Designing Parking Facilities for Autonomous Vehicles

Mehdi Nourinejad*, Sina Bahrami, Matthew J. Roorda

*Department of Civil Engineering, University of Toronto, Toronto, Canada
mehdi.nourinejad@mail.utoronto.ca

Department of Civil Engineering, University of Toronto, Toronto, Canada
sina.bahrami@mail.utoronto.ca

Department of Civil Engineering, University of Toronto, Toronto, Canada
roordam@ecf.utoronto.ca

Abstract

Autonomous vehicles will have a major impact on car-park designs in the future. While existing parking facilities have islands with only two rows of vehicles, future designs tailored for autonomous vehicles can have multiple rows of vehicles stacked behind each other which can cause blockage of some vehicles. Nevertheless, the driverless feature of autonomous vehicles allows car-park operators to relocate vehicles and create a clear pathway for blocked cars to leave the facility. This paper investigates the problem of finding the optimal car-park layout design that minimizes relocations while fitting a given number of vehicles in the car-park. To solve the layout design problem, we present a mixed-integer non-linear program that treats each island in the facility as a queuing system and solve it using Benders decomposition for an exact answer. We also present a heuristic model to find a reasonable upper-bound of the mathematical model. We show that autonomous vehicle car-parks can decrease the need for parking space by an average of 60% and a maximum of 90%. This substantial revitalization of space that was previously used for parking can lead to more socially beneficial purposes when car-parks are converted into commercial and residential land-uses.

Keywords: Autonomous vehicle; Parking; Facility layout; Benders decomposition; Queuing systems

1. Introduction

Parking is an important part of transportation planning as a typical vehicle spends 95 percent of its lifetime sitting in a parking spot [Mitchell 2015]. The increasing need to store vehicles has transformed a lot of valuable real-estate into parking garages in many countries. In the United States approximately 6,500 square miles of land is devoted to parking which is larger than the entire state of Connecticut [Chester et al., 2011; Thompson 2016]. Allocating
valuable land to parking subsequently increases renting costs and parking acquisition costs in major downtown cores. One example is Hong Kong where the average cost of one parking space is as high as 180 thousand USD (South China Morning Post, 2015). Realizing the high social cost of parking provision, Autonomous Vehicle (AV) industry leaders are rethinking how to reduce the parking footprint by converting traditional parking lots into automated parking facilities that can store more AVs (compared to regular vehicles) in smaller areas. In this study, we investigate the optimal design and management of such facilities.

AVs can reduce the parking footprint in several ways. As vehicles become driver-less, the passengers no longer need to be physically present in car-parks. Driver-less AVs drop off their passengers at the parking entrance (or at a designated drop-off zone) and head to a spot chosen by the car-park operator. In this automated parking system, the average space per vehicle is estimated to be reduced by 2 square meters per vehicle as the driving lanes become narrower, elevators and staircases become obsolete, and as the required room for opening a vehicle’s doors becomes discarded (see Fig. 1) (TechWorld, 2016).

Motivated by the benefits of AV parking and its impact on revitalizing valuable real-estate, auto makers are collaborating with cities to create the first generation of AV parking facilities. Audi’s Urban Futures Initiative is among the programs that is implementing a pilot to measure the impact of AV parking on land restoration. The pilot is estimated to save up to 62% in parking space by 2030 which is equivalent to $100 million USD in the district of Assembly Row which is the focus of the project (DesignBoom, 2015). Tesla, another leader in AV technology, is also improving parking by offering an auto-pilot system called “Smart Summon” which allows the vehicle to navigate complex environments and parking spaces whenever summoned by its owner. Such auto-parking systems in AVs will pave the way for the next generation of AV parking facilities with improved space efficiency.

One additional way to increase car-park space efficiency (in addition to removal of elevators, etc.) is to stack the AVs in several rows, one behind the other as shown in Fig. 1. While this type of layout reduces parking space, it can cause blockage if a certain vehicle is barricaded by other vehicles and cannot leave the facility. To release barricaded vehicles, the car-park operator has to relocate some of the vehicles around to create a clear pathway for the blocked vehicle to exit. The extent of vehicle relocation depends on the layout of car-park (i.e., number of rows) which should ideally be designed so that parking occupancy (i.e., number of vehicles in the car-park) is high and vehicle relocation is low.

The optimal layout of the car-park has a great impact on space efficiency. Existing layouts divide the facility into a number of islands and roadways. The islands are used
to store vehicles while the roadways separate the islands and allow vehicles to maneuver when searching for a desirable spot. To ensure that no vehicle gets blocked, the islands hold no more than two rows of vehicles in conventional car-park designs (see Fig. 1k) which consequently leads to waste of space. With AV technology, however, the islands can have more than two rows and the roadways can be narrower. An eminent research question that arise is: How should we design AV parking facilities that store a large number of AVs with minimal relocations? To answer this question, we pursue the following objectives throughout this study:

- We present a model to find the optimal layout of a parking facility for AVs.
- We define a relocation strategy that ensures a smooth retrieval of any AV that is summoned by its user.
- We present exact and heuristic algorithms to find the optimal AV car-park layout.
- We find the maximum number of AVs that can be fit in car-park with given dimensions.
- We quantify the required parking space reduction when the car-park is exclusively designed for a given demand of AVs.

The remainder of this paper is organized as follows: We present a background on AV models in Section 2, a model to find the optimal car-park layout in Section 3, two solutions algorithms in Section 4, numerical experiments in Section 5 and the conclusions of the study in Section 6.

2. Background

With the rapid advancement in AV technologies, AVs are expected to enter the consumer market in the next decade (Fagnant and Kockelman 2015). Already, AV technology leaders such as Google’s Waymo have tested AVs over than 3 million miles in several U.S. cities (Waymo 2016). While full implementation of AVs is hindered by many practical challenges, recent studies are looking at ways of addressing these challenges and finding novel ways of exploiting the full potential of AVs. The current AV studies focus on traffic flow (Levin and Boyles 2016, de Almeida Correia and van Arem 2016, Mahmassani 2016, Talebpour and Mahmassani 2016, de Oliveira 2017), safety (Katrakazas et al. 2015, Kalra and Pad-dock 2016), intersection control (Le Vine et al. 2015, Yang and Monterola 2016), emissions
Parking behavior is argued to be influenced by AVs in several ways. Given that they can self-park, AVs no longer need to be in close proximity of their drivers. Instead, they can be dispatched to less congested parking lots that are farther away and cheaper (Fagnant and Kockelman, 2015). This implies that human drivers can get dropped off right at their final destination without having to search for a spot or having to walk from that spot to their final destination. Nourinejad and Roorda (2017) model this parking behavior and show city planners can allocate parking to AVs at locations that are farther away from downtown.

From a technological standpoint, the design and management of car-parks will need to change. Car-parks for regular vehicles are commonly designed according to guidelines published by local governments. The City of Toronto, for example, imposes restrictions on parking space dimensions, orientation of spaces, and the width of the driving aisles (City of Toronto, 2013). Current guidelines are not readily applicable to AVs because they do not consider the possible AV movements within the car-park. Hence, there is a need to initiate a new set of regulations tailored for AV parking.

Although there are currently no guidelines for AV parking design, there are several re-
search streams that exhibit similar properties to the problem at hand. We specify these streams as the following:

- **The stacking problem**: Many storage systems require that items (i.e., any type of merchandise) be stacked on top of each other to increase space efficiency (De Castilho and Daganzo 1993; Zhang et al. 2002; Jiang and Jin 2017). In these systems, retrieving a blocked item (i.e., an item that is not on top of the stack) requires some rehandling. Storage operators ideally like to minimize rehandling by optimally stacking items. A similar objective is pursued in AV parking design. We like to fit the AVs in the car-park to minimize the number of relocations whenever retrieving a blocked vehicle.

- **Parking assignment**: Finding a parking space in downtown cores is often time-consuming and difficult. In a survey of 20 cities around the world, it was reported that drivers spend 20 minutes on average to find parking (Gallivan 2011). To address this issue, several studies have focused on modeling search behavior (Boyles et al. 2015; Liu and Geroliminis 2016; Pel and Chaniotakis 2017) or developing models that assign parking spaces to vehicles in an optimal fashion (He et al. 2015; Shao et al. 2016; Lei and Ouyang 2017). Parking assignment also appears in the AV parking design problem. The challenge is to assign the vehicles to the islands of the facility in a balanced way.

- **Optimal layout design**: Optimal layout design is a problem prevalent in many contexts. The objective is to divide a given geometrical layout into components that serve a purpose. One example is the Facility Layout Problem where indivisible departmental components are optimally placed in a given geometrical area to improve production efficiency (Hungerländer and Anjos 2015; Gonçalves and Resende 2015). See Anjos and Vieira (2017) for a review of the Facility Layout Problem. The AV parking design problem also finds an optimal layout with components that include islands and driving lanes (gaps) as shown in Fig. 2. By optimally designing these components, we like to improve the efficiency of AV car-parks.

3. The model

Throughout this study, we make the following assumptions:

1. **Vehicle size**: All vehicles are assumed to be the same size or at least they are assumed to be smaller than a given vehicle size.
2. **Vehicle control**: We assume that the facility operator takes control of all AVs that enter the parking facility. The operator can then relocate the vehicles within the facility whenever required. When a vehicle leaves the facility, the control of the AV is directed back to the vehicle owner.

3. **Vehicle arrival**: The vehicles arrive at the parking facility in a Poisson manner with arrival rate λ [vehicles/hour] and their parking duration (i.e., parking time) follows an exponential distribution with an average parking time of μ [hours].

4. **Exclusively for autonomous vehicles**: We assume that the parking facility is exclusively designed for AVs.

The nomenclature of the model is as follows.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Design demand [vehicles]</td>
</tr>
<tr>
<td>λ</td>
<td>Arrival rate of vehicles [vehicles per hour]</td>
</tr>
<tr>
<td>μ</td>
<td>Average parking time [hours]</td>
</tr>
<tr>
<td>L</td>
<td>Length of the land plot</td>
</tr>
<tr>
<td>W</td>
<td>Width of the land plot</td>
</tr>
<tr>
<td>l</td>
<td>Length of each parking spot</td>
</tr>
<tr>
<td>w</td>
<td>Width of each parking spot</td>
</tr>
<tr>
<td>y</td>
<td>Number of vehicle rows in each island</td>
</tr>
<tr>
<td>α</td>
<td>Width of each driving lane in the inter-island gaps</td>
</tr>
<tr>
<td>S</td>
<td>Maximum possible number of islands in the facility</td>
</tr>
<tr>
<td>K</td>
<td>Maximum number of spots in each stack of the facility</td>
</tr>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Set of islands</td>
</tr>
<tr>
<td>Decision variables</td>
<td></td>
</tr>
<tr>
<td>x_i</td>
<td>Half the number of columns in island i</td>
</tr>
<tr>
<td>e_i</td>
<td>Inter-island gap between island i and $i + 1$ allocated to vehicle movements</td>
</tr>
<tr>
<td>g_i</td>
<td>Inter-island gap between island i and $i + 1$ allocated to temporary vehicle storage</td>
</tr>
<tr>
<td>d_i</td>
<td>Demand allocated to island i</td>
</tr>
</tbody>
</table>

3.1. **Geometric properties of the facility**

Consider a rectangular plot of land with length L and width W that has to be converted into an AV parking facility. Assume that the parking facility has a number of islands (See...
Each island $i \in I = \{1, 2, \ldots, i, \ldots, S\}$ includes $2x_i$ columns of vehicles: half are parked in the west-bound direction and the other half in the east-bound direction. The length of each island is $2lx_i$ where l is the length of each parking spot. The width of each island is wy where w is the width of each parking spot. All islands have y rows of vehicles. Each row of island i is comprised of two stacks each containing x_i spots as shown in Fig. 2.

The islands are separated from each other by gaps so that the vehicles can maneuver in and out of parking spots. Each gap between island i and $i + 1$ has two components e_i and g_i. A minimum gap of e_i is always required between two islands for vehicle mobility and the extra gap g_i is imposed in spacial cases to store vehicles in the relocation process. The number of gaps is always equal to number of islands plus one. We elaborate the detailed purpose of the gap in Section 3.2. Finally, there is a clearance roadway on the north (or south) of the plot. This road is used for vehicles to enter or leave parking facility. The clearance roadway needs to have direct access to the entrance of the parking facility. We assume that y (number of rows) is a given parameter of the model chosen so that the width of clearance roadway $W - wy$ is large enough for vehicle mobility.
3.2. Relocation strategy

We implement a relocation strategy that allows any vehicle to leave the facility at any given point in time so that no vehicle is stranded upon being requested by its owner. Consider the green vehicle in Fig. 3(a) that wants to leave the facility but is blocked by two red vehicles ahead of it. Our relocation strategy proceeds as follows. We first move the two red vehicles into the inter-island gap, thus clearing the space in front of the green vehicle as shown in Fig. 3(b). When cleared, the green vehicle exits the facility using the clearance roadway as shown in Fig. 3(c).

Recall that the gap between any two islands is comprised of two components: e_i and g_i. The first, e_i, indicates that the gap includes one travel-lane to ensure mobility within the facility. The gap e_i is required whenever island i or island $i - 1$ is generated. Formally, $e_i = 1$ if either $x_i \geq 1$ or $x_{i-1} \geq 1$. Otherwise, $e_i = 0$ as stipulated in the following two equations

$$x_{i-1} \leq Me_i \quad \forall i \in I \cup \{S + 1\}\{1\}$$
$$x_i \leq Me_i \quad \forall i \in I$$ (1)

where M is a sufficiently big number.

The second gap, g_i, is the number of lanes needed to temporarily store the blocking (red) vehicles so that any requested (green) vehicle can exit the facility (see Fig. 3). When the green vehicle leaves the facility, all the red vehicles return back to their original stack.

The gap g_i between two islands needs to be large enough to store vehicles temporarily. Assume that we want to free the green vehicle in Fig. 3. Here, the gap needs to fit two rows of vehicles. In general form, the gap g_i should be able to hold the maximum number of relocated vehicles which is $x_i - 1$ for island i. Hence, we have

$$\frac{ywgi}{l} \geq x_i - 1 \quad \forall i \in I$$ (2)

where the left-hand-side is the total number of vehicles that can be stored in the gap and the right-hand-side is the maximum number of vehicles that need to be relocated in island i.

Given that each gap is shared between two island, we also have

$$\frac{ywgi}{l} \geq x_{i-1} - 1 \quad \forall i \in I \cup \{S + 1\}\{1\}.$$ (3)

3.3. Demand assignment

The parking facility is designed to serve a demand of D [vehicles] which is an input of the model. The vehicles enter the facility with a Poisson distribution with a given arrival
Figure 3: Vehicle relocation within the parking facility. (a) The green vehicle is blocked, (b) the two red vehicles are relocated, (c) the green vehicle exits the facility.

rate of λ [vehicles per hour]. The parking duration follows an exponential distribution with an average parking time of μ [hours]. Under steady state conditions, we have $D = \lambda \mu$.

The operator of the facility decides how to allocate the demand D between the islands to minimize the expected number of relocation. Let d_i (a decision variable) be the demand allocated to island i such that

$$D = \sum_{i=1}^{s} d_i$$

(demand – assignment). \hfill (5)

Each island’s demand d_i must be lower than the supply of parking spots at that island. Recall that island i has $2x_i$ columns and y rows. This leads to a parking supply of $2yx_i$ spots at island i which has to be larger than the demand of vehicles assigned to that island:

$$d_i \leq 2yx_i \quad \forall i \in I$$

(supply – demand). \hfill (6)
3.4. Minimizing expected relocations per vehicle retrieval

We now explain how to find the occupancy probability of each stack using queuing theory. We want to find the probability that a stack with x_i spots is occupied by v vehicles. This queue is described as follows. Assume that each of the $d_i/2y$ vehicles in the stack (of island i) are being “served” at the same time. By “serve”, we mean a vehicle reaches its parking duration and needs to leave the parking facility (hence, it is served). In total, the number of servers in the queue is equal to the number of vehicles in the stack. The arrival rate of vehicles into island i’s stacks is $d_i/2y\mu$ (μ is the average parking time) and the queuing system remains in steady-state due to the supply-demand conditions in Eq. 6.

The queue is modeled as an $M/M/x_i$ system with a finite system capacity of x_i spots. The state-transition-diagram for this queuing system is presented in Larson and Odoni (1981). Accordingly, the probability that each stack of island i holds v vehicles at any given time is P_{iv}:

$$P_{iv}(d_i) = \frac{(d_i/2y)^v/v!}{\sum_{t=0}^{x_i} (d_i/2y)^t/t!}. \quad (7)$$

The occupancy probability P_{iv} (also known as the queue length probability) is essential in finding the expected number of relocations in each stack. Let R_v be the number of relocations in island i if there are v vehicles in the stack. Then, the expected number of relocations for taking out any randomly chosen vehicle in the facility is

$$E[R] = \sum_{i=1}^{S} \sum_{v=0}^{x_i} \frac{d_i}{2yD} P_{iv}(d_i) R_v. \quad (8)$$

The term $d_i/2yD$ appears in Eq. 8 as we are minimizing the relocations per vehicle retrieval. In this term, d_i/D is the probability that the random vehicle is in island i and $1/2y$ is the probability that the vehicle is in one of the $2y$ stacks of that island.

To find R_v, consider a stack with v vehicles as shown in Fig. 5. The probability that any vehicle is randomly chosen to leave is $1/v$. Assume that vehicle a (where $1 \leq a \leq v$)

Figure 4: Vehicle relocation with a larger inter-islang gap.
in Fig. 5 is randomly chosen to leave the facility. To discharge vehicle \(a \), we first need to relocate \((a-1)\) vehicles that are currently parked ahead of vehicle \(a \). These \(a - 1 \) vehicles are moved to the gap. In total, we consider that \(a = (a - 1) + 1 \) vehicles need to be moved: \(a - 1 \) vehicle relocations to the gap and the movement of vehicle \(a \) itself as well.

Once vehicle \(a \) leaves the facility, the \(a - 1 \) vehicles that are currently in the gap need to retreat back to the stack where they were originally positioned. This leads to an additional \(a - 1 \) vehicle relocations. To summarize, to move vehicle \(a \), we need \((a) + (a - 1)\) vehicle relocations. Summing this over all \(v \) vehicles in the stack and considering that each vehicle has a probability \(1/v \) of being chosen to leave, we have:

\[
R_v = \frac{1}{v} \left[\sum_{a=1}^{v} a + \sum_{a=1}^{v} (a-1) \right] = \frac{1}{v} \left[\frac{v(v+1)}{2} + \frac{(v-1)v}{2} \right] = v
\]

(9)

Hence, the average relocations in a stack with \(v \) vehicles is \(v \) and the expected number of relocations in the entire facility (all the islands) is obtained from Eq. 8.

![Figure 5: Example of a stack with \(v \) vehicles.](image)

3.5. Mathematical model

We now present a mixed integer non-linear program to find the optimal layout design of the plot and the optimal demand allocation between the islands of the parking facility.

Before presenting the model, we make two changes in the decision variables to make the problem easier to solve. We replace \(x_i \), half the number of columns in island \(i \), with \(x_{ik} \) which is a binary variable equal to 1 (and otherwise 0) if there are \(k \) columns in each stack of island \(i \). Similarly, we replace \(d_i \) with \(d_{ik} \) which is the demand allocated to island \(i \) if it holds \(k \) parking spots in each stack.

With this change of variable, we have

\[
x_i = \sum_{k=0}^{K} k x_{ik} \quad \forall i \in I
\]

where \(K \), a parameter of the model, is the maximum number of columns in each stack. To ensure that each stack \(i \) takes only one \(k \) value, the following constraint is imposed
\[
\sum_{k=0}^{K} x_{ik} = 1 \quad \forall i \in I.
\]

Subsequently, the supply-demand constraint in Eq. 6 changes to
\[
d_{ik} \leq 2y_k x_{ik} \quad \forall i \in I.
\]

The relocation strategy constraints (Eq. 3 and Eq. 4) become, respectively,
\[
\frac{y_{wg_i}}{l} \geq \sum_{k=0}^{K} k x_{ik} - 1 \quad \forall i \in I
\]
and
\[
\frac{y_{wg_i}}{l} \geq \sum_{k=0}^{K} k x_{i-1,k} - 1 \quad \forall i \in I \cup \{S + 1\} \setminus \{1\}
\]
and the gap constraints (Eq. 1 and Eq. 2) become, respectively,
\[
\sum_{k=0}^{K} k x_{i-1,k} \leq M e_i \quad \forall i \in I \cup \{S + 1\} \setminus \{1\}
\]
and
\[
\sum_{k=0}^{K} k x_{ik} \leq M e_i \quad \forall i \in I.
\]

Using the new definition \(x_{ik}\), we also change the queue occupancy probabilities \(P_{iv}\) to the following. Let \(P_{ikv}\) be the probability that a stack of island \(i\) with capacity \(k\) holds \(v\) vehicles. This probability is obtained with minor modification of Eq. 7:
\[
P_{ikv}(d_{ik}) = \frac{(d_{ik}/2y)^v/v!}{\sum_{t=0}^{k}(d_{ik}/2y)^t/t!}.
\]

The mathematical model, denoted as the Layout Design [LD] Problem is formally defined as
\[
[LD] : \text{Minimize } E[R] = \sum_{i=1}^{S} \sum_{k=0}^{K} \sum_{v=0}^{k} x_{ik} P_{ikv}(d_{ik}) R_v d_{ik}/2yD
\]
subject to
\[
D = \sum_{i=1}^{S} \sum_{k=0}^{K} d_{ik} \quad (11)
\]
\[
d_{ik} \leq 2y_k x_{ik} \quad \forall i \in I, \forall k \quad (12)
\]
\[
\sum_{k=0}^{K} x_{ik} = 1 \quad \forall i \in I \tag{13}
\]

\[
\frac{y_{wg_i}}{l} \geq \sum_{k=0}^{K} kx_{ik} - 1 \quad \forall i \in I \tag{14}
\]

\[
\frac{y_{wg_i}}{l} \geq \sum_{k=0}^{K} kx_{i-1,k} - 1 \quad \forall i \in I \cup \{S + 1\} \setminus \{1\} \tag{15}
\]

\[
\sum_{k=0}^{K} kx_{i-1,k} \leq Me_i \quad \forall i \in I \cup \{S + 1\} \setminus \{1\} \tag{16}
\]

\[
\sum_{k=0}^{K} kx_{ik} \leq Me_i \quad \forall i \in I \tag{17}
\]

\[
2l \sum_{i=1}^{S} \sum_{k=0}^{K} kx_{ik} + \alpha \sum_{i=1}^{S+1} (e_i + g_i) \leq L \tag{18}
\]

\[
e_i \in \{0, 1\} \quad \forall i \in I \cup \{S + 1\} \tag{19}
\]

\[
g_i, x_{ik} \in \mathbb{Z} \quad \forall i \in I, \forall k \tag{20}
\]

\[
x_{ik}, e_i, g_i, d_{ik} \geq 0 \quad \forall i \in I, \forall k \tag{21}
\]

where Eq. 10 minimizes the expected relocations, Eq. 11 is the demand-assignment condition, Eq. 12 is the supply-demand constraint, Eq. 13 ensures that island \(i\)'s stacks have \(k\) spots, Eq. 14-17 are the inter-island gap constraints, Eq. 18 is the parking dimension constraint, and Eq. 19-21 are the integrality and non-negativity constraints. Constraint 18, the parking dimension constraint, indicates that the width of all islands (first term on right-side) and the width of all gaps (second term on right-side) must not exceed the length of the parking facility \(L\). In this constraint, the width of the gap \(i\) is \(\alpha(e_i + g_i)\) where \(\alpha\) is the required width of each travel-line in the gap. \(\alpha\) is a function of the turning radius of the vehicles and the preferred safety margin in the facility to avoid incidents while moving the AVs. Technically, \(\alpha\) must satisfy \(\alpha > w\) because the width of the gap needs to be larger than the width of the AVs so that the AVs do not crash when they drive in the gap lanes.

The presented mathematical model is difficult to solve because it is a mixed integer program with a non-linear objective function. Because of the structure of the model, existing commercial optimization software cannot be used especially if an exact solution is of interest. Hence, to solve [LD], we present a custom-made exact algorithm that is based on generating Benders decomposition cuts. Given that the exact algorithm has a high computation time in several instances, we also present a heuristic algorithm that is much faster.
4. Solution methodology

4.1. An exact decomposition algorithm

Using Benders decomposition, we divide the problem into a Master Problem [MP] and a Sub-Problem [SP]. In the [SP], it is assumed that the layout of the facility is already fixed and predefined. That is, we assume a given feasible \(\bar{x}_{ik}, g_i, e_i, \forall i \in I \). With the layout fixed, the [SP] finds the optimal allocation of the demand \(D \) between the islands. The sub-problem is defined as:

\[
[SP(\bar{x}_{ik})] : \text{Minimize } E[R] = \sum_{i=1}^{S} \sum_{k=0}^{K} \sum_{v=0}^{k} \bar{x}_{ik} P_{ikv}(d_{ik}) R_v \frac{d_{ik}}{2gD} \quad (22)
\]

subject to

\[
d_{ik} \leq 2yk \bar{x}_{ik} \quad \forall i \in I, \forall k \quad \text{(supply – demand)} \quad (23)
\]

\[
D = \sum_{i=1}^{S} \sum_{k=0}^{K} d_{ik} \quad \text{(demand – assignment)} \quad (24)
\]

\[
d_{ik} \geq 0 \quad \forall i \in I, \forall k \quad (25)
\]

which is a non-linear mathematical model with linear constraints. The objective function \(22 \) minimizes expected relocations for a given set of \(\bar{x}_{ik} \), the Inequalities \(23 \) are supply-demand constraint, Eq. \(24 \) is the demand-assignment constraint, and Constraints \(25 \) ensure non-negativity of the decision variables. The uniqueness of [SP]’s solution depends on the convexity of the objective function in Eq. \(22 \) which is discussed in the next subsection.

Whenever we solve [SP], we obtain an upper-bound on the optimal solution of the original problem [LD]. This upper-bound decreases and gets closer to the optimal solution (of [LD]) as we try out better (more efficient) layouts \(\bar{x}_{ik}, g_i, e_i, \forall i \in I \). The results of the [SP] are used as Benders cuts in the [MP]. Notice that solving [SP] for the first time requires that we already know a feasible layout for the facility. This feasible solution can be obtained using an integer program with any objective function subject to Constraints \(13 \) to \(20 \) and \(x_{ik}, e_i, g_i \geq 0, \forall i \in I, \forall k \).

The purpose of the [MP] is to iteratively generate different layouts (i.e., \(x_{ik}, g_i, e_i \)) until the best layout is found. Every time a new layout is found in the [MP], the [SP] is solved to obtain the optimal allocation of demand \(D \) to the newly generated layout (i.e., the islands). When solving the [MP], we do not explicitly account for the demand-assignment constraint.
(Eq. 24) as this constraint has already applied in the [SP]. However, the supply-demand constraints (Inequality 23) is actually implicitly considered in the form of Benders cuts in the [MP]. The supply-demand constraint is the only constraint that connects facility layout to demand assignment.

By solving [MP], we find a lower-bound on the optimal objective function of the original problem [LD] because the [MP] is missing the supply-demand constraints in Eq. 12. Absence of these constraints indicates that the objective of the [MP] is always better (lower) than the true objective of [LD]. Hence, the [MP] provides a lower-bound for [LD]. The [SP]’s solution is accounted in the [MP] using Benders cuts constraints.

The Master-Problem [MP] is presented as follows:

\[
[MP] : \text{Minimize } Z
\]
subject to
\[
Z \geq \sum_{i=1}^{S} \sum_{k=0}^{K} \sum_{v=0}^{k} x_{ik} P_{ikv}(\hat{d}_{ik})R_v \frac{\hat{d}_{ik}}{2Dy} - u_{ikt} 2yk x_{ik} \quad \forall i \in I, \forall t \in T, \forall k
\]
Constraints (13) – (20)
\[
x_{ik}, e_i, g_i \geq 0, \quad \forall i \in I, \forall k
\]

where \(Z\) is the best lower-bound found so far in the [MP], \(\hat{d}_{ik}\) is the solution of [SP], \(T\) is the set of Benders cuts, and \(u_{ikt}\) is the Lagrange multiplier of Constraint 24 in [SP] when the [SP] was solved in the \(t^{th}\) iteration. The presented [MP] is a mixed integer-linear program which can be solved using any commercial software.

We summarize the steps of the exact algorithm as the following:

1. Initialize: Find a feasible layout using an integer program with any objective function subject to Constraints [13] to [20] and \(x_{ik}, e_i, g_i \geq 0, \forall i \in I, \forall k\). Solve the Sub-Problem [SP] and generate Benders cuts \(T\). Let \(UB\) be the currently found upper-bound which is the objective function of [SP].

2. The Master-Problem: Solve the Master-Problem [MP] using the set \(T\) of all generated Benders cuts so far. Let \(LB\) be the currently found lower-bound which is the objective function \(Z\) of the [MP].

3. The Sub-Problem: Solve the Sub-Problem [SP] using the most recent facility layout obtained from the [MP] in Step 2. Update the \(UB\) if [SP] has found a smaller upper-bound than the one available so far. Add the new Benders cuts to set \(T\).
4. **Terminate**: Terminate the algorithm if the upper-bound and the lower-bound are close enough to each other such that $UB - LB < \epsilon$, where ϵ is a predefined threshold value. Go to Step 2 if the termination condition is not satisfied.

4.2. **Solving the sub-problem**

We discuss how to solve the Sub-Problem [SP]. The [SP] is a convex minimization problem subject to a convex compact feasible solution space because the solution space is a set of linear inequalities. By proving that the objective function of [SP] is convex, we can solve the sub-problem using any standard convex minimization algorithm.

Lemma 1. The objective function of the sub-problem [SP] is convex.

Proof. Let us first rewrite the objective function of the [SP] by moving some terms around:

$$E[R] = \sum_{i=1}^{S} \sum_{k=0}^{K} \bar{x}_{ik}/D \sum_{v=0}^{k} P_{ikv}(d_{ik})R_v \ d_{ik}/2y$$

where $\bar{x}_{ik}/(2yD)$ are fixed parameters. Notice that $E[R]$ is now a sum of functions

$$Q_{ik}(d_{ik}) = \sum_{v=0}^{k} P_{ikv}(d_{ik})R_v \ d_{ik}/2y$$

multiplied by fixed parameters. To show that $E[R]$ is convex, we need to show that each function $Q_{ik}(d_{ik})$ is convex. This holds true because sum of a set of convex functions is convex as well. Let us first simplify $Q_{ik}(d_{ik})$ to

$$Q_{ik}(d_{ik}) = \sum_{v=0}^{k} P_{ikv}(d_{ik})R_v \ d_{ik}/2y$$

$$= \sum_{v=0}^{k} \frac{(d_{ik}/2y)^v}{v!} \sum_{t=0}^{k} \frac{(d_{ik}/2y)^t}{t!} v \ d_{ik}/2y$$

$$= \sum_{v=0}^{k} \frac{(d_{ik}/2y)^{v+1}}{v!} \frac{(v - 1)!}{\sum_{t=0}^{k} \frac{(d_{ik}/2y)^t}{t!}}$$

We now show that $Q_{ik}(d_{ik})$ is convex for any given i and k. We do this by exhaustively enumerating $Q_{ik}(d_{ik})$ for all k. Assuming $k = 1$ leads to

$$Q_{ik}(d_{ik}) = \frac{d_{ik}^2}{2y(d_{ik} + 2y)} \quad k = 1.$$

Taking the second derivative of the above, we have

$$\frac{\partial^2 Q_{ik}(d_{ik})}{\partial d_{ik}^2} = \frac{4y}{(d_{ik} + 2y)^3} > 0 \quad \text{for } k = 1.$$
which is strictly positive indicating that $Q_{ik}(d_{ik})$ is convex for $k = 1$.

Using the same procedure for $k = 2$ and $k = 3$, the second derivatives of $Q_{ik}(d_{ik})$ are, respectively,

$$
\frac{\partial^2 Q_{ik}(d_{ik})}{\partial d_{ik}^2} = \frac{32y^2(3d_{ik}^2 + 12d_{ik}y + 8y^2)}{(d_{ik}^2 + 4d_{ik}y + 8y^2)^3} > 0 \quad k = 2
$$

and

$$
\frac{\partial^2 Q_{ik}(d_{ik})}{\partial d_{ik}^2} = \frac{12y(-d_{ik}^6 + 216d_{ik}^4y^2 + 1632d_{ik}^3y^3 + 5184d_{ik}^2y^4 + 6912d_{ik}y^5 + 4608y^6)}{(d_{ik}^3 + 6d_{ik}^2y + 24d_{ik}y^2 + 48y^3)^3} > 0 \quad k = 3.
$$

Eq. 29 is positive for $d_{ik} > 0$ and $y > 0$ such that the supply-demand constraint $d_{ik}/2y \leq k$ ($k = 3$) is justified. Continuing the same process for other k, we observe $\partial^2 Q_{ik}(d_{ik})/\partial d_{ik}^2 > 0$.

We conclude that the objective function of the [SP] is convex.

Let us now illustrate an example to better elaborate the sub-problem [SP]. Consider four islands that have 2, 4, 6, and 8 columns. All islands have 20 rows, i.e., $y = 20$. We increase the total demand D and illustrate how it is allocated to the islands. As shown in Fig. 6, all islands are initially filled up but at different rates. The smaller islands are filled first and larger are filled last according to our demand assignment strategy.

4.3. A heuristic model

Solving the exact algorithm can be time consuming in cases where there are abundant geometrical combinations that could fit the plot of land. To circumvent this high computation time, a heuristic algorithm is presented that provides a sub-optimal solution in a much faster computation time. The idea of the heuristic algorithm is as follows. To minimize relocations, we start off by fitting the demand D into two-column islands (which is similar to currently available parking facilities for regular non-automated vehicles). If the demand is too large to fit into two-column islands, we test out three-column islands and we continue the process until we find a layout that is able to serve the demand. As we increase the number of columns in the islands (i.e., as the islands become bigger), the cost of relocation increases. Hence, we stop at the smallest number of columns that provides sufficient space for all the vehicles.

We summarize the steps of the heuristic algorithm in the following:
Figure 6: Solution of the sub-problem for demand $D = 0$ to $D = 400$.

1. **Form 2-column islands**: Set $x_i = 1$ so that each island has two columns.

2. **Find the island composition**: Set $s = \left\lceil \frac{D}{2x_i} \right\rceil$. If D is divisible by $2x_i$, then each island holds $2x_i$ columns. Otherwise, there are $s - 1$ islands with length $2x_i$ and one island with length $\left\lceil D - 2(s - 1)x_i \right\rceil$.

3. **Find the inter-island gaps**: Calculate g_i and e_i by solving an integer program with any objective function subject to Constraints [14][18] with fixed x_i from Step 2.

4. **Feasibility check**: It is possible that the current island size x_i cannot fit the plot dimensions when we include the gaps. This leads to infeasibility of the integer program from Step 2. If a feasible layout is not obtained, set $x_i = x_i + 1$ and go back to Step 2. Otherwise, proceed to Step 5.

5. **Outputs**: Calculate the objective function $E[R]$ based on the currently obtained solution.

When the demand is not divisible by the number of columns, Step 2 of the algorithm finds a composition consisting of s islands with the same number of columns and one last smaller island. The feasibility of the compositions is checked in Steps 3 and 4. The maximum number of iterations in the heuristic is $\left\lceil \frac{D}{2y} \right\rceil$ which happens when the algorithm goes through all the different layout compositions until it checks the largest possible island. In some cases, it
is possible that no feasible layout is obtained in the heuristic algorithm because the heuristic only checks a subset of the entire solution space. In such cases, the exact algorithm provides the only solution to the problem.

4.4. Measures of effectiveness

We present the following measures to assess and compare the results of the model. The measures of effectiveness are the following:

- **Expected relocations**: This is the primary measure indicating the number of relocations per vehicle retrieval, i.e., the objective function of [LD].

- **Parking supply**: Parking supply is the number of spots in all islands to serve a given demand \(D\).

- **Utilization**: Utilization is the ratio of the total area allocated to the islands over the area of the entire plot of land. It is clear that utilization is never equal to 1 because some of the land is allocated to the gaps and the clearance roadway. It is also clear that utilization increases with demand because the operator has turn more of the plot into islands.

- **Maximum demand**: Maximum demand \(D_{\text{max}}\) is the largest demand that can be served by a given plot of land. To find \(D_{\text{max}}\), we increase the demand \(D\) incrementally to the point where the exact algorithm can no longer find a feasible solution to serve the demand.

- **Spatial efficiency ratio**: This measure is the ratio of \(D_{\text{max}}\) over the maximum possible demand if we only have 2-column islands. Informally, this ratio indicates the economic benefit of turning existing conventional car-parks for regular vehicles into fully-automated AV parking facilities. As an example, a spatial efficiency ratio of 2 indicates that we can fit twice as many AVs than regular vehicles in the same parking facility. For the 2-column islands we use spot dimensions \(l = 5\) and \(w = 2.8\) which are the parking dimensions of a regular vehicle. For AV parking spots, we use \(l = 5\) and \(w = 2\).

5. Numerical experiments

We perform the following numerical experiments to gain managerial insights on AV parking operations and to assess the computational efficiency and accuracy of two solution algorithms. Except stated otherwise, we have used the exact algorithm with a termination
threshold $\epsilon = 0.05$ to solve the instances. To solve the Master-Problem integer program, we use the ILOG CPLEX package. For the sub-problem, we use a Sequential Quadratic Programming algorithm to find the optimal solution.

5.1. Parking demand

Consider a parking facility with dimensions $L = 150$[m], $W = 65$[m], $l = 5$[m], and $w = 2$[m]. There are $y = 30$ rows in each island and the width of the clearance roadway is 5[m]. We increase the demand from $D = 600$[veh] to $D = 780$[veh] and depict the geometrical shape of the optimal facility in Fig. 7. When the demand is low, the islands all have only two columns which is very similar to existing parking facilities for regular vehicles. The two-column design has the lowest relocation cost and is desirable when demand is low to medium. As the demand increases, the islands become bigger with more columns. The two-column islands are eliminated at the largest demands because these islands require gaps that takes up valuable land that could otherwise be used as island space. The maximum demand D_{max} that the facility can serve is 780 [veh]. The parking supply in the six instances is 660, 660, 720, 720, 780, and 780, respectively.

We present the parking supply (i.e., number of spots) and relocation cost (i.e., $E[R]$) with respect to demand in Fig. 8. It is shown that parking supply increases in a step-wise fashion. The points where the steps occur are the points where the layout of the facility changes radically. For instance, from $D = 0$ to $D = 660$, the optimal layout is 11 two-column islands as shown in Fig. 7 ($D = 600$) with the demand is evenly distributed between the islands. At $D = 661$, however, the car-park layout changes radically which leads to a jump in parking supply. Fig. 8 illustrates that for the highest demand $D = 780$ [veh], we need to approximately relocate 5 vehicles at any random retrieval.

For expected relocations $E[R]$, we see the same step-wise jumps where the radical layout changes occur. However, there is also a gradual increase in every step which is intuitive as a higher demand requires more relocations. The insight here is that operators need to choose their design demand D while considering the jumps in the relocation cost since a marginal decrease in D can substantially reduce the relocation cost.

5.2. Maximum demand

The maximum demand D_{max} depends on the area and dimensions of the parking facility. We present 13 parking facility dimensions in Table 1. The instances have different length L and width W but their area is fixed, i.e., $LW = 6890$[m2] is constant. The highest maximum demand is $D_{\text{max}} = 560$ which occurs in the square orientation with $L \approx W$. An observation
that stands out here is that the square orientation at instance 7 with $L = W = 83[m]$ is among the instances with the highest maximum demand of $D_{\text{max}} = 560$. This square orientation also has the lowest relocation cost among the other instances which makes it a desirable orientation. We depict the layout of three instances in Fig. 9 where Instance 5 is elongated horizontally, Instance 7 is a square, and Instance 9 is elongated vertically.

We now fix the demand at $D = D_{\text{max}}$ for each instance and obtain the other measures of effectiveness which are presented in Fig. 10. We perform this for three separate rectangle areas, i.e., LW is fixed in each facility. Fig 10a and 10b show that D_{max} and utilization ratio are both generally higher in the square orientation where $W = L$. The highest utilization is between 75\% to 80\% in the three cases indicating that 80\% of the land is allocated to the parking spots and the remaining 20\% is allocated to the clearance roadway and the
Figure 8: (a) Parking supply and (b) Expected relocation cost at different demand \(D \).

Table 1: Layout of 13 instances. *Key*: (2,10x5) means there are 5 islands with 10 columns and one island with 2 columns.

<table>
<thead>
<tr>
<th>Instance Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>(W)</td>
<td>23</td>
<td>33</td>
<td>43</td>
<td>53</td>
<td>63</td>
<td>73</td>
<td>83</td>
<td>93</td>
<td>103</td>
<td>113</td>
<td>123</td>
<td>133</td>
<td>143</td>
</tr>
<tr>
<td>(L)</td>
<td>299.5</td>
<td>208.8</td>
<td>160.2</td>
<td>130.0</td>
<td>109.3</td>
<td>94.4</td>
<td>83.0</td>
<td>74.1</td>
<td>66.9</td>
<td>61.0</td>
<td>56.0</td>
<td>51.8</td>
<td>48.2</td>
</tr>
<tr>
<td>(A)</td>
<td>6890</td>
</tr>
<tr>
<td>Maximum demand (D_{\text{max}})</td>
<td>520</td>
<td>540</td>
<td>560</td>
<td>550</td>
<td>540</td>
<td>560</td>
<td>560</td>
<td>540</td>
<td>500</td>
<td>440</td>
<td>480</td>
<td>390</td>
<td>420</td>
</tr>
<tr>
<td>Objective function</td>
<td>3.46</td>
<td>3.96</td>
<td>5.26</td>
<td>4.03</td>
<td>3.21</td>
<td>6.12</td>
<td>5.26</td>
<td>4.41</td>
<td>2.31</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>75.48</td>
<td>78.39</td>
<td>81.29</td>
<td>79.84</td>
<td>78.39</td>
<td>81.29</td>
<td>81.29</td>
<td>78.39</td>
<td>72.58</td>
<td>63.87</td>
<td>69.68</td>
<td>56.61</td>
<td>60.97</td>
</tr>
<tr>
<td>Spatial efficiency ratio</td>
<td>1.69</td>
<td>1.80</td>
<td>1.67</td>
<td>1.80</td>
<td>1.61</td>
<td>1.67</td>
<td>1.67</td>
<td>1.69</td>
<td>1.79</td>
<td>1.41</td>
<td>1.43</td>
<td>1.41</td>
<td>1.40</td>
</tr>
<tr>
<td>Layout</td>
<td>2, 10x5</td>
<td>2, 10, 12x2</td>
<td>14x2</td>
<td>10, 12</td>
<td>8, 10</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>2, 8</td>
<td>2x4</td>
<td>2x4</td>
<td>2x3</td>
<td>2x3</td>
</tr>
</tbody>
</table>
inter-island gaps.

Fig. 10c shows that the spatial efficiency is on average 1.6 but can be as high as 1.9 indicating that AV parking facilities can store 90% more vehicles than conventional parking facilities. When the plot width W is large, the spatial efficiency occur only because each AV parking spot take smaller space than a regular parking spot (with dimensions $w = 2.8$ and $l = 5$). For smaller plot width, however, the spatial efficiency happens due to spot dimensions and vehicle relocation.

Finally, for each of the instances, Fig. 10d shows the relocation cost versus D_{max}. This highlights the pareto efficiency in D_{max} and $E[R]$ for the square layouts.

5.3. Impact of gap width on layout

We analyze the impact of the gap width α on the optimal layout of the car-park. The measures of effectiveness are presented for 11 instances with different α. The utilization ratio decreases with α because the gaps take up a longer width and less space is allocated to the islands. For the same reason, the maximum demand D_{max} also decreases with α as fewer vehicles can be fit in the car-park. The objective function $E[R]$ first experiences a plunge from Instance 1 to Instance 2 because Instance 2 fits a smaller number of vehicles. From Instance 2 onward, however, the objective function $E[R]$ strictly increases because although we are still serving the same demand $D_{\text{max}} = 780$ [veh], we have to fit them in less efficient layouts.

Finally, recall that the spatial efficiency ratio is the ratio of D_{max} to maximum demand that fits in a 2-column design. As we increase α, fewer vehicles fit in the 2-column design but $D_{\text{max}} = 780$ remains constant from Instance 2 to 11. Hence, the spatial efficiency ratio
increases from 1.55 (Instance 2) to 1.86 (Instance 11).

<table>
<thead>
<tr>
<th>Instance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap width α</td>
<td>2</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Maximum demand D_{max}</td>
<td>840</td>
<td>780</td>
</tr>
<tr>
<td>Objective function</td>
<td>9.79</td>
<td>2.58</td>
<td>3.07</td>
<td>4.10</td>
<td>4.10</td>
<td>4.86</td>
<td>4.86</td>
<td>8.91</td>
<td>8.91</td>
<td>8.91</td>
<td>8.91</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>0.86</td>
<td>0.80</td>
</tr>
<tr>
<td>Spatial efficiency ratio</td>
<td>1.67</td>
<td>1.55</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.69</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Layout</td>
<td>2, 26</td>
<td>2, 8x3</td>
<td>8x2, 10</td>
<td>2, 12x2</td>
<td>2, 12x2</td>
<td>12, 14</td>
<td>12, 14</td>
<td>2, 24</td>
<td>2, 24</td>
<td>2, 24</td>
<td>2, 24</td>
</tr>
</tbody>
</table>

5.4. Heuristic algorithm

The heuristic algorithm is compared to the exact algorithm for 18 different test instances as shown in Table 3. We let the exact algorithm continue running until we see convergence between the upper and lower bounds with the termination threshold of $\epsilon = 0.05$. The longest computation time occurs in instance 15 which takes 5.3 hours to run in the exact algorithm but 0.4 seconds in the heuristic. Clearly, the objective function of the exact algorithm is
always lower or at least equal to the heuristic. In Instance 1, we observe that the exact algorithm’s objective function is 18% lower than the heuristic. This happens as the heuristic fully fills up 13 two-column islands (until the entire demand allocated) whereas the exact partially fills up 15 two-column islands. Hence, the heuristic is not strong in exploring cases of partial filling. In Instance 17, we also observe a 15% difference in objective functions because the exact is able to explore a wider range of possible layout compositions compared to the heuristic. The same condition applies in Instance 15 for which we illustrate the exact and the heuristic layouts in Fig. [11]. Finally, in Instance 9, we observe that the two algorithms provide the same objective but the exact algorithm takes 229.62 [sec] to solve which is significantly longer than the computation time of the heuristic which is only 0.42 [sec]. This indicates that the heuristic is able to find the optimal answer in a shorter time in some instances.

Table 3: Comparison between exact and heuristic methods. Key: A layout (2x3,8) indicates that there are 3 islands with 2 columns and one islands with 8 columns.

<table>
<thead>
<tr>
<th>Instances</th>
<th>y</th>
<th>W</th>
<th>L</th>
<th>A</th>
<th>D</th>
<th>Objective function</th>
<th>CPU time [sec]</th>
<th>Layout</th>
<th>Objective function</th>
<th>CPU time [sec]</th>
<th>Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>43</td>
<td>100</td>
<td>4300</td>
<td>200</td>
<td>0.4167</td>
<td>4.96</td>
<td>2x7</td>
<td>0.5</td>
<td>0.38</td>
<td>2x5</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>43</td>
<td>100</td>
<td>4300</td>
<td>280</td>
<td>0.5</td>
<td>27.85</td>
<td>2x7</td>
<td>0.5</td>
<td>0.40</td>
<td>2x7</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>43</td>
<td>100</td>
<td>4300</td>
<td>320</td>
<td>2.7573</td>
<td>13.44</td>
<td>8x2</td>
<td>2.7573</td>
<td>0.41</td>
<td>8x2</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>63</td>
<td>130</td>
<td>8190</td>
<td>480</td>
<td>0.4706</td>
<td>71.40</td>
<td>2x9</td>
<td>0.5</td>
<td>0.40</td>
<td>2x8</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>63</td>
<td>130</td>
<td>8190</td>
<td>540</td>
<td>0.5</td>
<td>159.05</td>
<td>2x9</td>
<td>0.5</td>
<td>0.41</td>
<td>2x9</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>63</td>
<td>130</td>
<td>8190</td>
<td>600</td>
<td>1.3769</td>
<td>1211.08</td>
<td>2x4,6x2</td>
<td>1.8154</td>
<td>0.42</td>
<td>2,6x3</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>63</td>
<td>130</td>
<td>8190</td>
<td>660</td>
<td>4.031</td>
<td>118.85</td>
<td>10,12</td>
<td>4.031</td>
<td>0.43</td>
<td>10,12</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>63</td>
<td>150</td>
<td>9450</td>
<td>500</td>
<td>0.431</td>
<td>303.31</td>
<td>2x11</td>
<td>0.4808</td>
<td>0.40</td>
<td>2x9</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>63</td>
<td>150</td>
<td>9450</td>
<td>630</td>
<td>0.4884</td>
<td>229.62</td>
<td>2x11</td>
<td>0.4884</td>
<td>0.42</td>
<td>2x11</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>63</td>
<td>150</td>
<td>9450</td>
<td>690</td>
<td>1.8983</td>
<td>4523.56</td>
<td>2x2,6x2,8</td>
<td>1.9236</td>
<td>0.43</td>
<td>6x4</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>63</td>
<td>150</td>
<td>9450</td>
<td>720</td>
<td>1.9615</td>
<td>2065.08</td>
<td>6x4</td>
<td>1.9615</td>
<td>0.43</td>
<td>6x4</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>63</td>
<td>150</td>
<td>9450</td>
<td>750</td>
<td>4.7623</td>
<td>472.06</td>
<td>12,14</td>
<td>4.7623</td>
<td>0.53</td>
<td>12,14</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1000</td>
<td>0.4545</td>
<td>13082.17</td>
<td>2x15</td>
<td>0.4902</td>
<td>0.43</td>
<td>2x13</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1200</td>
<td>0.5</td>
<td>11254.24</td>
<td>2x15</td>
<td>0.5</td>
<td>0.45</td>
<td>2x15</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1240</td>
<td>1.7804</td>
<td>18956.23</td>
<td>2x3,6x3,8</td>
<td>1.839</td>
<td>0.54</td>
<td>2,6x5</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1280</td>
<td>1.8702</td>
<td>12426.87</td>
<td>2,6x5</td>
<td>1.8702</td>
<td>0.47</td>
<td>2,6x5</td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1360</td>
<td>2.998</td>
<td>10951.65</td>
<td>8x3,10</td>
<td>3.2962</td>
<td>0.49</td>
<td>4,10x3</td>
</tr>
<tr>
<td>18</td>
<td>40</td>
<td>83</td>
<td>200</td>
<td>16600</td>
<td>1440</td>
<td>6.9813</td>
<td>6740.86</td>
<td>18x2</td>
<td>6.9813</td>
<td>0.51</td>
<td>18x2</td>
</tr>
</tbody>
</table>

6. Conclusions

AVs can have a great impact on the design of car-parks in the future. While existing parking facilities have islands with only two rows of vehicles, future designs tailored for AVs can have multiple rows of vehicles stacked behind each other. The multi-row design can lead to blockage of some vehicles which can be handled if the operator moves the vehicles
in the facility in an optimal way. Naturally, the number and pattern of relocation changes with the layout of the car-park. This paper investigates the problem of finding the optimal car-park layout design that minimizes relocations while fitting a given number of vehicles in the car-park.

Finding the optimal layout can have many social benefits. For one, we find that AV car-parks can decrease the need for parking space by an average of 60% and a maximum of 90%. This substantial revitalization of space that was previously used for parking can lead to more socially beneficial purposes when car-parks are converted into commercial and residential land-uses. Second, our study captures the influential factors that impact the optimal layout of car-parks for AVs. For instance, we show that square-shaped car-parks can enhance several measures of effectiveness. Finally, we capture the impact of the demand (for parking) on the optimal car-park layout. We show that when demand is low, the facility has only two-column islands and when demand is high, the optimal layout becomes more complex.

This study focuses on the high-level strategic design of car-parks by finding the optimal layout under several assumptions that are valid for higher level planning. For finer level operational planning, however, we need to make adjustments to the model. We name some of these modifications that require further research.

For finer level operational planning, a new model is required that considers individual characteristics of each vehicle including arrival time, planned departure time, and vehicle size. Knowledge of departure times can significantly influence how the vehicles are arranged in the facility. Ideally, the vehicles with earlier departure times should not be buried deep in the islands. They should instead be on top of the islands for a fast retrieval when they are summoned. Users can provide their departure times to the facility operator using any

Figure 11: (a) Exact and (b) heuristic layout for Instance 15 in Table 3.
smart platforms such as a mobile app.

In the model, we assumed that parking demand is constant and fixed throughout the planning period which led to one optimal layout for the parking facility. In practice, however, this optimal layout can change within the day according to dynamic parking demand. For example, the facility can have one layout in the morning and another layout in the afternoon. As a future research, it is valuable to derive the optimal dynamic layout of the facility according to changes in demand.

We present a model for cases where the facility plot is a rectangle with given dimensions. A clear-cut rectangular plot may not always exist in reality. Hence, it is important to extend the model to solve other irregular plot profiles as well. It is also important to consider the optimal layout in multi-storey buildings where the floors are connected either through a elevators (for vehicles) or ramps.

References

City of Toronto, 2013. City of toronto zoning by-law.

Mahmassani, H. S., 2016. 50th anniversary invited article: autonomous vehicles and connected vehicle systems: Flow and operations considerations. Transportation Science 50 (4), 1140–1162.

TechWorld, 2016. The huge impact driverless cars will have on parking and urban landscapes.

Thompson, C., 2016. No parking here.

URL https://waymo.com/ontheroad/
