝑟𝑠,𝑎
𝑖 𝜑𝑟𝑠,𝑎

𝑖 = 0     ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠), ∀𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) (21) 

𝜑𝑟𝑠,𝑎
𝑖 ≥ 0     ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠), ∀𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) (22) 

At equilibrium 𝛿𝑖  is interpreted as the cost of searching at parking area i as per Eq. (29) and 

𝑢𝑟𝑠
𝑖  is interpreted as the minimum generalized travel (both driving and walking) cost of O-D pair 

(𝑟, 𝑠)𝜖𝑊 travelers parking at zone i as per (Eq. 17). We now show that the presented VI in 

equivalent to the equilibrium conditions of Section 2.  

First, assume that demand is always non-negative 𝑑𝑟𝑠,𝑎
𝑖 > 0, so that 𝜑𝑟𝑠,𝑎

𝑖 = 0 as per Eq. 

(21). Given that 𝜑𝑟𝑠,𝑎
𝑖 = 0, by applying the exponential function to both side of Eq. (18) and 

simplifying the terms, we have 

𝑑𝑟𝑠
𝑖 = exp (−𝜃(𝑢𝑟𝑠

𝑖 + 𝛿𝑖 − 𝜆𝑟𝑠)    ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)  (23) 

Using Eq. (14b), (Eq. 23) can be rewritten as: 

∑ 𝑑𝑟𝑠
𝑖

𝑖 = exp(𝜃𝜆𝑟𝑠) ∑ exp (−𝜃(𝑢𝑟𝑠
𝑖 + 𝛿𝑖)𝑖 = 𝑑𝑟𝑠  ∀(𝑟, 𝑠) ∈ 𝑉   (24) 

Thus,  

exp(𝜃𝜆𝑟𝑠) =
𝑑𝑟𝑠

∑ exp (−𝜃(𝑢𝑟𝑠
𝑗

+𝛿𝑗))𝑖

    ∀(𝑟, 𝑠) ∈ 𝑉    (25) 

Substituting Eq. (25) into Eq. (23) gives  

𝑑𝑟𝑠
𝑖 =

exp (−𝜃(𝑢𝑟𝑠
𝑖 +𝛿𝑖)

∑ exp (−𝜃(𝑢𝑟𝑠
𝑗

+𝛿𝑗)𝑖 )
𝑑𝑟𝑠    ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)  (26) 

in which the term 𝛿𝑖  can be related to the cost of searching at parking area i. This relevance makes 

Eq. (26) equivalent to the logit-based choice probability indicating that 𝑑𝑟𝑠
𝑖 = 𝜋𝑟𝑠

𝑖 𝑑𝑟𝑠.  



Eq. (19) can also be reorganized as 

𝜆𝑟𝑠 =
1

𝜃
ln 𝑑𝑟𝑠 −

1

𝜃
ln ∑ exp (−𝜃(𝑢𝑟𝑠

𝑖 + 𝛿𝑖)𝑖    ∀(𝑟, 𝑠) ∈ 𝑉    (27) 

Substituting Eq. (27) into Eq. (25) gives:  

𝐷𝑟𝑠
−1(𝑑𝑟𝑠) = −

1

𝜃
ln ∑ exp (−𝜃(𝑢𝑟𝑠

𝑖 + 𝛿𝑖)𝑖    ∀(𝑟, 𝑠) ∈ 𝑉    (28) 

which is equivalent to Eq. (6) representing the demand function.   

We have shown that the solution of the VI program satisfies all the functional relationships 

that are required by the parking model as defined in Section 2. The VI program has at least one 

solution when its feasible region is a compact convex set and the function of the VI as shown is 

continuous in the feasible region Γ. Given that feasible region Γ as defined in Eq. (14) is a set of 

linear constraints with non-negativity and given that the VI function in Eq. (16) is continuous 

within the feasible region, we conclude that the VI has at least one solution (Florian, 2002).  

4.2 Solving for equilibrium   

An extensive review of solution algorithms for finding the traffic equilibrium is presented by 

Patriksson (2004). To solve the VI, we use a method in which the traffic flows to parking areas 

(𝑑𝑖 , ∀𝑖) are first calculated to find the parking search time. Calculating the parking search time can 

lead to infeasible solutions when the computed parking occupancy is larger than the parking 

capacity, i.e. 𝑞𝑖 ≥ 𝑘𝑖. To rectify this issue, the parking search time in Eq. (2) is replaced with the 

following BPR-type equation.  

𝐹𝑖(𝑞𝑖) = 𝑙𝑖𝜇𝑖 [1 + (
𝑞𝑖

𝑘𝑖
)

𝜗
]         (29) 

in which 𝑙𝑖 is the is the average searching time in parking area i, 𝜇𝑖  is a constant representing how 

drivers adopt occupancy information, and 𝜗 is a calibration parameter. The computed parking 

search time is then used to find the generalized cost and the origin-destination demand. The 

algorithm terminates upon convergence. The steps of the algorithm are the following: 

Step 1. Initialization 

Set the iteration number 𝜐 = 0. Select an initial feasible solution 𝒅𝜐. The feasible solution 

can be obtained by setting all travel times equal to free-flow travel times and setting the 

parking search time equal to zero for all parking areas.  

Step 2. Computation of generalized costs 

First, using 𝒅𝜐, find the flow of vehicles into each parking area. The product of vehicle flow 

into each parking area and the parking dwell times (obtained for a given parking price) 

gives the parking occupancy which can be used as input in Eq. (29) to find the parking 

search time of each parking area. Second, using 𝒅𝜐, find the travel times and the generalized 

costs as per Eq. (3).  



Step 3. Direction finding 

Perform a stochastic network loading procedure on the current set of link travel times. This 

yields and auxiliary link flow pattern 𝒅̂. 

Step 4. Method of successive averages 

 Using the demand obtained from Step 3, find the new flow pattern by setting  

 𝒅𝜐+1 =
𝜐−1

𝜐
𝒅𝜐 +

1

𝜐
𝒅̂         (30) 

Step 5. Convergence test 

 Terminate if the following condition is satisfied with 𝜘 being a small number. Otherwise, set 

 𝜐 → 𝜐 + 1 and go to Step 2.  

 
√∑(𝒅𝜐+1−𝒅𝜐)2

∑ 𝒅𝜐 ≤ 𝜘         (31) 

5 Market regimes  

Let us first assume that a single operator is in charge of managing all the parking facilities. 

This operator can be either a public or a private entity. In such cases, the two objective functions of 

interest are profit maximization (denoted by PM) and social surplus maximization (denoted by SS). 

The former can be associated to the private and the latter to public authorities. The profits of 

collecting parking fees can be define as: 

𝑃𝑀 = ∑ ∑ [(𝑝𝑖ℎ𝑟𝑠
𝑖 + 𝑔𝑖)𝑑𝑟𝑠

𝑖 ]𝑖∈Ω(𝑟,𝑠)(𝑟,𝑠)∈𝑉 − ∑ 𝑘𝑖𝜎𝑖𝑖∈I       (32) 

where the first term on the right represents the generated revenue from parking and the second 

term represents the total maintenance cost of all parking spots with 𝜎𝑖 denoting the maintenance 

cost of one parking spot at parking zone 𝑖 ∈ 𝐼. The maintenance cost is not necessarily the cost of 

physical rehabilitation and can include other supervisory costs such as the cost of parking 

enforcement for on-street parking. The second objective function is social surplus which can be 

calculated as: 

𝑆𝑆 = ∑ ∫ 𝐷𝑟𝑠
−1(𝑧)𝑑𝑧

𝑑𝑟𝑠

0(𝑟,𝑠)∈𝑉 − ∑ 𝑘𝑖𝜎𝑖𝑖∈I        (33) 

where  𝐷𝑟𝑠
−1(𝑧) represents the inverse of the demand function. With the two objective functions, we 

can now define the following three markets: (i) monopoly, (ii) first best, and (iii) second best. Let us 

assume for now that the parking operator has monopoly rights and can simultaneously decide on 

the capacity and the fee structure of all parking zones. Under this market, the objective is to 

maximize the total profit as shown in Eq. 32. Alternatively, in the first-best market, the objective is 

to maximize social surplus. Finally, under the second-best market, the objective is to maximize 

social welfare while ensuring profits are nil. Hence, under the second-best market we have: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑ ∫ 𝐷𝑟𝑠
−1(𝑧)𝑑𝑧

𝑑𝑟𝑠

0(𝑟,𝑠)∈𝑉 − ∑ 𝑘𝑖𝜎𝑖𝑖∈I         

subject to 



∑ ∑ [(𝑝𝑖ℎ𝑟𝑠
𝑖 + 𝑔𝑖)𝑑𝑟𝑠

𝑖 ]𝑖∈Ω(𝑟,𝑠)(𝑟,𝑠)∈𝑉 = ∑ 𝑘𝑖𝜎𝑖𝑖∈I        (34) 

6 Numerical experiments: the case of the City of Toronto 

Numerical experiments are performed first on a network with elastic demand and variable parking 

capacity and second on a network with fixed demand and fixed parking capacity.  

6.1 First network: elastic demand and variable parking capacity  

We analyze a simple example to visually present the three defined market regimes of 

Section 5. Consider the network in Fig. 1a with one O-D pair (𝑟, 𝑠) and one parking zone 𝑖 ∈ Ω(𝑟, 𝑠). 

Let 𝛼 = 𝛽 = 10 dollars per hour, g = 0.5 dollars, 𝑤𝑠𝑖 = 𝑤𝑖𝑠 = 0 hours, 𝛾 = 0 dollars per hour, 𝜃 = 1, 

𝜇𝑖 = 1, and 𝑙𝑖 = 3 minutes. The functions are defined as follows. Let 𝑡𝑟𝑖 = 𝑡𝑖𝑟 = 0.5 +
𝑥2

1000
 measured 

in hours where x is the total demand which is obtained from the demand function 𝑥 = 𝐷𝑟𝑠(𝜂𝑟𝑠) =

20 − 𝜂𝑟𝑠. The dwell time function is 𝐻𝑟𝑠(𝑝𝑖) = 3𝑝𝑖
−0.4. 

The iso-profit and iso-social surplus contours are depicted in Fig. 2 for the simple example. 

As illustrated the monopoly equilibrium occurs at the optimum of the profit objective function and 

the first-best equilibrium occurs at the optimum of the social surplus contours. The second-best 

equilibrium has to lie on the zero profit line where social surplus is maximized.  

 
Fig. 2. Iso-profit and iso-social surplus contours for the simple example.  

We further investigate the generated profits by considering the following three dwell time 

function scenarios: 

I- 𝐻𝑟𝑠(𝑝𝑖) = 3𝑝𝑖
−1: Constant returns to scale, 𝑒𝑝

ℎ = 1 



II- 𝐻𝑟𝑠(𝑝𝑖) = 3𝑝𝑖
−0.4: Decreasing returns to scale, 𝑒𝑝

ℎ = 0.4 

III- 𝐻𝑟𝑠(𝑝𝑖) = 3𝑝𝑖
−1.4: Increasing returns to scale, 𝑒𝑝

ℎ = 1.4 

The demand and revenue for Scenarios I, II, and III are illustrated in Fig. 3, Fig. 4, and Fig. 5, 

respectively. For each scenario, demand and revenue are plotted for five parking capacities. Before 

discussing the scenarios, let us redefine 𝐶𝑟𝑠
𝑖  by substituting Eq. (1) and Eq. (2) into Eq. (3): 

𝐶𝑟𝑠
𝑖 = 𝛼𝑡𝑟𝑖 + 𝛽

𝑙𝑖𝜇𝑖𝑘𝑖

𝑘𝑖−∑ 𝑑𝑟𝑠
𝑖 ℎ𝑟𝑠

𝑖
(𝑟,𝑠)

+ (𝑔𝑖 + 𝑝𝑖ℎ𝑟𝑠
𝑖 ) + 𝛾𝑤𝑖𝑠 + 𝛾𝑤𝑠𝑖 + 𝛼𝑡𝑖𝑟  ∀(𝑟, 𝑠) ∈ 𝑉, ∀𝑖 ∈ Ω(𝑟, 𝑠)(35) 

As is now shown in Eq. (35), ℎ𝑟𝑠
𝑖  generally influences 𝐶𝑟𝑠

𝑖  in two separate terms (second and 

third terms of Eq. (35)). However, under Scenario I, given that  𝑝𝑖ℎ𝑟𝑠
𝑖 = 𝑝𝑖3𝑝𝑖

−1 = 3 is a constant, ℎ𝑟𝑠
𝑖  

influences 𝐶𝑟𝑠
𝑖  only via the second term. Hence, as 𝑝𝑖  increases, ℎ𝑟𝑠

𝑖  decreases causing 𝐶𝑟𝑠
𝑖  and 

consequently 𝑑𝑟𝑠 to approach their asymptotic values as is shown in Fig. 3. The revenue of this 

scenario also reaches its asymptotic value for the same reason. In Scenario II, demand initially 

increases with price and then it decreases as is shown in Fig. 4. The initial increase occurs because 

increasing 𝑝𝑖  leads to a lower dwell time and lower generalized cost, which in turn increases 

demand as elaborated in Section 3. The latter decrease in demand occurs because 𝑝𝑖  directly 

contributes to the generalized cost which reduces demand. The demand in Scenario III somewhat 

follows that same pattern as Scenario I (as shown in Remark 2 of Section 3) but the revenue 

patterns are different as shown in Fig. 5. In Scenario III, the revenues reach a peak value due to the 

higher influence of price on reducing dwell time. In all three scenarios, cases with higher parking 

capacities have higher demand, revenue, and occupancy due to the lower cost of searching for 

parking (second term of Eq. (35)). Moreover, for all parking capacities in all three scenarios, 

demand, revenue, and occupancy converge. The reason of convergence is that at high 𝑝𝑖  values, 

dwell time and parking occupancy become so low that the parking capacity no longer imposes any 

restriction.  

 

Fig. 3. Demand, revenue, and occupancy for Scenario I. 



 

Fig. 4. Demand, revenue, and occupancy for Scenario II. 

 

Fig. 5. Demand, revenue, and occupancy for Scenario III. 

6.2 Second network: fixed demand and fixed parking capacity 

The second network is a grid network 32 origins nodes, 49 destination nodes, and 64 

parking areas as shown in Fig. 6. The network includes a total of 144 bidirectional traffic links and a 

total of 196 bidirectional walk paths that connect the parking areas to the final destination zones. 

Travel time on each walking link is fixed and equal to 5 minutes but the travel time of each traffic 

link is obtained from the BPR function 𝑡 = 𝑓[1 + (𝑥/𝑐𝑎𝑝)4] where 𝑓 = 5 is the free-flow travel time 

and 𝑐𝑎𝑝=1000 vehicles per hour is the capacity of each traffic link. The parking search time at each 

parking area is obtained from the BPR-type function 𝐹(𝑞) = 𝜇𝑙[1 + (𝑞/𝑘)3] in which 𝜇 = 0.5 

minutes 𝑙 = 1 and 𝑘 = 100 vehicles is the capacity each parking area. The dispersion parameter in 

the stochastic equilibrium model is set to 𝜃 = 0.9. A demand of 1000 vehicles per hour is generated 

from each origin zone and evenly distributed between the 49 destination zones. The travelers of all 

origin-destination pairs are assumed to homogenous with a parking dwell time of 30 minutes 

which is obtained from Eq. (7) for a given variable parking price and a fixed parking price of zero.  

The parking search time of each parking area is computed at equilibrium and presented in 

Fig. 6. It is depicted that the center of the network has a larger parking search time due to the 

higher availability of those parking areas to travelers. On the of the boundaries of the network, 

however, the parking search time is low because the parking areas serve only a limited number of 



final destinations. The error term for finding the equilibrium as shown in Eq. (31) is depicted in Fig. 

7. Sensitivity analysis is performed on the dwell time and the results are presented in Fig. 9 in 

which the average parking search time and the total network travel time (including travel time and 

search time) are depicted. As illustrated, average parking search time increase with dwell time due 

to higher occupancy of the parking areas. Consequently, the longer search time increases the total 

network travel time as vehicles cruise to find a parking spot.  

 

 

Fig. 6. Second example network.  



 

Fig. 7. Parking search time.  

 

Fig. 8. Convergence of the algorithm.  



 

Fig. 9. Total parking search time and travel time, and average parking search time.  

7 Conclusions  

This paper investigates the impact of variable parking pricing on traffic conditions and 

parking search time. Parking pricing, if imposed wisely, has the potential to complement or even 

substitute road pricing. When imposed imprudently, however, variable parking pricing can increase 

the generated demand and created further congestion. This study shows that road pricing and 

parking fares are structurally different in how they influence the traffic equilibrium. While road 

pricing reduces demand, parking fares can reduce or induce the generated demand. To capture the 

emergent traffic equilibrium with parking, we present a Variational Inequality model and prove 

that it derives the equilibrium. Numerical experiments show that parking capacity is only 

influential in the equilibrium when the variable parking price is low. Analysis of a grid network 

depicts a larger parking search time at the center of the network with parking zones that are 

accessible more travelers. 

 

Nomenclature  

Sets 

𝐺(𝑁, 𝐴)  Graph with node set N and arc set A 

N  Set of nodes 

R  Set of external nodes 

I  Set of parking nodes 

S  Set of internal zones  



A  Set of arcs 

𝐴𝑑   Set of driving arcs 

𝐴𝑤  Set of walking arcs 

𝑉  Set of O-D pairs 

Ω(𝑟, 𝑠)  Parking choice set of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers  

𝜓(𝑟, 𝑠, 𝑖) Set of routes for O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

 

Constants  

𝑤𝑏   Walking time on walking link 𝑏 ∈ 𝐴𝑤  

𝑘𝑖   Capacity of parking 𝑖𝜖𝐼 

△𝑎,𝑏  Link-path incidence matrix  

𝜎𝑖  Maintenance cost of one spot at parking zone 𝑖 ∈ 𝐼 

𝑙𝑖   Average searching time at parking 𝑖 ∈ 𝐼 

𝜇𝑖    Constant representing how drivers adopt occupancy information at parking 𝑖 ∈ 𝐼 

𝛼  Marginal cost of each hour of driving time 

𝛽  Marginal cost of each hour of parking search time 

𝛾  Marginal cost of each hour of walking time 

𝜃  Dispersion parameter in the parking choice model  

 

Decision variables 

𝑥𝑏  Flow on link 𝑏 ∈ 𝐴𝑑  

𝜏𝑏(𝑥𝑏)  Travel time on driving link 𝑏 ∈ 𝐴𝑑  

𝑑𝑟𝑠
𝑖   Flow of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝑑𝑟𝑠  Flow of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers 

𝑑𝑟𝑠,𝑎
𝑖   Flow of O-D pair (𝑟, 𝑠) ∈ 𝑉 who choose parking 𝑖𝜖𝛺(𝑟, 𝑠) via route 𝑎𝜖𝜓(𝑟, 𝑠, 𝑖) 

𝑑𝑖  Flow of travelers into parking 𝑖𝜖𝐼 



𝑞𝑖   Occupancy of parking 𝑖 ∈ 𝐼 

ℎ𝑟𝑠
𝑖   Dwell time of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝜋𝑟𝑠
𝑖   Probability that an O-D pair (r,s) traveler chooses parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝜂𝑟𝑠  Expected perceived travel cost of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers 

𝐷𝑟𝑠(𝜂𝑟𝑠) Demand function of O-D pair (𝑟, 𝑠) ∈ 𝑉 travelers 

𝐶𝑟𝑠
𝑖   Observed cost of O-D pair (r,s) travelers who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝜀𝑟𝑠
𝑖   Unobserved cost of O-D pair (r,s) travelers who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝑔𝑖  Fixed price of parking at zone 𝑖 ∈ 𝐼 measured in dollars  

𝑝𝑖   Variable price of parking at zone 𝑖 ∈ 𝐼 measured in dollars per hour  

Γ  Feasible region of the Variational Inequality program  

𝑢𝑟𝑠
𝑖  Lagrange multiplier associated with conservation of flow for O-D pair (r,s) travelers 

who choose parking 𝑖𝜖Ω(𝑟, 𝑠) 

𝜆𝑟𝑠 Lagrange multiplier associated with conservation of flow for O-D pair (r,s) 

𝛿𝑖  Lagrange multiplier associated with conservation of flow at each parking zone 𝑖 ∈ 𝐼 

𝜑𝑟𝑠,𝑎
𝑖  Lagrange multiplier associated with conservation of flow for O-D pair (r,s) travelers 

who choose parking 𝑖𝜖Ω(𝑟, 𝑠) via route 𝑎 ∈ 𝜓(𝑟, 𝑠, 𝑖) 

 

Functions 

𝐻𝑟𝑠(𝑝𝑖)  Dwell time function for O-D pair (𝑟, 𝑠) at parking zone 𝑖𝜖Ω(𝑟, 𝑠) 

𝐹𝑖(𝑞𝑖)  Searching time at parking 𝑖 ∈ 𝐼 

𝑃𝑀  Profit maximization function 

SS  Social surplus function 
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