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Parking Enforcement: How to optimally choose the citation fine and level-of-enforcement  

Abstract  

A parking enforcement policy, in its simplest form, is comprised of a citation fine and a level-of-
enforcement. The citation fine is the penalty paid by illegally parked vehicles that get a parking 
ticket and the level-of-enforcement is the number of enforcement units (e.g., cameras or on-foot 
officers) deployed in a region to find illegally parked vehicles. In this paper, we investigate how 
to optimally devise a parking enforcement policy to maximize social welfare and profit. To find 
the optimal policy, we first show that the conventional inspection-game methodology, commonly 
used for modelling enforcement environments, cannot be applied to parking enforcement; the 
inspection-game does not realistically represent the searching process where enforcement units 
seek out illegally parked vehicles. Given that it takes time to find and cite each illegally parked 
vehicle, there is friction present in the searching process. To quantify the friction, we use the 
bilateral-search-and-meet function and we characterize key factors of illegal parking behavior 
such as parking dwell time, probability of parking illegally, citation probability, and rate of 
citations. Using these factors, we present an equilibrium model of illegal parking where each 
driver first decides to park legally or illegally and next chooses the parking dwell time. We prove 
that the equilibrium exists and is unique. The model yields several logical and some non-intuitive 
insights: (i) the citation probability increases with the illegal dwell time because vehicles that are 
parked for a long time are more susceptible to getting a citation, (ii) the citation probability 
decreases with the number of illegally parked vehicles, (iii) vehicles are more likely to park 
illegally when their dwell time is short, and (iv) the citation fine and the level-of-enforcement are 
lowered as the enforcement technology becomes more efficient.  
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1 Introduction  

Illegal parking leads to adverse societal impacts such as reduced traffic speeds (Han et al., 2005), 
loss of revenue from legal parking (Cullinane and Polak, 1992), and more accidents caused by 
safety violations (Conway et al., 2013). It is estimated that illegal parking causes 47 million 
vehicle-hours of delay each year in the United States, which makes illegal parking the third 
leading cause of delay behind construction and crashes (Han et al., 2005). In response to these 
detrimental consequences, parking enforcement policies are implemented to hinder illegal 
parking. A parking enforcement policy, in its simplest form, is comprised of choosing a citation 
fine and the level-of-enforcement. The citation fine is the penalty paid by illegally parked 
vehicles that get caught by an enforcement unit (e.g. on-foot officers or cameras) and the level-
of-enforcement is the number of enforcement units deployed in a region to find illegal vehicles. 
In this paper, we investigate how to optimally develop an enforcement policy that helps cities 
better manage illegal parking behavior.  

The impact of an enforcement policy on illegal parking behavior is conceptually illustrated in 
Fig. 1. Illegal parking behavior is influenced by the citation probability and the citation fine; 
drivers are less likely to park illegally when the citation probability is high and the citation fine is 
large. While the fine is directly stipulated by parking authorities, derivation and analysis of the 
citation probability is more intricate. When a vehicle is parked illegally for a long time, it has a 
higher citation probability because of its longer exposure to getting caught by an enforcement 
unit. Although it is acknowledged that the citation probability is sensitive to dwell time, most 
studies assume the citation probability to be a fixed parameter. The drawback of this assumption 
is that the proposed models are limited in representing dwell time which is a critical component 
of illegal parking behavior. In addition to dwell time, the citation probability is also sensitive to 
the level-of-enforcement; the citation probability is higher when more enforcement units are 
deployed to find illegal vehicles. The outcome of the enforcement policy is the number of 
vehicles that park illegally which can be controlled by parking authorities when the optimal 
policy is implemented.  

Parking enforcement policies are commonly developed to achieve two objectives. The first 
objective is to improve social welfare by mitigating the negative effects of illegal parking 
(Cullinane and Polak, 1992) and the second objective is to raise profits generated from legal 
and/or illegal parking. The citation profits are substantial in many cities. In 2013, New York 
City, Los Angeles, and Chicago each generated 534, 250, and 176 million dollars, respectively. 
In some instances, target profits are defined annually and policies are devised to reach them. We 
investigate how parking authorities can optimize each of these objectives while taking into 
account the reactive illegal parking behavior of drivers.  

This paper is organized as follows. A review of research on illegal parking is presented in 
Section 2 and the gaps in the literature are highlighted. A choice model of parking legally or 
illegally is presented in Section 3. The equilibrium that arises from this choice model is 
presented in Section 4. Properties of the equilibrium model are investigated in Section 5. An 
optimal parking enforcement policy is derived for social welfare and profit maximization in 
Section 6. A numerical experiment is conducted and analyzed in Section 7. Conclusions are 
presented in Section 8.  
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Fig. 1. Impact of parking enforcement policies on illegal parking behavior. 

2 Literature review   

2.1 Parking enforcement and illegal parking behavior  

Given that parking enforcement is a policy-maker’s response to illegal parking, it is vital that 
there is a sound understanding of the patterns and causes of illegal parking. Many studies have 
investigated the causes of illegal parking by focusing on aspects such as illegal parking behavior 
in central business districts (Brown, 1983), impact of the parking citation fine on public 
transportation ridership (Auchincloss et al., 2014), and illegal parking behavior of commercial 
vehicles (Wang and Gogineni, 2015; Wenneman et al., 2015). Most of these studies, however, 
are empirical investigations of the factors that influence illegal parking behavior. While 
identifying these influential factors brings us a step closer to understanding illegal parking 
behavior, there is still a need for models that can quantitatively assess the impact of enforcement 
policies. In a recent review of the literature on parking, Inci (2014) emphasizes the immediate 
need for theoretical and analytical models of parking enforcement that take into account illegal 
parking behavior.  

There are currently only a handful of studies that develop analytical models of illegal parking 
and parking enforcement. Petiot (2004) presents a parking model where each driver makes a 
binary choice of parking legally or illegally based on the utility obtained from each choice. 
Petiot’s (2004) model, which is an extension of the model of Arnott and Rowse (1999), captures 
the impact of the citation fine on illegal parking behavior but is not sensitive to parking duration 
or the level-of-enforcement. Accounting for parking duration and level-of-enforcement is non-
trivial as these two factors strongly influence the citation probability. A larger citation 
probability reduces the utility of illegal parking which in turn influences a driver’s choice of 
parking legally or illegally. Lack of a representation of the citation probability, illegal dwell 
time, and level-of-enforcement is evident in other theoretical studies of illegal parking such as 
Elliot and Wright (1982), Cullinane (1993), and Thomson and Richardson (1998). In this paper, 
we focus on developing an analytical model of illegal parking with an explicit representation of 
these important factors and we investigate the changes in illegal parking behavior with respect to 
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the implemented enforcement policy. To proceed, we first review in the next section the topic of 
inspection games as it is widely used to model the impact of enforcement on any type of illegal 
behavior.  

2.2 The inspection game 

The inspection game is a classical methodology for modelling environments where enforcement 
units, known as inspectors, seek potential parking violators called inspectees (Ferguson and 
Mlolidakis, 1998; Avenhaus and Canty, 2005; Avenhaus and Canty, 2012). Examples of the 
inspection game include ticket-inspection by barrier-free transit providers (Sasaki, 2014; 
Barabino et al., 2014; Barabino et al., 2015), arms control agreements (Avenhaus and Kilgour, 
2004), and doping in sports (Kirstein, 2014). Each player in this game-theoretic formation has 
two strategies. The inspector’s strategy is to check (or not check) if the inspectee has adhered to 
a set of rules and the inspectee’s strategy is to either break the rules or to comply with them. In 
this normal-form mixed-strategy game, the driver (the inspectee) parks illegally with probability 
𝛽 and the enforcement unit (the inspector) inspects the driver with a probability 𝛼. There are four 
possible outcomes in this game and the two players obtain a payoff from each outcome. The 
payoff matrix is presented in Table 1 where the first term in each entry is the driver’s payoff and 
the second term is the enforcement unit’s payoff. The payoffs are comprised of the following 
terms1: The driver pays 𝑝$ dollars for parking legally and f dollars for parking illegally and 
getting cited. The enforcement unit pays 𝑐$ dollars per vehicle inspection. These costs are ideally 
set up such that 𝑐$ < 𝑝$ < 𝑓: The condition 𝑐$ < 𝑝$ ensures that the enforcement unit has 
monetary incentive for inspecting the driver and the condition 𝑝$ < 𝑓 ensures that drivers have 
incentive to park legally as well illegally. The presented mixed-strategy inspection game has a 
unique Nash equilibrium with 𝛽 = 𝑐$/𝑓 and 𝛼 = 𝑝$/𝑓. 

Table 1. Parking enforcement as an inspection game. The two components in each entry are the 
driver and the enforcement unit payoffs, respectively.  

Driver / Enforcement unit  Inspect Do not inspect 

Park Illegally (−𝑓, 𝑓 − 𝑐$) (0,0) 

Park Legally  (−𝑝$, 𝑝$ − 𝑐$) (−𝑝$, 𝑝$) 

 

There are three major drawbacks in the presented classical game-theoretic approach that hinder 
its applicability to model parking enforcement. First, the inspection game is not sensitive to the 
number of enforcement units that are deployed and hence cannot be used to find the optimal 
level-of-enforcement. Second, the inspection game does not capture how the citation probability 
is related to the dwell time of illegal vehicles and hence cannot be used to assess illegal parking 
behavior at a desirable level of detail. Third, the inspection game is limited in replicating 
realistically how the rate of citations is non-linearly related to the number of illegally parked 
vehicles and the number of enforcement units in a region (Wright, 1983). To accommodate these 
features in the inspection game, we use the concept of bilateral searching and matching (or 
                                                
1 The enforcement unit payoffs in Table 1 can be revised to represent social welfare instead of 
profit.  
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bilateral meeting) which models the search friction between illegal vehicles and enforcement 
units as the latter searches for the former.  

2.3 Bilateral meeting  

Bilateral meeting models explicitly quantify the friction between two sets of agents as they seek 
each other out in an aggregated market. In a frictionless market, the meetings between the two 
sets of agents would occur instantaneously which is not the case in parking enforcement. 
Examples of bilateral meeting in economics include taxi-passenger meeting (Yang et al., 2010; 
Yang and Yang, 2011; Yang et al., 2014), buyer-seller meeting (Burdett et al., 2001), and 
employer-employee meeting in the labor market (Andolfatto, 1996; Berman, 1997; Barnichon 
and Figura, 2015).  Mathematically, the bilateral meeting process is formulated so that the 
meeting rate between the two sets of agents (say vacant taxis and passengers) is a function of the 
size of each set of agents in an aggregated market. As an example, the rate that vacant taxis meet 
passengers is a function of (i) the number of passengers waiting for a taxi and (ii) the number of 
vacant taxis cruising to find passengers. This quantification of the meeting rate has time and 
again proven to be very useful in various topics of economics because it enables the modelling of 
frictions in otherwise conventional models, with a minimum of added complexity (Petrongolo 
and Pissarides, 2001). In this paper, we use the bilateral meeting function to model the friction 
between enforcement units and illegal vehicles. The simplicity of the meeting function allows us 
to develop an analytical model of parking enforcement which provides insights about the 
interplay between key factors that influence illegal parking behavior.  

The proposed model of parking enforcement is timely for the following reasons. First, the 
literature on parking is extensive and covers many diverse topics such as pricing of parking 
facilities (Qian et al, 2012; He et al., 2015; Zheng and Geroliminis, 2016), parking reservation 
(Yang et al., 2013; Liu et al., 2014), and parking equilibrium (Boyles et al., 2015). However, 
only a handful of studies are dedicated to parking enforcement despite its practical importance 
and widespread application in many cities. Second, many studies of transportation systems that 
are subject to enforcement either disregard the impact of enforcement or assume perfect 
enforcement (Yang et al., 2012; He et al., 2013). Although these assumptions are valid in many 
contexts, they can also be limiting in situations where enforcement costs are non-trivial. Third, 
illegal parking is unique type of violation because it is a time-based. That is, it does not only 
matter that drivers are parking illegally but how long they engage in the illegal activity (i.e., the 
dwell time). Hence, some of the findings here can be applied to other similar violations such as 
breaking the speed limit in freeways where it is important how long a vehicle is driving passed 
the limit.  

3 The choice to park legally or illegally  

3.1 Arrival rate, dwell time, and utility of legal and illegal vehicles   

Vehicles enter a region at the rate of 𝑇 [vehicles per hour] and they all need to park. At the top 
level of the parking choice, each vehicle chooses to park legally or illegally. The arrival rate of 
illegal vehicles is 𝑇0 where v represents a “violator” and the arrival rate of legal vehicles is 𝑇1 
where “n” represents a “non-violator”. The total flow of vehicles is the sum of legal and illegal 
vehicle flows such that the following equation holds 
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𝑇 = 𝑇1 + 𝑇0           (1)  

The probability that a randomly arriving vehicle parks illegally is 𝛽 so that the flow of illegal and 
legal vehicles is computed as 𝑇0 = 𝑇𝛽 and 𝑇1 = 𝑇(1 − 𝛽), respectively. The probability of 
parking illegally 𝛽 depends on the utility received by the driver from parking legally or illegally. 
Legal vehicles receive a systematic utility of 𝑈1 [dollars] and illegal vehicles receive a 
systematic utility of 𝑈0 [dollars]. Hence, assuming that the choice of parking follows a logistic 
function, the illegal parking probability 𝛽 can be defined as the following  

𝛽 = 567	(9:;)
567 9:; <=67	(9:>)

         (2) 

where 𝜃 is a non-negative dispersion parameter that can be estimated empirically. The 
probability 𝛽 in Eq. (2) is also referred to as the non-compliance ratio (Cullinane and Polak, 
1992). 

The utilities of parking (𝑈0 and 𝑈1) are calculated as the benefit minus the cost of parking. The 
benefit of parking is a direct result of the activity that the driver is performing. As an example, 
individuals gain a benefit from engaging in shopping activities in the downtown core but they 
first need to find a parking spot to perform the activity. Each driver receives a marginal benefit 
of 𝑠(𝑙) at the 𝑙BC minute of parking (i.e. parking to perform a given activity). The function 𝑠(𝑙) is 
non-negative, strictly decreasing, convex, and asymptotic to zero, thus implying that travelers 
always obtain a higher marginal utility from the earlier minutes of parking2 . 

The cost of parking, on the other hand, depends on whether the vehicle is parked legally or 
illegally and on the duration of parking. Legal vehicles park for 𝑙1 hours and pay a variable 
hourly-based price of 𝑝 [dollars per hour] so that they incur a total cost of 𝑝𝑙1 dollars. Illegal 
vehicles, on the other hand, park for a period of 𝑙0 hours but only have to pay a fine if they are 
cited by an enforcement unit. The probability that an illegal vehicle is cited by an enforcement 
unit is denoted by 𝛼 which is also referred to as the citation probability, the citation fine is 
denoted by 𝑓 [dollars], and the expected cost of parking illegally is 𝛼𝑓.  

With the defined costs and benefits, the two systematic utilities are computed for legal and illegal 
vehicles, respectively, as 

𝑈1 = 𝑠 𝑙 ∙ 𝑑𝑙F>

$ 	− 𝑝𝑙1          (3) 

𝑈0 = 𝑠 𝑙 ∙ 𝑑𝑙F;

$ − 𝛼𝑓         (4) 

3.2 The meeting rate and the citation probability 

In this section, we derive the citation probability and identify the factors that influence it. Let 𝑁0 
be the expected number of illegal vehicles in a region. According to Little’s law, 𝑁0 is computed 
as  

                                                
2 The properties of the benefit function are consistent with the law of diminishing marginal 
benefit. 
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𝑁0 = 𝑇0𝑙0           (5) 

The 𝑁0 illegal vehicles are sought out by 𝑘 enforcement units. The event where an enforcement 
unit finds an illegal vehicle is called a “meeting”; a meeting is synonymous to citing an illegal 
vehicle. The meeting rate is denoted by m [citations per hour] and is a function of the number of 
illegal vehicles 𝑁0 and number of enforcement units 𝑘 as follows 

𝑚 = 𝑀(𝑁0, 𝑘)          (6) 

In Eq. (6), we have 𝜕𝑚 𝜕𝑁0 > 0 and 𝜕𝑚 𝜕𝑘 > 0 in their domains 𝑁0 ≥ 0 and 𝑘 ≥ 0, which 
indicates that the meeting rate increases with respect to the number of illegal vehicles or 
enforcement units. Moreover, 𝑚 → 0 as either 𝑁0 → 0 or 𝑘 → 0, which indicates that no 
meetings occur if there are no illegal vehicles or no enforcement units present in the region.   

In an aggregate environment, the meeting rate may increase faster or slower than linearly with 
respect to proportionate increases in the number of enforcement units or the number of illegal 
vehicles. To present the rate of change in the meeting rate, we define two parameters 𝛾P and 𝛾Q 
which represent respectively the elasticity of the meeting function with respect to the number of 
illegal vehicles 𝑁0 and the number of enforcement units 𝑘 at any given time. The two 
elasticities, within their domains 0 < 𝛾P, 𝛾Q ≤ 1, represent the enforcement technology that is 
implemented in the region. For instance, a human-based inspection technology is distinguished 
from a camera-based inspection technology based on the two elasticities; as the inspection 
technology becomes more efficient, the two elasticities become larger. These elasticities are 
mathematically defined as 

𝛾P =
ST
SU;

U;

T
           (7) 

𝛾Q =
ST
SV

V
T

           (8) 

We now use the meeting function M to define the citation probability 𝛼 as the following. 
According to the law of total expectation, the citation probability 𝛼 is the ratio of the meeting 
rate over the arrival rate of illegal vehicles3 𝑇0: 

𝛼 = W
X;
≡ T U;,Z[

X;
          (9) 

Hence, each newly arriving illegal vehicle can get cited with a probability 𝛼. To analyze the 
properties of the citation probability, we take implicit differentiation from both sides of Eq. (9) 
with respect to 𝑙0 (Lemma A1, Appendix A) and derive the following two properties  
S\
SX;

= \∙(]^_P)
X;

           (10) 

S\
SF;

= \]^
F;

           (11) 

The following insights are readily obtained from the above properties (Eq. 10 and 11) of the 
citation probability. First, a higher arrival rate of illegal vehicles 𝑇0 eventually lowers the 
                                                
3 The citation probability is analogous the probability of finding a job in the job-market 
literature.  
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citation probability 𝛼 because the enforcement units have to search within a larger pool of illegal 
vehicles; as a result of having more illegal vehicles in the region, each individual illegal vehicle 
has a lower chance of getting cited. This observation is mathematically confirmed because Eq. 
(10) is negative since 𝛼, 𝑇0 > 0 and 𝛾P ≤ 1. Second, illegal vehicles are more susceptible to 
getting a citation if they are parked for a long time; the longer a vehicle parks illegally, the 
higher the chance that an enforcement unit finds the vehicle and cites it. This observation is 
mathematically confirmed because Eq. (11) is positive since 𝛼, 𝑙0 > 0 and 0 < 𝛾P. A graphical 
representation of the two equations is presented in Fig. 2 which illustrates the meeting rate and 
the citation probability for a given range of illegal arrival rates and dwell times4. As illustrated, 
the meeting rate increases with 𝑇0 and 𝑙0 whereas the citation probability increases with 𝑙0 but 
decreases with 𝑇0. Third, the two derivatives (Eq. 10 and 11) show that as 𝛾P increases from 0 to 
1, the citation probability 𝛼 becomes less sensitive to 𝑇0 and more sensitive to 𝑙0. For instance, 
at 𝛾P = 1, the citation probability is only and highly sensitive to 𝑙0 but not sensitive at all to 𝑇0 
whereas at 𝛾P = 0, the citation probability 𝛼 depends only on illegal arrival rate 𝑇0. Having 
defined the citation probability 𝛼, we now explain the equilibrium that arises from illegal 
parking.  

 
Fig. 2. Meeting rate and citation probability as functions of the illegal arrival rate and well time.  

4 An equilibrium model of illegal parking  

Let us assume that each driver makes two consecutive decisions when parking. At the upper-
level decision, the driver chooses to park legally or illegally and at the lower-level decision, the 
driver chooses the parking dwell time. This choice structure yields an equilibrium where the 
equilibrium dwell times (𝑙1∗ and 𝑙0∗ ) and the equilibrium arrival rates (𝑇1∗ and 𝑇0∗) are defined 
such that the following two conditions are satisfied:  

• Condition 1 (lower-level): 𝑙1∗ and 𝑙0∗ are chosen to maximize the utilities 𝑈1 and 𝑈0. 

                                                
4 The meeting rate in Fig. 2 is a Cobb-Douglas function of the form 𝑀 = 𝐴$(𝑁0)c^(𝑘)cd where 
𝐴$ = 0.6, 𝑘 = 10, 𝛿P = 0.6, 𝛿Q = 0.3.  
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• Condition 2 (upper-level): 𝑇1∗ and 𝑇0∗ are chosen based on the utilities 𝑈1 and 𝑈0 
obtained from the lower-level.  

We now explain each of the two equilibrium conditions in detail, describe their properties, and 
show how they are intertwined.  

4.1 Condition 1 (lower-level): 𝑙1 and 𝑙0 are chosen to maximize 𝑈1 and 𝑈0. 

At the lower-level of the equilibrium, the dwell times 𝑙1 and 𝑙0 are chosen to maximize the 
utilities 𝑈1 and 𝑈0. For legal vehicles, 𝑈1 is maximized at 𝑙1∗ based on the first order optimality 
condition 𝑑𝑈1/𝑑𝑙1 = 0  which leads to the following  

𝑠 𝑙1∗ = 𝑝					 ⟺ 						 𝑙1∗ = 𝑠_P(𝑝).        (12) 

Eq. (12) shows that 𝑙1∗ and consequently 𝑈1 are both only dependent on the parking price p. 
Hence, if the parking price p is fixed, then 𝑈1 and 𝑙1∗ are both fixed as well. Hereafter, we 
assume that p, 𝑙1∗, and 𝑈1 are all fixed5. 

For illegal vehicles, 𝑈0 is maximized at 𝑙0∗ based on the first order optimality condition	(𝑑𝑈0/
𝑑𝑙0 = 0) which leads to the following  

𝑠(𝑙0∗) = 𝑓 i\
iF;

           (13) 

To interpret Eq. (13) we first need to compute the full derivative 𝑑𝛼/𝑑𝑙0. Given that the citation 
probability 𝛼 is a function of  𝑙0 and 𝑇0 (based on Eq. 10 and 11), the full derivative of 𝛼(𝑙0, 𝑇0) 
with respect to 𝑙0 is: 
i\
iF;

= S\
SF;

+ S\
SX;

iX;

iF;
          (14) 

To simplify Eq. (14), we first show that the second term on the right-side of Eq. (15) is equal to 
zero at 𝑙0 = 𝑙0∗. This can be shown by expanding 𝑑𝑇0/𝑑𝑙0 to 
iX;

iF;
= SX;

S:;
. i:

;

iF;
           (15)  

and setting 𝑑𝑈0/𝑑𝑙0 = 0 at 𝑙0 = 𝑙0∗	based on the first order of optimality. Hence, we have 
𝑑𝑇0/𝑑𝑙0 = 0 in Eq. (15) which simplifies Eq. (14) to  
i\
iF;

= S\
SF;

= \]^
F;

          (16) 

Eq. (16) shows that the partial and full derivatives of 𝛼 with respect to 𝑙0 are equal to each other 
at 𝑙0∗. Hence, the citation probability is not sensitive to the arrival rate 𝑇0 at 𝑙0∗. Using the result 
of Eq. (16), the first order optimality condition in Eq. (13) can now be rewritten as 

                                                
5 The second order optimality condition can also be easily checked to show that 𝑈1 is strictly 
concave and 𝑙1∗ is unique. The legal utility 𝑈1 is concave because the benefit function 𝑠 𝑙 ∙ 𝑑𝑙 
is concave and the cost of legal parking is convex as it increases linearly with the parking dwell 
time 𝑙1. 
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𝑠(𝑙0∗)𝑙0∗ = 𝑓𝛼𝛾P          (17) 

The first condition of equilibrium is satisfied as long as Eq. (17) is justified. Solving Eq. (17), 
however, is not particularly easy in its current form because 𝛼 is a function of both 𝑙0 and 𝑇0. To 
solve Eq. (17), let us define 𝑙0∗ = 𝐿(𝑇0) as a function that finds the optimal illegal dwell time 
𝑙0∗ for a given arrival rate 𝑇0. We show in Lemma B2 (Appendix B) that 𝑙0∗ is unique for each 
𝑇0. Given the uniqueness of 𝑙0∗, the challenge now is to find the equilibrium illegal arrival rate 
𝑇0∗ that satisfies 𝑙0∗ = 𝐿(𝑇0∗). We explore this condition as the second condition of equilibrium 
in the next subsection.  

The following two remarks can be inferred from Eq. (17). Remark 1 states that in an 
environment where the optimal dwell times are equal, i.e. 𝑙0∗ = 𝑙1∗, the drivers always receive a 
higher utility from parking legally. Hence, there is no incentive for any vehicle to park illegally if 
it obtains a higher utility from parking legally for the same dwell time. An indirect conclusion of 
this observation is that vehicles are more inclined to park illegally if their dwell time is short and 
they are more inclined to park legally if their dwell time is long. Remark 1 is presented as the 
following. 

Remark 1: For the same dwell time 𝑙0∗ = 𝑙1∗, legal vehicles receive a higher utility than illegal 
vehicles such that 𝑈0 < 𝑈1. 

Proof: To present the proof, we need to show that  𝑈0 < 𝑈1 whenever	𝑙0∗ = 𝑙1∗ = 𝑙. We 
proceed by investigating the benefit and cost components of the two utilities 𝑈0 and 𝑈1. It is 
easy to establish that the benefit components (first terms in Eq. 3 and Eq. 4) of the two utilities 
are both equal to each other as they are both 𝑠 𝑙 ∙ 𝑑𝑙F

$ . Hence, it suffices to show that the cost 
of illegal parking 𝛼𝑓 is higher than legal parking 𝑝𝑙 such that 𝑈0 < 𝑈1 holds. Our task now is to 
prove the following 

𝑝𝑙 < 𝛼𝑓           (18) 

To show the cost inequality 𝑝𝑙 < 𝛼𝑓 holds, we use Eq. (12) to rewrite Eq. (17) as 𝑝𝑙 = 𝑓𝛼𝛾P. 
Using this result, Eq. (18) can be rewritten as 𝛾P𝑓𝛼 < 𝛼𝑓 which is always true when 𝛾P < 1. 
Hence, Eq. (18) is confirmed and the remark is proven.	∎ 

In Remark 2 we show how 𝛾P influences the expected cost of illegal parking 𝛼𝑓 at the two 
boundaries 𝛾P → 0 and 𝛾P = 1. To have 𝛾P → 0 is analogous to having a fixed parking price and 
to have 𝛾P = 1 is analogous to having a cost that increases linearly with the dwell time such as in 
the case of legal parking. The insight from Remark 2 is that the cost of illegal parking is very 
generic and can have a linear structure similar to the cost of legal parking. Remark 2 is presented 
as the following. 

Remark 2: To have 𝛾P → 0 is analogous to having a fixed legal parking price and to have 𝛾P = 1 
is analogous to having a cost that increases linearly with the dwell time. 

Proof: Consider first the case where 𝛾P → 0. As 𝛾P → 0, we have, according to Eq. (17), 
𝑠 𝑙0∗ 𝑙0∗ = 0, which happens when 𝑙0∗ = 0 or when 𝑙0∗ → ∞. By showing later that 𝑙0∗ = 0 is 
an unstable solution, we can only have 𝑙0∗ → ∞. The statement 𝑙0∗ → ∞ is analogous to having a 
fixed parking price so that vehicles pay the fixed price and park as long as they want.  
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Consider now the case where 𝛾P = 1. When 𝛾P = 1, the citation probability 𝛼 increases linearly 
and exclusively with the dwell time 𝑙0∗ which means that the expected illegal cost 𝛼𝑓 is also 
only linearly dependent on the dwell time 𝑙0∗. We first show that 𝛼 is exclusively dependent on 
𝑙0∗ and second show that the dependence is linear as well. Exclusivity is verified as 𝛼 no longer 
depends on 𝑇0 because 𝜕𝛼/𝜕𝑇0 = 𝛼 ∙ (𝛾P − 1)/𝑇0 = 0 at 𝛾P = 1 according to Eq. (10).  
Linearity is verified as elasticity of 𝛼 with respect to 𝑙0∗ is strictly equal to 1 because 𝜕𝛼/𝜕𝑙0 ∙
𝑙0/𝛼 = 𝛾P = 1 according to Eq. (11).∎ 

4.2 Condition 2 (upper level): 𝑇1 and 𝑇0 are dependent on the utilities  

At the upper level of the equilibrium, the arrival rates 𝑇1 and 𝑇0 are materialized according to 
the obtained utilities 𝑈1 and 𝑈0 from the lower level of the equilibrium. From the two utilities, 
the legal utility 𝑈1 is assumed to be known and fixed because the legal parking price p is fixed. 
The illegal utility 𝑈0, however, is itself a function of 𝑇0 as any change in 𝑇0 influences the 
citation probability 𝛼 (Eq. 10) which in turn impacts 𝑈0 (Eq. 4). As an example, when 𝑇0 
increases, the citation probability declines because there are more illegal vehicles to be cited. 
This decline in the citation probability lowers the expected cost of illegal vehicles 𝑓𝛼 which in 
turn compels more drivers to park illegally and consequently increases 𝑇0. Hence, 𝑇0 depends 
on 𝑈0 and 𝑈0 depends on 𝑇0.  

To present this relationship mathematically, let  Γ: 𝐓𝐯 → 𝐓𝐯 be a continuous function mapping a 
set 𝐓𝐯 of all illegal arrival rates to itself. The function Γ is defined based on Eq. (2) as 

Γ(𝑇0) = X
P<=67	(9 :>_:; X;,Fq )

  ∀	𝑇0 ∈ 𝐓𝐯     (19) 

where 𝑙t = 𝐿(𝑇t). As shown in Eq. (19), we can compute the illegal utility 𝑈0 for a given 𝑇0 
(right-hand-side of Eq. 19) and we can use the computed 𝑈0 to recalculate the illegal arrival rate 
𝑇0. At equilibrium, the illegal arrival rate 𝑇0∗ must be chosen such that the upper-level 
equilibrium condition 𝑇0∗ = Γ(𝑇0∗) and the lower-level equilibrium condition 𝑙0∗ = 𝐿(𝑇0∗) are 
simultaneously justified. The upper level condition ensures that at 𝑇0∗, no legally parked vehicle 
likes to change to parking illegally and no illegally parked vehicle likes to change to parking 
legally. We now explore the properties of this equilibrium and prove that the solution (𝑇0∗, 𝑙0∗) 
exists and is unique.  

5 Properties of the equilibrium  

We now analyze the presented equilibrium by proving its existence and uniqueness. We then 
investigate the properties of the equilibrium and present an algorithm to find the equilibrium 
solution.  

5.1 Existence of an equilibrium  

We prove the existence of a steady-state equilibrium that meets the two conditions of an 
equilibrium by virtue of Brouwer’s fixed-point theorem (Fuente, 2000) for the presented non-
linear system. Brouwer’s fixed point theorem states that if Γ: 𝐓𝐯 → 𝐓𝐯 is a continuous function 
mapping a compact and convex set 𝐓𝐯 to itself, then there exists a 𝑇0 ∈ 𝐓𝐯 such that Γ 𝑇0 =
𝑇0. To prove the existence of an equilibrium, first we show that the set 𝐓𝐯 is a compact and 
convex set (Lemma B1, Appendix B), and second we establish that continuity condition is 
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satisfied (Lemma B3, Appendix B). Using Lemma B1 and Lemma B3, we readily prove the 
existence of an equilibrium. The proof and the two lemmas are presented in Appendix B. 

5.2 Uniqueness of the equilibrium   

We prove that the equilibrium (𝑙0∗, 𝑇0∗) is unique by showing that it occurs at the intersection of 
the two (blue) curves 𝐿 and Γ in Fig. 3. The proof consists of first defining the two curves 𝐿 and 
Γ and showing that they cross each other at a maximum of two points, one of which is the 
equilibrium. As a prerequisite to the proof, consider the two-dimensional space illustrated in Fig. 
3 with 𝑙0 on the horizontal axis and 𝑇0 on the vertical axis. In this space, two 𝑁0(≡ 𝑇0𝑙0) 
contours are plotted (in red) for 𝑁P0 and 𝑁Q0 such that 𝑁P0 < 𝑁Q0. 

The two curves 𝐿 and Γ are defined as follows with slight abuse of notation of the function 𝐿. 
The first curve 𝐿(𝑁0) represents the dwell time of a newly arriving illegal vehicle when 𝑁0 
vehicles are already parked illegally. This curve is obtained by simply dividing the two sides of 
Eq. (17) (first equilibrium condition) by 𝑙0∗ which leads to  

𝑠(𝑙0∗) = 𝑚𝑓𝛾P/𝑁0          (20) 

We precisely define	𝐿(𝑁0) as the solution of Eq. (20) which is strictly a function 𝑁0 because m 
is also a function of 𝑁0 when all other parameters are fixed.  

The second curve 𝑇0 = 𝛤(𝐿(𝑁0)) is defined as follows. When the illegal dwell time is fixed at 
𝐿(𝑁0), the illegal utility has a value that attracts an illegal arrival rate of  𝑇0. Let us further 
explain this concept graphically. Consider the contour 𝑁P0 in Fig. 3 where 𝑙P0 = 𝐿(𝑁P0) is the 
optimal dwell time occurring at the arrival rate 𝑇P0 = 𝑁P0/𝑙P0. For the given dwell time 𝑙P0 and 
arrival rate 𝑇P0, the arrival rate should ideally rise from 𝑇P0 to 𝑇P0 as more vehicles are inclined to 
park illegally because of the high utility obtained from the parking dwell time 𝑙P0. Loosely 
speaking, 𝑇P0 is the induced illegal arrival rate when the dwell time is fixed is 𝑙P0. It is clear that 
the equilibrium occurs at the point where the two curves cross. This crossing point (𝑙0∗, 𝑇0∗)  
occurs when the induced demand 𝑇0 is equal to the materialized demand 𝑇0∗ (see proof of 
existence) as is presented in Fig. 3. At this equilibrium solution, the illegal dwell time 𝑙0∗ =
𝐿(𝑁0∗) is defined such that the induced demand  

Given the definitions of 𝐿 and Γ, we continue the proof by showing that the equilibrium 
(𝑙0∗, 𝑇0∗) is unique if the crossing point is unique. To show that the crossing point is unique, we 
prove that there are two points where the two curves cross and only one of the two points is the 
stable equilibrium. To show that there is a maximum of two crossing points, it is sufficient to 
show the following three properties hold: (i) both curves 𝐿 and Γ are increasing (with respect to 
𝑙0), (ii) the curve 𝐿 is convex, and (iii) the curve Γ is concave. We prove in Lemma 1, below, that 
the first property holds for 𝐿 but do not present the proofs of the other properties as they are 
tedious and less interesting. We now show that from the two crossing points, only one of them is 
the equilibrium by showing that the non-equilibrium point occurring at 𝑇0 = 0 and 𝑙0 = 0 is not 
stable. The instability of this point is shown as follows. By letting  𝑇0 = 0, we have a very low 
citation probability which encourages illegal vehicles to park for a very long time such that 𝑙0 →
∞. This long dwell time pushes the solutions away from the original crossing point of 𝑇0 = 0 , 
𝑙0 = 0 and shows the instability of the first solution. Hence, the equilibrium is unique.  
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Lemma 1. The curve 𝐿(𝑁0) is strictly increasing with 𝑙0. 

Proof: Consider 𝑙P0 = 𝐿(𝑁P0) and 𝑙Q0 = 𝐿(𝑁Q0) as shown in Fig. 3. We show here that moving 
from 𝑁P0 to 𝑁Q0 strictly increases the function 𝐿(𝑁0). The proof is derived from Eq. (20) and can 
be shown in two steps. First, as 𝑁0 increases, both the denominator (because of  𝑁0) and 
numerator (because of M) of Eq. (20) increase. However, the numerator increases at lower pace 
because 𝜕𝑀/𝜕𝑁0 ∙ 𝑁0/𝑀 = 𝛾P which is smaller than 1. This shows that increasing 𝑁0 reduces 
𝑠(𝑙0∗) which is left-hand-side of Eq. (20). The second step is to show that the reduction in 𝑠(𝑙0∗) 
is equivalent to increasing 𝑙0∗. This is a straightforward result of the property of the function s 
which is a strictly decreasing function of 𝑙0. Thus, the two steps of the proof show that increasing 
𝑁0 leads to a higher 𝑙0∗. ∎ 

 
Fig. 3. Equilibrium solution.  

5.3 Algorithm   

We present an algorithm to find the equilibrium (𝑙0∗, 𝑇0∗). Before explaining the steps of the 
algorithm, we use the example in Fig. 4 to illustrate graphically how the algorithm searches the 
solution space to find the equilibrium. We start off with 𝑁$0 as an initial number of illegal 
vehicles which is chosen randomly. Given 𝑁$0, we find the optimal dwell time 𝑙$0 = 𝐿(𝑁$0) and 
the corresponding arrival rate 𝑇$0 = 𝑁$0/𝑙$0. The point (𝑇$0, 𝑙$0) is the starting point of the 
algorithm. Next, we find the induced demand 𝑇P0 which is larger than 𝑇$0 thus showing that 
illegal parking is still profitable for drivers. As the illegal arrival rate increases, the number of 
illegal vehicles also increases from 𝑁$0 to 𝑁P0. Now, we repeat the procedure by finding 𝑙P0 =
𝐿(𝑁P0) and continuing the process until we reach the equilibrium. The steps of the algorithm are 
presented as follows.  
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Step 1- Initialization 

Set the counter 𝑎:= 0. Set the number of illegal vehicles 𝑁w0 to a randomly selected 
value.  

Step 2- Illegal dwell Time 𝐿(𝑁w0) 

Use the Newton-Raphson algorithm to solve Eq. (17) and find the optimal illegal dwell 
time 𝐿(𝑁w0 ). 

Step 3- Find the materialized demand 𝑇w0 = 𝑁w0/𝐿(𝑁w0). 

Step 4- Find the induced demand 𝑇0 = 𝛤(𝑇0, 𝐿(𝑁w0	)) using the following sub-steps. 

Step 4.1- Set the counter 𝑏:= 0. Choose a random illegal arrival rate 𝑇y0. 

Step 4.2- Find the illegal utility 𝑈0 as a function of 𝑇y0 and 𝐿(𝑁w0	) using Eq. 4.  

Step 4.3- Set 𝑏:= 𝑏 + 1 and find 𝑇y0 = 𝛤(𝑇y_P0 , 𝐿(𝑁w0	)) using Eq. 19.  

Step 4.4- Inner convergence check: Go to Step 5 if the following convergence condition 
is satisfied. Otherwise, go to step 4.2. The convergence condition is the following 

𝑇y0 − 𝑇y_P0 ≤ 𝜀         (21) 

Step 5- Update the optimal illegal arrival rate and number of illegal vehicles.  

 Set 𝑎:= 𝑎 + 1. Let 𝑇w0 = 𝑇y0 and let 𝑁w0 = 𝑇w0 ∙ 𝐿(𝑁w_P0 ). 

Step 6- Outer convergence check 

Terminate the algorithm if the following convergence condition is satisfied. Otherwise, 
go to Step 2. The convergence condition is the following 

 𝑇w0 − 𝑇w_P0 ≤ 𝜀         (22) 
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Fig. 4. Steps of the algorithm.  

5.4 Elasticities at the equilibrium solution  

We now present the elasticity of key variables with respect to f and k at the equilibrium solution 
(𝑙0∗, 𝑇0∗). Defining these elasticities improves substantially the process of finding the optimal 
enforcement policy which involves choosing the appropriate values of f and k. To denote any 
elasticity, we use the notation 𝜇|

} to show that a one percent increase of	𝑥 = {𝑓, 𝑘} will change 
𝑦 = {𝑚, 𝑇0, 𝑙0} by 𝜇|

} percent. Although some of the derived the elasticities are not easily 
interpretable in their current form, we show in the next section that they can be simplified under 
special (deterministic and random) equilibrium conditions where they provide meaningful 
insight. Moreover, the defined elasticities are helpful in finding the optimal enforcement policies 
in the next section. The derivation of all elasticities is presented in Appendix C. 

We start off with the elasticity of the meeting rate m with respect to the citation fine f and level-
of-enforcement k. As shown in Eq. (23), 𝜇�W depends on the three elasticities 𝛾P, 𝜇�F

;
, and 𝜇�X

;; the 
first elasticity 𝛾P shows that the impact of the citation fine f  on the meeting rate m is contingent 
on what kind of inspection technology is implemented and the second two elasticities 𝜇�X

; and 
𝜇�F

;
 show that the number of illegal vehicles  𝑁0 is also influential. Eq. (24) shows that the 

elasticity 𝜇VW	is linearly dependent on 𝜇�W.  

𝜇�W = 𝛾P(𝜇�F
; + 𝜇�X

;)          (23) 

𝜇VW = 𝛾Q𝜇�W           (24) 

We now proceed to define the elasticity of the illegal arrival rate 𝑇0 and dwell time 𝑙0 with 
respect to f and k. These elasticities are presented in Eq. (25)-Eq. (28).  
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𝜇�X
; = _(P_�)9�\

P<(P_�)(P_]^)9�\
         (25) 

𝜇�F
; = �(F;)/ ��(F;)F;<�(F;)(P_]^)

P<(P_�)(P_]^)9�\
         (26) 

𝜇VX
; = 𝛾Q𝜇�X

;           (27) 

𝜇VF
; = 𝛾Q𝜇�F

;           (28) 

6 Optimal parking enforcement policies  

The two commonly pursued objectives of parking enforcement are profit maximization and 
social welfare maximization. To reach either of the two objectives, parking authorities 
implement strategic policies by choosing the citation fine f and the level-of-enforcement 𝑘 
because of their explicit influence on the parking behavior. The effect of a policy, comprised of 
the pair (𝑘, 𝑓), on each objective is investigated in this section. 

6.1 Maximizing the profit of parking enforcement  

The profit of parking enforcement is the revenue generated from the tickets that are issued minus 
the cost of employing enforcement units. The expected revenue is the defined as 𝑓𝑚 [dollars per 
hour] which is the product of the citation fine and the number of citations in one hour. To define 
the cost of enforcing parking, let c be fixed the cost of acquiring one enforcement unit for one 
hour so that the total cost of enforcement is 𝑐𝑘 [dollars per hour]. Then, the expected profit from 
parking enforcement is denoted by 𝜋 and calculated as  

𝜋 = 𝑓𝑚 − 𝑐𝑘           (29) 

To maximize the profit 𝜋, we take the derivative of Eq. (29) as 
i�
i�
= 𝑓 iW

i�
+ 𝑚 ≡ 𝑚 1 + 𝜇�W         (30) 

expected profit is maximized by setting 𝑑𝜋/𝑑𝑓 = 0 or equivalently 

𝜇�W = −1            (31) 

which implies that at the optimal citation fine 𝑓∗, a one percent increase in the fine must decrease 
the meeting rate by one percent. This decline in the meeting rate occurs with either a decrease the 
arrival rate 𝑇0 or the dwell time 𝑙0 or both. Hence, at 𝑓∗ the number of illegal vehicles  𝑁0 (≡
𝑇0 ∙ 𝑙0) is negatively impacted with an increase in the fine. We later explore, in the next section, 
how 𝑓∗ can be calculated under special deterministic and random equilibrium conditions.  

The second influencing factor in the profit 𝜋 is the number of enforcement units 𝑘. To find the 
optimal 𝑘∗, we take the derivative of Eq. (29) as 
i�
iV
= �W

V
𝛾Q + 𝜇VW − 𝑐         (32) 

By setting 𝑑𝜋/𝑑𝑘 = 0, we have 
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𝜇VW = �V
W�

− 𝛾Q           (33) 

which shows that the optimal elasticity 𝜇VW is equal to the cost-benefit ratio 𝑐𝑘/𝑚𝑓 offset by the 
second technology parameter 𝛾Q. Eq. (33) yields the following two insights. When �V

W�
< 𝛾Q, we 

have 𝜇VW < 0 which indicates that the inspection technology is efficient enough (because of a 
high 𝛾Q value) to the point where increasing the level-of-enforcement lowers the meeting rate as 
vehicles stop parking illegally to avoid getting cited. On the other hand, when �V

W�
> 𝛾Q, we have 

𝜇VW > 0 which shows that the lack of efficient inspection technology (because of a low 𝛾Q value) 
must be rectified by deploying enough enforcement units to cite the illegal vehicles.   

Let us now consider the case of optimizing simultaneously the pair (𝑘∗, 𝑓∗) to maximize the 
profit 𝜋. Given that 𝜇VW = 𝛾Q𝜇�W (Eq. 24), we can rewrite Eq. (32) as 

i�
iV
= �]d

V
∙ i�
i�

− 𝑐          (34) 

which shows that the profit 𝜋 cannot be simultaneously maximized with respect to f and k; that is 
the two terms 𝑑𝜋/𝑓 and 𝑑𝜋/𝑑𝑘 cannot be equal to zero together. By setting 𝑑𝜋/𝑑𝑓 = 0, we 
have 𝑑𝜋/𝑑𝑘 = −𝑐 which implies that lowering the level-of-enforcement at 𝑓∗ can further raise 
the generated profit. This indicates that, ideally, it is most profitable to have a very small level-
of-enforcement and a high citation fine so that a few illegal vehicles are caught with little 
inspection but they pay a large sum of money. Practically, however, this type of policy cannot be 
applied as there are social restrictions that limit the upper bound of the citation fine. Hence, in 
real-life scenarios, the optimal citation fine must be set to the largest socially acceptable price. 
When the fine is set, the level-of-enforcement can be obtained using Eq. (32).    

6.2 Profit maximization under stochastic equilibrium conditions 

To further understand the underlying factors that influence the expected profit, we investigate 
two special cases of the stochastic equilibrium. The first case is to have a complete random 
choice between parking legally or illegally. This choice is analogous to setting the dispersion 
parameter of the logit choice model (Eq. 2) to 𝜃 = 0.  The second case is to have a complete 
deterministic choice which is equivalent to having a dispersion parameter of 𝜃 → ∞. 

Random choice of parking (𝜃 = 0) 

Under the random choice structure, the drivers randomly choose to park legally or illegally as 
they are indifferent between the two options. Hence, 50% of the vehicles park legally and the 
other 50% park illegally which leads to 𝑇0 = 𝑇1 = 0.5𝑇. Consider now the optimality condition  
𝜇�W = −1 (Eq. 31) for maximizing profit with respect to f. This optimality condition can be 
rewritten (according to Eq. 23) as the following  

𝛾P 𝜇�X
; + 𝜇�F

; = −1           (35)  

We now analyze the elasticities 𝜇�X
; and 𝜇�F

;
. By setting 𝜃 = 0, it is evident that 𝜇�X

; = 0 because 
the drivers are making a random decision to park and their decision is not influenced by the 
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citation fine6. Hence, the optimality condition in Eq. (35) with 𝜇�X
; = 0 becomes 𝛾P𝜇�F

; = −1 
which can be simplified (Lemma D2, Appendix D) to 

𝑙0 = −1/𝛿           (36) 

where 𝛿 is a fixed parameter. Eq. (36) implies the following two conclusions at 𝜃 = 0:  

• First, the illegal dwell time that provides the maximum profit depends only on 𝛿 which is 
a fixed parameter. Hence, the optimal 𝑓∗ must be chosen such that the equilibrium dwell 
time 𝑙0∗ reaches the value 𝑙0∗ = −1/𝛿	. Otherwise, if 𝑓 > 𝑓∗ then 𝑙0 < 𝑙0∗ and the illegal 
vehicles are not parked for a long enough time to get cited. Alternatively, if 𝑓 < 𝑓∗ then 
vehicles receive a citation but they do not pay a substantial penalty for it. Under both 
cases, the parking authorities lose profit unless the optimal citation fine 𝑓∗ is selected7. 

• The second conclusion is that the optimal citation fine 𝑓∗ is inversely related to efficiency 
of the inspection technology 𝛾P; as 𝛾P decreases 𝑓∗ must increase to make up for the 
inefficient inspection technology. This conclusion can be tested mathematically using the 
first condition of equilibrium (Eq. 17): given that 𝑙0∗and 𝑇0∗are both fixed at 𝑓∗, the 
product 𝑓𝛾P becomes a fixed value which shows that f and 𝛾P are inversely related.   

Deterministic choice of parking (𝜃 → ∞) 

Consider now the case of the deterministic choice where 𝜃 → ∞. In this choice structure, the 
drivers are completely aware of the environment and choose the best option of parking that 
maximizes their obtained systematic utility. In such an environment, Wardrop’s principle states 
that no traveler can change his/her parking choice (the choice of parking legally or illegally) and 
reach a higher net utility. This equilibrium emerges when, for 𝑇0, 𝑇1 > 0, we have 𝑈1 = 𝑈0. 
Hence, for the case of the deterministic choice, the two equilibrium conditions of Section 4 can 
be redefined as: 

𝑠 𝑙0∗ 𝑙0∗ = 𝑓𝛼𝛾P          (37) 

𝑈1 = 𝑈0 					⟺ 					𝑠 𝑙0∗ − 𝑓𝛼 = 𝑠 𝑙1∗ − 𝑝𝑙1∗      (38) 

where Eq. (37) is the first condition (lower level) and Eq. (8) is the second condition (upper 
level) of the equilibrium. A simple division of the two equilibrium conditions leads to  

�� F;∗ F;∗

� F;∗ _:>
= 𝛾P           (39) 

which shows that the equilibrium dwell time 𝑙0∗ is independent of the citation fine f (because the 
citation fine does not appear in the Eq. 39) and depends only on the two fixed values of 𝛾P and 
𝑈1.  

Consider now the optimally condition 𝛾P 𝜇�X
; + 𝜇�F

; = −1  (Eq. 35). Because the optimality 
condition depends on the two elasticities 𝜇�X

; and 𝜇�F
;
, we investigate individually each of the two 

                                                
6 The condition 𝜇�X

; = 0 can also be checked by setting 𝜃 = 0 in Eq. (25). 
7 The actual value of the citation fine is 𝑓∗ = − �(_P/c)

]^c($.�X,_P/c)
 which is proved in Appendix D. 
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elasticities. For the first elasticity 𝜇�F
;
, as 𝑙0∗ is independent of f (see Eq. 39), the respective 

elasticity is equal to zero, i.e., 𝜇�F
; = 0. For the second elasticity, 𝜇�X

;, we have: 

𝜇�X
; = lim

9→�

_(P_�)9�\
P<(P_�)(P_]^)9�\

= P
(P_]^)

        (40) 

The relationship 𝜇�X
; = P

(P_]^)
 in Eq. (40) provides the following two conclusions when at 𝜃 →

∞. 

• First, as 0 < 𝛾P ≤ 1, we have 𝜇�X
; > 1, which implies that increasing the citation fine f 

will actually increase the arrival rate 𝑇0. Although this is a non-intuitive result, it has a 
logical reason. If all drivers are completely aware of the environment, they can 
collaboratively park illegally and thus reduce the citation probability and hence the 
expected cost of getting cited for all of them. Mathematically, given that 𝛼𝑓 is fixed 
(according to Eq. 38 and Eq. 39), an increase in f should be accompanied with a decrease 
in 𝛼(𝑙0, 𝑇0). However, given that 𝑙0∗ is also fixed, 𝛼 will only decrease as a result of 
increasing the arrival rate 𝑇0∗. Hence, a higher citation fine leads to a higher arrival rate 
𝑇0∗. In real-life scenarios, this case could only likely occur in mass events (such as major 
sporting events) where drivers park illegally because they speculate the that everyone else 
is doing the same.  

• The second conclusion of Eq. (40) is that the citation fine must be very large for the 
deterministic equilibrium. Given that 𝜇�X

; > 1, the optimality condition 𝛾P𝜇�X
; = −1 is 

never justified and i�
i�
> 0. Hence, under the deterministic equilibrium, the parking 

authorizes should increase the fine as much as possible to gain a larger expected revenue.  

6.3 Maximizing social welfare 

In defining social welfare for parking, both legal and illegal drivers must be taken into account. 
Illegal vehicles add a negative externality to the system since they increase congestion by 
creating bottlenecks in the traffic flow as a result of parking in appropriate places. Legal 
vehicles, on the hand, are also important as they have not violated the parking laws and therefore 
should be rewarded for their behavior. Mathematically, social welfare in the context of parking 
enforcement is defined as follows. Let 𝑊(𝑓, 𝑘) denote the social welfare as a function of the 
citation fine f and the level-of-enforcement k as  

𝑊(𝑓, 𝑘) 	= 𝑇1 𝑠 𝑙 ∙ 𝑑𝑙F>

$ − 𝑄 𝑁0 − 𝑐𝑁0       (41) 

where the first term is the net benefit obtained by all legal vehicles, the second term is a function 
𝑄 which defines the negative externality caused by all illegal vehicles 𝑁0, and the third term is 
the total cost of enforcement. Arguably, one could also consider the total benefit of the illegal 
vehicles 𝑇0 𝑠 𝑤 𝑑𝑤F;

$ . This consideration, however, is quite controversial as enforcement 
policies are implemented to reduce illegal parking when social welfare is of interest.  

By taking the derivative of W with respect to 𝑓 and k, we have the following two equations 
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i�
i�
= − X;

�
𝜇�X

; 𝑠 𝑤 𝑑𝑤F>

$ − 𝑙0𝑔′(𝑁0) 𝜇�X
; + 𝜇�F

;      (42) 

i�
iV
= − X;]d

V
𝜇�X

; 𝑠 𝑤 𝑑𝑤F>

$ − 𝑙0𝑔� 𝑁0 𝜇�X
; + 𝜇�F

; − 𝑐     (43) 

Eq. (42) and (43) cannot be easily investigated analytically. Hence, similar to the previous 
section on profit maximization, we investigate deterministic and random cases of the stochastic 
equilibrium. 

6.4 Social welfare maximization under stochastic equilibrium conditions 

Random choice of parking (𝜃 = 0) 

We first present the changes in social welfare with respect to the fine f. Under the random 
choice, as shown previously, we have 𝜇�X

; = 0 and 𝜇�F
; = P

cF;<P_]^
 (Lemma D1, Appendix D). 

These elasticities simplify Eq. (42) to  

i�
i�
= −

F;X;��
�;��

�
          (44) 

Eq. (44) is still not easily interpretable because it has the term 𝜇�F
;
. Let us further simplify Eq. 

(44) by considering the two boundaries 𝛾P → 0 and 𝛾P → 1 of the inspection technology. Both 
boundaries lead to the following relationship 

i�
i�
= − X;��

�c
           (45) 

which provides the following insights 

• Social welfare is progressively improved as the citation fine f is increased because 
𝑑𝑊/𝑑𝑓 > 0 in Eq. (45) since 𝑔� < 0. This conclusion is also valid in real-life cases as 
increasing f is an easy and straightforward method of deterring illegal parking behavior.  

• Increasing the citation fine has a more substantial impact on social welfare when the total 
marginal externality 𝑇0𝑔′ is large. In other words, if a lot of vehicles park illegally and 
each vehicle creates a lot of delay, then the citation f becomes critical in eliminating such 
behavior. On the other, if 𝑇0𝑔′ ≈ 0, such as in suburban areas where traffic is low, then 
increasing the fine does not substantially improve social welfare.  

We now present the changes in social welfare with respect to the level-of-enforcement k. Using 
the two elasticities 𝜇�X

;and 𝜇�F
;
, the derivative 𝑑𝑊/𝑑𝑘 in Eq. (43) can be simplified to  

i�
iV
= − X;F;]d��

V cF;<P_]^
− 𝑐         (46) 

As Eq. (46) is still not easy to interpret, we further simplify it by considering the two boundaries 
𝛾P → 0 and 𝛾P → 1 of the inspection technology. Both boundaries lead to the following 
relationship which uses the condition 𝑑𝑊/𝑑𝑘 = 0 to compute the optimal level-of-enforcement  
𝑘∗ as 
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𝑘∗ = − ]dX;��
�c

           (47) 

Eq. (47) provides the following insights: 

• The optimal 𝑘∗ decreases with the cost c of each enforcement unit which is a logical and 
intuitive result.  

• The optimal 𝑘∗ decreases with the technology parameter 𝛾Q; as 𝛾Q → 0 there should no 
longer be any parking enforcement because the enforcement units cannot find the illegal 
vehicles.  

• The optimal 𝑘∗ also depends on the total marginal externality 𝑇0𝑔′ as was the case in Eq. 
(45). Enforcement should be intensified when the total marginal externality is high.  

7 Numerical experiment  

In this section we provide a numerical experiment to illustrate our findings. The three main 
inputs in the analyses are (i) the marginal benefit function s, (ii) the meeting function M, and (iii) 
the logit choice model dispersion parameter 𝜃. These inputs are defined as follows. The marginal 
benefit function has the following form 

𝑠 𝑙 = 𝐵$. (𝐵P)F          (48) 

where 𝐵$ = 30 and 𝐵P = 0.2 are fixed parameters. The function 𝑠 𝑙  in Eq. (48) has all the 
required features of the marginal benefit function because it is strictly decreasing, convex, and 
asymptotic to zero. The second input is the meeting function which is defined using the Cobb-
Douglas relationship as the following 

𝑀 𝑁0, 𝑘 = 𝐴$(𝑁0)]^(𝑘)]d         (49) 

where 𝐴$ = 1 is a parameter and 𝛾P, 𝛾Q are the elasticities. We perform sensitivity analysis on 
the elasticities to analyze numerically their impact on the equilibrium and the optimal 
enforcement policy. The third input is the dispersion parameter which is set to 𝜃 = 0.1 unless 
stated otherwise. Sensitivity analysis is performed on 𝜃 as well. Finally, the cost of legal parking 
is set to p = 3 [dollars per hour] which leads to a legal parking duration of 𝑙1∗ = 0.68 [hours]. 

7.1 Analysis of the optimal policy  

We first assess the impact of each policy, made of the pair (𝑘, 𝑓), on the equilibrium. The results 
are presented in Fig. 5 where the two-dimensional space with k on the horizontal axis and f on 
the vertical axis is used to illustrate changes in the illegal arrival rate 𝑇0∗, dwell time 𝑙0∗, 
meeting rate m, and citation probability 𝛼. The following insights are observed in Fig. 5. First, 
the illegal arrival rate and dwell time are shown to be highest when f and k are both low because 
(i) illegal vehicles have a low chance of getting cited and (ii) even if they get cited, they pay only 
a small penalty; increasing either f or k, however, lowers both 𝑇0∗ and 𝑙0∗. Second, the meeting 
rate m and the citation probability 𝛼 are shown to increase with k and decrease with f for the 
following reasons. The increase with k occurs because more enforcement units can catch more 
illegal vehicles. The decrease with f, on the other hand, occurs because fewer vehicles park 
illegally when f is large to avoid a large penalty which leads to a lower meeting rate. Third, the 
white region in Fig. 5 illustrates policies where f and k are so large that no vehicle parks illegally. 
We call this the “no illegal parking” region.  
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Next, we asses the impact of each policy, i.e. pair (𝑘, 𝑓), on the profit 𝜋 and social welfare W. 
The results are presented in Fig. 6 and the following insights are observed. First, the maximum 
profit occurs at a low k and a large f which shows that it is best to have a few enforcement units 
that cite illegal vehicles for a large penalty. Second, the profit in the “no illegal parking” region 
(white area in Fig. 5) is negative because the city does not make any citation money is this zone 
regardless of the level-of-enforcement. Third, the optimal social welfare occurs in the “no illegal 
parking” region as no negative externality, associated with illegal parking, is imposed. Moreover, 
the optimal social welfare occurs at a k to avoid the cost deploying the enforcement units. 
Instead, vehicles are deterred to park illegally due to the high cost of the fine f.  

 

 
Fig. 5. Impact of each enforcement policy on the illegal arrival rate, dwell time, meeting rate, 

and citation probability.  
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Fig. 6. Profit and social welfare at different enforcement policies.  

7.2 Analysis of meeting technology   

We investigate the impact of the meeting technology parameters 𝛾P and 𝛾Q on profit and social 
welfare. We present the impact of simultaneously changing 𝛾P and f on the profit. The results are 
presented in Fig. 7 and the following are observed. First, the lowest profit is obtained at highest 
𝛾P because vehicles avoid parking illegally due to the efficient inspection technology. We show 
in the next section that the impact of 𝛾P on profit is substantially dependent on the dispersion 
parameter 𝜃. Second, the citation probability 𝛼, illegal arrival rate 𝑇0∗, and dwell time 𝑙0∗ all 
decrease with the fine f. Their rate of change, however, depends on the elasticity 𝛾P; a larger 𝛾P 
increases the rate of change in 𝛼, 𝑇0∗, and 𝑙0∗. This observation shows the parking behavior is 
more sensitive to the enforcement policy when the inspection technology is associated with a 
large 𝛾P. Third, the two elasticities 𝜇�F

;
and 𝜇�X

;are both negative for all values of citation fine, 
thus confirming that both 𝑇0∗ and 𝑙0∗ decrease with f. 
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Fig. 7. Impact of the meeting elasticity 𝛾P and citation fine f on profit 𝜋.  

Next, we present the impact of changing 𝛾Q and  k on social welfare. The results are presented in 
Fig. 8 and the following are observed. First, social welfare is negative when k is too low because 
too many vehicles park illegally. Similarly, social welfare is also negative when k is too large 
because of the high cost of hiring the enforcement units. Second, citation probability 𝛼 is shown 
to increase with k because more enforcement units are searching for illegal vehicles. Third, both 
illegal arrival rate 𝑇0∗ and dwell time 𝑙0∗are shown to decrease with k because of the higher 
citation probability 𝛼. Fourth, the two elasticities 𝜇�F

;
and 𝜇�X

;are both negative for all values of k, 
thus confirming that both 𝑇0∗ and 𝑙0∗ decrease with k. 
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Fig. 8. Impact of the meeting elasticity 𝛾Q and level-of-enforcement k on social welfare.  

7.3 Analysis of the dispersion parameter 

We investigate the impact of the dispersion parameter on the optimal profit and social welfare. 
The results are illustrated in Fig. 9 and the following insights are observed. First, a higher 
dispersion parameter 𝜃 (i.e. a higher level of information in the system) is shown to decrease the 
optimal profit but increase the social welfare because fewer vehicles park illegally and get cited 
as they become aware of the higher cost of illegal parking. The conclusion from this observation 
is that cities should provide details of their parking enforcement plans if they wish to mitigate the 
negative externalities of illegal parking and improve social welfare. Second, increasing the 
elasticity 𝛾P also improves social welfare at all values of 𝜃. For profit, however, a different trend 
is observed: When 𝜃 is large, it is more profitable to have a large 𝛾P and when 𝜃 is small, it more 
profitable to have a 𝛾P that is neither too large nor too low.  
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Fig. 9. Impact of the dispersion parameter 𝜃 on profit and social welfare. 

8 Conclusions  

We present an equilibrium model of illegal parking and use the model to devise optimal parking 
enforcement policies. By investigating the properties of the equilibrium model, we determine the 
interrelationship between the factors that affect illegal parking behavior and we illustrate these 
effects in Fig. 10. Our findings on the properties of the equilibrium model are summarized as the 
following: 

1- The citation probability increases with the illegal dwell time because vehicles that are 
parked illegally for long time are more susceptible to receiving a citation. In contrast, the 
citation probability decreases with the illegal arrival rate because the enforcement units 
have more vehicles to inspect and cite.  

2- The illegal utility is comprised of a benefit and a cost. Increasing the illegal dwell time 
raises both the benefit and the cost of illegal parking. The raise in benefit occurs because 
the vehicle enjoys a longer duration for completing a given activity. The raise in the cost, 
on the other hand, occurs because of the respective increase in the citation probability. 

3- The meeting rate increases with the level-of-enforcement, illegal arrival rate, and illegal 
dwell time. 

4- According to the first condition of equilibrium, the illegal dwell time is a function of the 
citation probability. 

5- For a fixed dwell time, each vehicle is better off parking legally because of the larger 
obtained utility.   
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Fig. 10. Influential factors that affect illegal parking behavior.  

Our findings on devising the optimal parking enforcement policy are summarized as follows: 

1- When maximizing the profit, it is best to set the citation fine so large that some vehicles 
still park illegally but not large enough to deter illegal parking completely.  

2- When maximizing social welfare, it is best set the fine so large such that no vehicle parks 
illegally and to have a small level-of-enforcement. This policy ensures that no vehicle 
parks illegally.  

3- Profit cannot be simultaneously optimized with respect to the citation fine and the level-
of-enforcement.  

Despite the widespread application and ubiquity of parking enforcement policies in many cities, 
research in this area is still scarce and there is a need for studies that address the following 
extensions to the presented model. First, our model explicitly defines a policy as a given citation 
fine and level-of-enforcement. In reality, however, parking enforcement policies are multifaceted 
and include sub-policies that regulate parking through towing, issuing parking permits, or wheel 
clamping. A question that remains to be answered is when is it beneficial to introduce any of 
these sub-policies to parking enforcement and what is the effect of these sub-policies on social 
welfare and profit? As an example, a city that prioritizes social welfare is better off with towing 
illegally parked vehicles to take them off the street. Second, there is a need for optimizing the 
details of each of such sub-policies. As an example, if towing is a viable option, then what is the 
required number of towing trucks, enforcement units that find illegal vehicles, and the towing 
penalty paid by drivers? Similarly, if parking permits are the favorable sub-policy, then how 
many permits should be issued? Third, there are a number of assumptions made in this paper. 
Relaxing each of these assumptions, such as accounting for the parking search time of legal and 
illegal vehicles, is an avenue of future research.  
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Appendix A- Impact of the illegal dwell time and arrival rate on the citation probability 

In this appendix, we describe the relationship between the citation probability with the illegal 
arrival rate and dwell time.  

Lemma A1. The partial derivatives of the citation probability 𝛼 with respect to illegal arrival rate 
𝑇0 and dwell time 𝑙0 are defined respectively as 𝜕𝛼/𝜕𝑇0 = 𝛼 ∙ (𝛾P − 1)/𝑇0 and 𝜕𝛼/𝜕𝑙0 =
𝛼𝛾P/𝑙0. 

Proof : The proof lies in taking the implicit differentiation of 𝛼 = 𝑀(𝑁0, 𝑘)/𝑇0 with respect to 
𝑙0 which leads to the following 
i\
iF;

= 𝑑𝑀/𝑑𝑙0 ∙ 𝑇0 − 𝑑𝑇0/𝑑𝑙0 ∙ 𝑀 / 𝑇0 Q       (50) 

To simplify Eq. (50), we need to find 𝑑𝑀/𝑑𝑙0 = 𝜕𝑀/𝜕𝑁0 ∙ 𝑑𝑁0/𝑑𝑙0 which is derived as  
iT
iF;

= 𝛼𝛾P/𝑙0 ∙ (𝑑𝑇0/𝑑𝑙0 ∙ 𝑙0 + 𝑇0)        (51) 

Using Eq. (51) in Eq. (50), we can rewrite Eq. (50) as  

𝑑𝛼 = 𝛼 ∙ 𝛾P − 1 ∙ 𝑑𝑇0/𝑇0 + 𝛼 ∙ 𝛾P ∙ 𝑑𝑙0/𝑙0       (52) 

Lemma A1 can be readily proven from this result. ∎ 

Appendix B- Proof of the existence of an equilibrium  

In this appendix, we prove the existence of an equilibrium solution (𝑙0∗, 𝑇0∗). The proof is 
involves showing that 𝐓𝐯 is compact and convex (Lemma B1) and continuous (Lemma B3).  

Lemma B1. The feasible set 𝐓𝐯 is compact and convex when 𝑈0 ≥ 𝑈1.  

Proof: We first prove that 𝐓𝐯 is compact and second prove that it is convex. To prove 
compactness, we need to show that 𝐓𝐯 is closed and bounded. We do this by proving that the 
illegal utility 𝑈0 is closed and bounded as well. Let us define the lower and upper boundaries of 
the illegal utility 𝑈0 as 𝑈0 and 𝑈0, respectively. The lower boundary can be defined at the very 
extreme case where an illegal vehicle receives no benefit of parking because of a short dwell 
time 𝑙0 = 0 but pays a fine of f as a result of getting cited right away. Hence, the lower boundary 
is defined as 𝑈0 = −𝑓. The upper boundary occurs at the other extreme end of the spectrum 
where an illegal vehicle parks for a very long time 𝑙0 → ∞ but never gets cited which leads to a 
zero expected cost for illegal parking. This condition leads to a utility comprised strictly a benefit 
that is equal to 𝑈0 = 𝑠 𝑙 ∙ 𝑑𝑙�

$ . Hence we have 𝑈0 ≤ 𝑈0 ≤ 𝑈0 which shows that 𝐓𝐯, a one-to-
one logit function of 𝑈0, is bounded and closed and hence compact. Next, we prove that that 𝐓𝐯 
is convex. This is a straightforward result when 𝑈0 ≥ 𝑈1 which indicates that only the convex 
part of the logit choice function is considered. ∎ 

To show that 𝐓𝐯 is continuous, we first present Lemma B2 as a prerequisite.  

Lemma B2. The optimal dwell time 𝑙0∗ = 𝐿(𝑇0) is unique for each 𝑇0 ∈ [𝑇0	, 𝑇] where 𝑇0 is a 
lower bound on the illegal arrival rate.  
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Proof : To show that 𝑙0∗ = 𝐿(𝑇0) is unique, we first show that 𝐿(𝑇0) exists for 𝑇0 ∈ [𝑇0	, 𝑇]. As 
indicated in the first condition of equilibrium (Eq. 17), the dwell time 𝐿(𝑇0) is obtained as the 
solution of 𝑠 𝑙0∗ = 𝛼(𝑙0∗, 𝑇0) ∙ 𝑓 ∙ 𝛾P/𝑙0

∗; the two sides of this equation are plotted in Fig. B1. 
It is easy to show that the right-hand-side of this equation (i.e. 𝛼𝑓𝛾P/𝑙0) tends infinity when 
𝑙0 → 0, and it tends to zero as 𝑙0 → ∞. As is illustrated, when 𝑇0 > 𝑇0, the two curves cross 
each other at two points, and when 𝑇0 < 𝑇0, the two curves do not cross each other. Hence, it is 
clear that 𝑙0∗ = 𝐿(𝑇0) has a solution as long as the two curves cross each other when the 
condition 𝑇0 ∈ [𝑇0	, 𝑇] is satisfied.  

We now show that 𝐿(𝑇0) is unique. Given that 𝐿(𝑇0) is obtained from the first-order optimality 
condition on 𝑈0, to prove uniqueness it is sufficient to show that 𝑈0 is concave based on the 
second-order optimality condition. 𝑈0, however, is not concave; the first term of 𝑈0 (the benefit 
of parking) is concave but the second term (the negative of the cost) is convex. Despite non-
concavity of 𝑈0 with respect to 𝑙0, we can still show that the solution is unique. Given that 𝑈0 
has two components (benefit and cost) and given that each component is either strictly convex or 
strictly concave, there are at most two solutions that satisfy the first-order optimality condition. 
These two solutions are the points where the two curves cross each other in Fig. B1 and only the 
second solution (with a larger 𝑙0) the is global maximum of 𝑈0. Hence, only one of the two 
solutions is valid and 𝑙0∗ = 𝐿(𝑇0) is unique.∎ 

Lemma B3. The feasible set 𝐓𝐯 is continuous when  𝑇0 ∈ [𝑇0	, 𝑇]. 

Proof : Continuity of 𝐓𝐯 can be easily established based on the uniqueness proof presented in 
Lemma B2. ∎ 

 

Fig. B1. Solution of the first condition of equilibrium. 
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Appendix C- Comparative static effects and elasticities  

In this appendix, we present the comparative static effects of regulatory variables k and f on 
transitional variables and the interrelationship between the transitional variables.  

We start with the citation fine f and investigate its impact on 𝛼, 𝑙0, 𝑇0, 𝑈0, and 𝑀 by taking the 
following derivatives.  

iT
i�
= ST

SU;
∙ iU

;

i�
≡ \]^

U;
(iF

;

i�
𝑇0 + iX;

i�
𝑙0)       (53) 

i\
i�
= i\

iF;
∙ iF

;

i�
+ i\

iX;
∙ iX

;

i�
         (54) 

iF;

i�
= 𝛾P(𝛼 +

i\
i�
𝑓)/ 𝑠� 𝑙0 𝑙0 + 𝑠 𝑙0 	       (55) 

iX;

i�
= SX;

S:;
∙ i:

;

i�
≡ 𝑇0𝛽(1 − 𝛽) i:

;

i�
        (56) 

i:;

i�
= 𝑠 𝑙0 iF;

i�
− 𝑓 i\

i�
− 𝛼         (57) 

As is evident from the above conditions, we have five equations and five unknowns. Eq. (53) and 
(54) are straightforward. Eq. (55) is obtained from taking the implicit differentiation of Eq. (17), 
the first condition of equilibrium, with respect to 𝑙0, Eq. (56) has the term 𝜕𝑇0/𝜕𝑈0 which is 
obtained by taking the derivative of the logit choice model, and Eq. (57) is obtained by taking 
implicit differentiation of Eq. (4) with respect to f. Solving this system of equations yields the 
following two equations  

iX;

i�
= _(P_�)9�\

P<�\9(P_�)(]^_P)
         (58) 

iF;

i�
= � F; / �� F; F;<� F; (P_]^)

P<�\9(P_�)(]^_P)
         (59) 

which can be used to derive the following two elasticities  

𝜇�X
; = _(P_�)9�\

P<(P_�)(P_]^)9�\
         (60) 

𝜇�F
; = �(F;)/ ��(F;)F;<�(F;)(P_]^)

P<(P_�)(P_]^)9�\
         (61) 

A very similar approach can be followed to obtain all other equations in Section 5.4.  

Appendix D- Approximation of the optimal citation fine to maximize profits under a 
random choice structure  

In this appendix, we prove that under a random choice structure (with 𝜃 = 0), the citation fine 𝑓∗ 
should be chosen so that illegal dwell time becomes a fixed value 𝑙0 = −1/𝛿. An important 
result of this appendix is that the optimal citation fine  𝑓∗ decreases with the technology 
parameter 𝛾P; the citation fine can be lowered when the inspection technology is efficient.  
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We proceed by (i) approximating the elasticity 𝜇�F
;
 in Lemma D1, (ii) showing that the dwell 

time should be 𝑙0 = −1/𝛿 in Lemma D2, and (iii) proving that the optimal citation fine 𝑓∗ 
decreases with 𝛾P in Lemma D3. The three lemmas are presented as follows.  

Lemma D1.  At the equilibrium solution, the elasticity of the illegal dwell time 𝑙0 with respect to 
the citation fine 𝑓 can be approximated as 𝜇�F

; = P
cF;<P_]^

. 

Proof: The proof of this lemma lies in our assumption that 𝑠′(𝑙)/𝑠(𝑙) = 𝛿, ∀𝑙0 where 𝛿 is a 
constant. This assumption is justified when the marginal benefit function 𝑠(𝑙) is of the form 
𝑠 𝑙 = 𝐵$. (𝐵P)F where 𝐵$ and 𝐵P are constant parameters. With this assumption, and given that 
𝜃 = 0, we use Eq. (26) to obtain the approximation 𝜇�F

; = 1/(𝛿𝑙0 + 1 − 𝛾P). ∎ 

Lemma D2. Under a random choice structure (with 𝜃 = 0), the citation fine 𝑓∗ must be chosen 
such that the illegal dwell time is a fixed value equal to 𝑙0 = −1/𝛿. 

Proof: The proof can be easily obtained using the result of Lemma D1 and the optimality 
condition 𝜇�F

; = −1/𝛾P  in Eq. (35).	∎ 

Lemma D3. The optimal citation fine 𝑓∗ decreases with 𝛾P. 

Proof: Using the result of Lemma D2, we use Eq. (17) to calculate the optimal citation fine as  

𝑓∗ = − �(_P/c)
]^c\($.�X,_P/c)

          (62) 

where 𝛼(0.5𝑇,−1/𝛿), 𝑞, and 𝑠(−1/𝛿) are all fixed values. Hence, according to Eq. (62), 𝑓∗ is 
inversely related to 𝛾P.	∎ 
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