A Framework For Integrating Pedestrians into Travel Demand Models

Kelly J. Clifton

Intersections Seminar University of Toronto September 22, 2017

Portland, Oregon, USA Portland State

Portland, Oregon

My Research Group

Travel behavior & built environment

- Residential Location
- Active travel
- Planning applications & modelling tools
- Behavioral theory
- Equity
- Assessing transport impacts of new development
- Data collection methods

http://kellyjclifton.com

Outline

A Framework For Integrating Pedestrians into Travel Demand Models

- Policy & planning context
- Experiences in modeling pedestrians
 - MoPeD Model of Pedestrian
 Demand
- What is on the horizon?
 - Behavioral research
 - Data & models
- Next steps

POLICY & PLANNING CONTEXT

Pedestrian modeling outputs Portland State

Direct transportation outputs

- Walk trips generated
- Walk trips with origins & destinations
- Walk trips with "routes"
 Distances walked
 - \rightarrow Pedestrian miles traveled (PMT)

Minutes of walking

 \rightarrow Physical activity levels (METs)

Classified by...

- Geographic location
- Personal characteristics (socio-demographics)

Why model pedestrians?

Pedestrian investments

Mode shifts

Greenhouse gas emissions

Health & safety

Transit access/egress

New research opportunities

State of the Practice

How do travel models estimate walking?

Among 48 large MPOs in US:

- 38% did not estimate walking
- 33% estimated non-motorized (walking + bicycling) travel
- 29% estimated walking

Lacking pedestrian built environment measures & small spatial units Trip-based model sequence

- 1. Generation
- 2. Distribution
- 3. Mode choice
- 4. Assignment

Source: Singleton, P. A., & Clifton, K. J. (2013). Pedestrians in regional travel demand forecasting models: State-of-the-practice.

Pedestrian modeling applications Portland State

		<u>Currently</u>	<u>Future interest</u>
	Project prioritization	61% (14)	78% (18)
	Scenario planning	43% (10)	65% (15)
	Corridor planning	43% (10)	61% (14)
	Traffic safety analysis	35% (8)	57% (13)
	Health impact assessment	35% (8)	57% (13)
•	Infrastructure gap analysis	30% (7)	57% (13)

Incorporating pedestrians

Adapted from: Wegener and Fürst, 1999

Incorporating pedestrians

EXPERIENCES IN MODELING PEDESTRIANS - MoPeD

Project overview

- 12 years of research/development in modeling pedestrian demand
- Early work funded by Maryland DOT
 Dedectrian rick expective
 - Pedestrian risk exposure
- Recent research projects funded by NITC and Portland Metro
 - Improve representation of pedestrians in current 4-step method
 - Develop stand alone tool
 - Transferability & forecasting of built environment measures

New MoPeD method

Portland State

Contributions

- Nests within current structure but can be used alone
- Pedestrian scale analysis (PAZs)
- Pedestrian-relevant variables (PIE)
- One of the first studies to examine pedestrian destination choice in demand modeling framework
- Highlights policy relevant variables: distance, size, pedestrian supports & barriers

Q Pedestrian analysis zones ^{Portland} State

264 feet = 80 m ≈ 1 minute walk

Metro: ~2,000 TAZs \rightarrow ~1.5 million PAZs

PAZs

Home-based work trip productions

Pedestrian Index of the Environment (PIE)

20–100 score = calibrated \sum (6 dimensions)

People & job density

Transit access

Sidewalk extent

Urban living infrastructure

Comfortable facilities

Block size

ULI = Urban Living Infrastructure: pedestrian-friendly shopping and service destinations used in daily life.

Trip Generation

Trip Generation

Metro currently has 8 trip production models applied to ~2,000 TAZs:

- HBW Home-based work;
- HBshop Home-based shopping;
- HBrec Home-based recreation;
- HBoth Home-based other (excludes school and college);
- NHBW Non-home-based work;
- NHBNW Non-home-based non-work;
- HBcoll Home-based college; and
- HBsch Home-based school.

After testing for scalability, we applied <u>the same models</u> to our pedestrian scale ~1.5M PAZs

Trip Generation Outputs

TAZ: **HB Work** 0 (trips/PAZ) 0 - 1 1 - 2.5 2.5 - 5 5 - 10 10 - 25 25 - 50 50 - 100 100 - 250 250 - 500 500 - 1000 1000 - 2500 2500 - 5000 5000 - 10000

Ν

TAZ Home-Based Work Productions

Walk mode split

Walk mode split

Prob(walk) = f(traveler characteristics, PIE)

Data:	2011 OHAS, Production trip ends,	
	90% sample	
Method:	binary logit model	
Spatial unit:	pedestrian analysis zone (PAZ)	

Walk mode split models ^{Portland State}

Traveler characteristics: Household size, income, age, # of workers, # children, # vehicles

Built environment:

PIE

Walk model application

Destination choice

Destination choice

Destination choice

Prob(dest.) = function of... network distance, - size / # of destinations pedestrian environment, traveler characteristics **2011 OHAS** Data: multinomial logit model Method: Spatial unit: super-pedestrian analysis zone home-based: non-home-based: Six trip types: work (HBW) work (NHBW) shopping (HBS) non-work (NHBNW) recreation (HBR) other (HBO)

Destination Choice

Destination choice Portland State

Model Validation – % Correct Destination

Destination Choice

Model Validation – Avg. Distance Walked

ON THE HORIZON Behavioral research/data/methods

Adapted from: Wegener and Fürst, 1999

Behavioral research

Decision sequencing: activity, mode, destination; mode, destination, activity; destination, activity, mode

Destination choice considerations

choice set generation

Willingness to walk

Path/route choice considerations

K 2 ==

Behavioral Research

Built environment

- Thresholds & nonlinearities
- Mixing
- Scale

Lifestyle questions:

- Vehicle ownership & residential location
- Attitudes, motivations & values

Positive Utility of Travel

- What aspects?
- Diminishing returns?

Mode feedbacks to trip generation

Spatial/Temporal Scale

- How much detail do we need?
- Depends on output needed for policy/research
- Capture variations in the pedestrian built & natural environment
- Spatial accuracy
- Theory/Behavior

Trip distance & scale

38

Walking Behavior

- Passive data sources
 - Trip-level information
 - Multi-day
 - Multi-modal
 - Destinations
 - Routes & speeds
- But also need...
 - Motivations & considerations
 - Barriers
 - Trips not made

Built environment

S.R. Gehrke, & K.J. Clifton. (2016). Toward a spatialtemporal measure of land-use mix. *Journal of Transport and Land Use*, *9*(1):171–186

S.R. Gehrke, & K.J. Clifton. (2014). Operationalizing land use diversity at varying geographic scales and its connection to mode choice: Evidence from Portland, Oregon. *Transportation Research Record: Journal of the Transportation Research Board* 2453: 128-136.

Composition

- How & what to represent?
- Indices, proxies
- Forecasting

Networks

- Network representation
- How do we attribute networks?

 Feedbacks of travel costs

		••
Zone-based: Aggregate built environment into irregular zones around trip origin and destination (may not cover entire trip).	Buffer: Aggregate built environment into circular or network- based polygon buffers around trip origin and destination (may not cover entire trip).	Route: Measure built environment around or along shortest path or actual (reported) path (shortest path may not correspond to actual path; reported path may not correspond to actual path for all modes).

Broach, J. P. (2016). *Travel mode choice framework incorporating realistic bike and walk routes* (Order No. 10061477). Available from Dissertations & Theses @ Portland State University; ProQuest Dissertations & Theses Global.

Network assignment?

Validation

- •Set aside estimation sample
- •Compare to intersection counts
- •Transferability: Evaluate the performance of models in many different communities
- •Compare the performance of several different types of models in the same study area
- •Have practitioners and advocates carefully review predicted volumes against their local knowledge

Link to Health Outcomes

- Health impact analysis
- Total time spent walking + speeds
- Physical activity budgets
- Crash risk exposure
- Pollutant exposure
- Feedback into life expectancy

Woodcock J, Givoni M, Morgan AS. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM). Barengo NC, ed. PLoS ONE. 2013;8(1):e51462

Conclusions

- Tools for pedestrian (& bicycle) demand have matured
- Still lag behind motorized modes in sophistication and application
- Expanding list of policy issues
- More information & data
- Plenty of research questions!

Questions?

Kelly J. Clifton kclifton@pdx.edu http://kellyjclifton.com

Project info & reports:

http://trec.pdx.edu/research/project/510 http://trec.pdx.edu/research/project/677

- Singleton, P. A., Schneider, R. J., Muhs, C. D., & Clifton, K. J. (2014). "The Pedestrian Index of the Environment (PIE): Representing the Walking Environment in Planning Applications," *Proceedings of the 93rd Annual Meeting of the Transportation Research Board*, 2014.
- Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. 2016. "Representing pedestrian activity in travel demand models: Framework and applications", *Journal of Transport Geography*, Vol. 52:111-122. <u>http://dx.doi.org/10.1016/j.jtrange0.2016.03.009</u>.
- Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. 2016. "Development of destination choice models for pedestrian travel", *Transportation Research Part A*, 94: 255-265