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Abstract

Autonomous vehicles will have a major impact on car-park designs in the future. While

existing parking facilities have islands with only two rows of vehicles, future designs tailored

for autonomous vehicles can have multiple rows of vehicles stacked behind each other which

can cause blockage of some vehicles. Nevertheless, the driverless feature of autonomous

vehicles allows car-park operators to relocate vehicles and create a clear pathway for blocked

cars to leave the facility. This paper investigates the problem of finding the optimal car-

park layout design that minimizes relocations while fitting a given number of vehicles in

the car-park. To solve the layout design problem, we present a mixed-integer non-linear

program that treats each island in the facility as a queuing system and solve it using Benders

decomposition for an exact answer. We also present a heuristic model to find a reasonable

upper-bound of the mathematical model. We show that autonomous vehicle car-parks can

decrease the need for parking space by an average of 60% and a maximum of 90%. This

substantial revitalization of space that was previously used for parking can lead to more

socially beneficial purposes when car-parks are converted into commercial and residential

land-uses.

Keywords: Autonomous vehicle; Parking; Facility layout; Benders decomposition;

Queuing systems

1. Introduction

Parking is an important part of transportation planning as a typical vehicle spends 95

percent of its lifetime sitting in a parking spot (Mitchell, 2015). The increasing need to store

vehicles has transformed a lot of valuable real-estate into parking garages in many countries.

In the United States approximately 6,500 square miles of land is devoted to parking which is

larger than the entire state of Connecticut (Chester et al., 2011; Thompson, 2016). Allocating
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valuable land to parking subsequently increases renting costs and parking acquisition costs

in major downtown cores. One example is Hong Kong where the average cost of one parking

space is as high as 180 thousand USD (South China Morning Post, 2015). Realizing the high

social cost of parking provision, Autonomous Vehicle (AV) industry leaders are rethinking

how to reduce the parking footprint by converting traditional parking lots into automated

parking facilities that can store more AVs (compared to regular vehicles) in smaller areas.

In this study, we investigate the optimal design and management of such facilities.

AVs can reduce the parking footprint in several ways. As vehicles become driver-less,

the passengers no longer need to be physically present in car-parks. Driver-less AVs drop

off their passengers at the parking entrance (or at a designated drop-off zone) and head to a

spot chosen by the car-park operator. In this automated parking system, the average space

per vehicle is estimated to be reduced by 2 square meters per vehicle as the driving lanes

become narrower, elevators and staircases become obsolete, and as the required room for

opening a vehicle’s doors becomes discarded (see Fig. 1) (TechWorld , 2016).

Motivated by the benefits of AV parking and its impact on revitalizing valuable real-

estate, auto makers are collaborating with cities to create the first generation of AV parking

facilities. Audi’s Urban Futures Initiative is among the programs that is implementing a pilot

to measure the impact of AV parking on land restoration. The pilot is estimated to save up

to 62% in parking space by 2030 which is equivalent to $100 million USD in the district of

Assembly Row which is the focus of the project (DesignBoom, 2015). Tesla, another leader

in AV technology, is also improving parking by offering an auto-pilot system called “Smart

Summon” which allows the vehicle to navigate complex environments and parking spaces

whenever summoned by its owner. Such auto-parking systems in AVs will pave the way for

the next generation of AV parking facilities with improved space efficiency.

One additional way to increase car-park space efficiency (in addition to removal of ele-

vators, etc.) is to stack the AVs in several rows, one behind the other as shown in Fig. 1b.

While this type of layout reduces parking space, it can cause blockage if a certain vehicle

is barricaded by other vehicles and cannot leave the facility. To release barricaded vehicles,

the car-park operator has to relocate some of the vehicles around to create a clear pathway

for the blocked vehicle to exit. The extent of vehicle relocation depends on the layout of

car-park (i.e., number of rows) which should ideally be desgined so that prking occupancy

(i.e., number of vehicles in the car-park) is high and vehicle relocation is low.

The optimal layout of the car-park has a great impact on space efficiency. Existing

layouts divide the facility into a number of islands and roadways. The islands are used
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to store vehicles while the roadways separate the islands and allow vehicles to maneuver

when searching for a desirable spot. To ensure that no vehicle gets blocked, the islands

hold no more than two rows of vehicles in conventional car-park designs (see Fig. 1a) which

consequently leads to waste of space. With AV technology, however, the islands can have

more than two rows and the roadways can be narrower. An eminent research question that

arise is: How should we design AV parking facilities that store a large number of AVs with

minimal relocations? To answer this question, we pursue the following objectives throughout

this study:

• We present a model to find the optimal layout of a parking facility for AVs.

• We define a relocation strategy that ensures a smooth retrieval of any AV that is

summoned by its user.

• We present exact and heuristic algorithms to find the optimal AV car-park layout.

• We find the maximum number of AVs that can be fit in car-park with given dimensions.

• We quantify the required parking space reduction when the car-park is exclusively

designed for a given demand of AVs.

The remainder of this paper is organized as follows: We present a background on AV

models in Section 2, a model to find the optimal car-park layout in Section 3, two solutions

algorithms in Section 4, numerical experiments in Section 5, and the conclusions of the study

in Section 6.

2. Background

With the rapid advancement in AV technologies, AVs are expected to enter the consumer

market in the next decade (Fagnant and Kockelman, 2015). Already, AV technology leaders

such as Google’s Waymo have tested AVs over than 3 million miles in several U.S. cities

(Waymo, 2016). While full implementation of AVs is hindered by many practical challenges,

recent studies are looking at ways of addressing these challenges and finding novel ways of

exploiting the full potential of AVs. The current AV studies focus on traffic flow (Levin

and Boyles, 2016; de Almeida Correia and van Arem, 2016; Mahmassani, 2016; Talebpour

and Mahmassani, 2016; de Oliveira, 2017), safety (Katrakazas et al., 2015; Kalra and Pad-

dock, 2016), intersection control (Le Vine et al., 2015; Yang and Monterola, 2016), emissions

3



Street Access

ST
R

EE
T

D
R

IV
E

W
A

Y

Building

Street Access

ST
R

EE
T

D
R

IV
E

W
A

Y

Building

(a) (b)

Figure 1: (a) Conventional parking design, (b) parking design for autonomous vehicles.

(Greenblatt and Saxena, 2015; Mersky and Samaras, 2016), and sharing AVs between mul-

tiple users (Fagnant and Kockelman, 2014; Chen et al., 2016a,b; Krueger et al., 2016). AVs

will also significantly change parking behavior by allowing the vehicles to self-park, a trait

that the general public is very enthusiatic about. In a recent survey of 5,600 people in 10

countries conducted by the World Economic Forum, 43.5% of the respondents reported that

the biggest benefit of AV technology is its self-parking capability (Mitchell, 2015).

Parking behavior is argued to be influenced by AVs in several ways. Given that they can

self-park, AVs no longer need to be in close proximity of their drivers. Instead, they can be

dispatched to less congested parking lots that are farther away and cheaper (Fagnant and

Kockelman, 2015). This implies that human drivers can get dropped off right at their final

destination without having to search for a spot or having to walk from that spot to their

final destination. Nourinejad and Roorda (2017) model this parking behavior and show city

planners can allocate parking to AVs at locations that are farther away from downtown.

From a technological standpoint, the design and management of car-parks will need

to change. Car-parks for regular vehicles are commonly designed according to guidelines

published by local governments. The City of Toronto, for example, imposes restrictions on

parking space dimensions, orientation of spaces, and the width of the driving aisles (City of

Toronto, 2013). Current guidelines are not readily applicable to AVs because they do not

consider the possible AV movements within the car-park. Hence, there is a need to initiate

a new set of regulations tailored for AV parking.

Although there are currently no guidelines for AV parking design, there are several re-
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search streams that exhibit similar properties to the problem at hand. We specify these

streams as the following:

• The stacking problem: Many storage systems require that items (i.e., any type of mer-

chandise) be stacked on top of each other to increase space efficiency (De Castilho and

Daganzo, 1993; Zhang et al., 2002; Jiang and Jin, 2017). In these systems, retrieving

a blocked item (i.e., an item that is not on top of the stack) requires some rehandling.

Storage operators ideally like to minimize rehandling by optimally stacking items. A

similar objective is pursued in AV parking design. We like to fit the AVs in the car-park

to minimize the number of relocations whenever retrieving a blocked vehicle.

• Parking assignment : Finding a parking space in downtown cores is often time-consuming

and difficult. In a survey of 20 cities around the world, it was reported that drivers

spend 20 minutes on average to find parking (Gallivan, 2011). To address this issue,

several studies have focused on modeling search behavior (Boyles et al., 2015; Liu and

Geroliminis, 2016; Pel and Chaniotakis, 2017) or developing models that assign park-

ing spaces to vehicles in an optimal fashion (He et al., 2015; Shao et al., 2016; Lei and

Ouyang, 2017). Parking assignment also appears in the AV parking design problem.

The challenge is to assign the vehicles to the islands of the facility in a balanced way.

• Optimal layout design: Optimal layout design is a problem prevalent in many contexts.

The objective is to divide a given geometrical layout into components that serve a

purpose. One example is the Facility Layout Problem where indivisible departmental

components are optimally placed in a given geometrical area to improve production

efficiency (Hungerländer and Anjos, 2015; Gonçalves and Resende, 2015). See Anjos

and Vieira (2017) for a review of the Facility Layout Problem. The AV parking design

problem also finds an optimal layout with components that include islands and driving

lanes (gaps) as shown in Fig. 2. By optimally designing these components, we like to

improve the efficiency of AV car-parks.

3. The model

Throughout this study, we make the following assumptions:

1. Vehicle size: All vehicles are assumed to be the same size or at least they are assumed

to be smaller than a given vehicle size.
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2. Vehicle control : We assume that the facility operator takes control of all AVs that

enter the parking facility. The operator can then relocate the vehicles within the

facility whenever required. When a vehicle leaves the facility, the control of the AV is

directed back to the vehicle owner.

3. Vehicle arrival : The vehicles arrive at the parking facility in a Poisson manner with

arrival rate λ [vehicles/hour] and their parking duration (i.e., parking time) follows an

exponential distribution with an average parking time of µ [hours].

4. Exclusively for autonomous vehicles : We assume that the parking facility is exclusively

designed for AVs.

The nomenclature of the model is as follows.

Nomenclature

Parameters

D Design demand [vehicles ]

λ Arrival rate of vehicles [vehicles per hour ]

µ Average parking time [hours ]

L Length of the land plot

W Width of the land plot

l Length of each parking spot

w Width of each parking spot

y Number of vehicle rows in each island

α Width of each driving lane in the inter-island gaps

S Maximum possible number of islands in the facility

K Maximum number of spots in each stack of the facility

Sets

I Set of islands

Decision variables

xi Half the number of columns in island i

ei Inter-island gap between island i and i+ 1 allocated to vehicle movements

gi Inter-island gap between island i and i+ 1 allocated to temporary vehicle storage

di Demand allocated to island i

3.1. Geometric properties of the facility

Consider a rectangular plot of land with length L and width W that has to be converted

into an AV parking facility. Assume that the parking facility has a number of islands (See
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Fig. 2). Each island i ∈ I = {1, 2, .., i, ..., S} includes 2xi columns of vehicles: half are parked

in the west-bound direction and the other half in the east-bound direction. The length of

each island is 2lxi where l is the length of each parking spot. The width of each island is wy

where w is the width of each parking spot. All islands have y rows of vehicles. Each row of

island i is comprised of two stacks each containing xi spots as shown in Fig. 2.

The islands are separated from each other by gaps so that the vehicles can maneuver in

and out of parking spots. Each gap between island i and i + 1 has two components ei and

gi. A minimum gap of ei is always required between two islands for vehicle mobility and

the extra gap gi is imposed in spacial cases to store vehicles in the relocation process. The

number of gaps is always equal to number of islands plus one. We elaborate the detailed

purpose of the gap in Section 3.2. Finally, there is a clearance roadway on the north (or

south) of the plot. This road is used for vehicles to enter or leave parking facility. The

clearance roadway needs to have direct access to the entrance of the parking facility. We

assume that y (number of rows) is a given parameter of the model chosen so that the width

of clearance roadway W − yw is large enough for vehicle mobility.
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Figure 2: Geometric properties and dimensions of the parking facility.
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3.2. Relocation strategy

We implement a relocation strategy that allows any vehicle to leave the facility at any

given point in time so that no vehicle is stranded upon being requested by its owner. Consider

the green vehicle in Fig. 3(a) that wants to leave the facility but is blocked by two red vehicles

ahead of it. Our relocation strategy proceeds as follows. We first move the two red vehicles

into the inter-island gap, thus clearing the space in front of the green vehicle as shown in

Fig. 3(b). When cleared, the green vehicle exits the facility using the clearance roadway as

shown in Fig. 3(c).

Recall that the gap between any two islands is comprised of two components: ei and gi.

The first, ei, indicates that the gap includes one travel-lane to ensure mobility within the

facility. The gap ei is required whenever island i or island i−1 is generated. Formally, ei = 1

if either xi ≥ 1 or xi−1 ≥ 1. Otherwise, ei = 0 as stipulated in the following two equations

xi−1 ≤Mei ∀i ∈ I ∪ {S + 1}\{1} (1)

xi ≤Mei ∀i ∈ I (2)

where M is a sufficiently big number.

The second gap, gi, is the number of lanes needed to temporarily store the blocking (red)

vehicles so that any requested (green) vehicle can exit the facility (see Fig. 3). When the

green vehicle leaves the facility, all the red vehicles return back to their original stack.

The gap gi between two islands needs to be large enough to store vehicles temporarily.

Assume that we want to free the green vehicle in Fig. 4. Here, the gap needs to fit two

rows of vehicles. In general form, the gap gi should be able to hold the maximum number

of relocated vehicles which is xi − 1 for island i. Hence, we have

ywgi
l
≥ xi − 1 ∀i ∈ I (3)

where the left-hand-side is the total number of vehicles that can be stored in the gap and

the right-hand-side is the maximum number of vehicles that need to be relocated in island i.

Given that each gap is shared between two island, we also have

ywgi
l
≥ xi−1 − 1 ∀i ∈ I ∪ {S + 1}\{1}. (4)

3.3. Demand assignment

The parking facility is designed to serve a demand of D [vehicles ] which is an input of

the model. The vehicles enter the facility with a Poisson distribution with a given arrival
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Figure 3: Vehicle relocation within the parking facility. (a) The green vehicle is blocked, (b) the two red

vehicles are relocated, (c) the green vehicle exits the facility.

rate of λ [vehicles per hour ]. The parking duration follows an exponential distribution with

an average parking time of µ [hours ]. Under steady state conditions, we have D = λµ.

The operator of the facility decides how to allocate the demand D between the islands

to minimize the expected number of relocation. Let di (a decision variable) be the demand

allocated to island i such that

D =
S∑

i=1

di (demand− assignment). (5)

Each island’s demand di must be lower than the supply of parking spots at that island.

Recall that island i has 2xi columns and y rows. This leads to a parking supply of 2yxi spots

at island i which has to be larger than the demand of vehicles assigned to that island:

di ≤ 2yxi ∀i ∈ I (supply − demand). (6)
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Figure 4: Vehicle relocation with a larger inter-islang gap.

3.4. Minimizing expected relocations per vehicle retrieval

We now explain how to find the occupancy probability of each stack using queuing theory.

We want to find the probability that a stack with xi spots is occupied by v vehicles. This

queue is described as follows. Assume that each of the di/2y vehicles in the stack (of island

i) are being “served” at the same time. By “serve”, we mean a vehicle reaches its parking

duration and needs to leave the parking facility (hence, it is served). In total, the number

of servers in the queue is equal to the number of vehicles in the stack. The arrival rate

of vehicles into island i’s stacks is di/2yµ (µ is the average parking time) and the queuing

system remains in steady-state due to the supply-demand conditions in Eq. 6.

The queue is modeled as an M/M/xi system with a finite system capacity of xi spots. The

state-transition-diagram for this queuing system is presented in Larson and Odoni (1981).

Accordingly, the probability that each stack of island i holds v vehicles at any given time is

Piv:

Piv(di) =
(di/2y)v/v!∑xi

t=0(di/2y)t/t!
. (7)

The occupancy probability Piv (also known as the queue length probability) is essential in

finding the expected number of relocations in each stack. Let Rv be the number of relocations

in island i if there are v vehicles in the stack. Then, the expected number of relocations for

taking out any randomly chosen vehicle in the facility is

E[R] =
S∑

i=1

xi∑
v=0

di
2yD

Piv(di)Rv. (8)

The term di/2yD appears in Eq. 8 as we are minimizing the relocations per vehicle

retrieval. In this term, di/D is the probability that the random vehicle is in island i and

1/2y is the probability that the vehicle is in one of the 2y stacks of that island.

To find Rv, consider a stack with v vehicles as shown in Fig. 5. The probability that

any vehicle is randomly chosen to leave is 1/v. Assume that vehicle a (where 1 ≤ a ≤ v)
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in Fig. 5 is randomly chosen to leave the facility. To discharge vehicle a, we first need to

relocate (a − 1) vehicles that are currently parked ahead of vehicle a. These a − 1 vehicles

are moved to the gap. In total, we consider that a = (a− 1) + 1 vehicles need to be moved:

a− 1 vehicle relocations to the gap and the movement of vehicle a itself as well.

Once vehicle a leaves the facility, the a− 1 vehicles that are currently in the gap need to

retreat back to the stack where they were originally positioned. This leads to an additional

a − 1 vehicle relocations. To summarize, to move vehicle a, we need (a) + (a − 1) vehicle

relocations. Summing this over all v vehicles in the stack and considering that each vehicle

has a probability 1/v of being chosen to leave, we have:

Rv =
1

v

[ v∑
a=1

a+
v∑

a=1

(a− 1)
]

=
1

v

[v(v + 1)

2
+

(v − 1)v

2

]
= v (9)

Hence, the average relocations in a stack with v vehicles is v and the expected number

of relocations in the entire facility (all the islands) is obtained from Eq. 8.

…
1 a-1 v… …a

…
2

Figure 5: Example of a stack with v vehicles.

3.5. Mathematical model

We now present a mixed integer non-linear program to find the optimal layout design of

the plot and the optimal demand allocation between the islands of the parking facility.

Before presenting the model, we make two changes in the decision variables to make the

problem easier to solve. We replace xi, half the number of columns in island i, with xik

which is a binary variable equal to 1 (and otherwise 0) if there are k columns in each stack

of island i. Similarly, we replace di with dik which is the demand allocated to island i if it

holds k parking spots in each stack.

With this change of variable, we have

xi =
K∑
k=0

kxik ∀i ∈ I

where K, a parameter of the model, is the maximum number of columns in each stack. To

ensure that each stack i takes only one k value, the following constraint is imposed
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K∑
k=0

xik = 1 ∀i ∈ I.

Subsequently, the supply-demand constraint in Eq. 6 changes to

dik ≤ 2y k xik ∀i ∈ I.

The relocation strategy constraints (Eq. 3 and Eq. 4) become, respectively,

ywgi
l
≥

K∑
k=0

kxik − 1 ∀i ∈ I

and
ywgi
l
≥

K∑
k=0

kxi−1,k − 1 ∀i ∈ I ∪ {S + 1}\{1}

and the gap constraints (Eq. 1 and Eq. 2) become, respectively,

K∑
k=0

kxi−1,k ≤Mei ∀i ∈ I ∪ {S + 1}\{1}

and
K∑
k=0

kxik ≤Mei ∀i ∈ I.

Using the new definition xik, we also change the queue occupancy probabilities Piv to

the following. Let Pikv be the probability that a stack of island i with capacity k holds v

vehicles. This probability is obtained with minor modification of Eq. 7:

Pikv(dik) =
(dik/2y)v/v!∑k
t=0(dik/2y)t/t!

.

The mathematical model, denoted as the Layout Design [LD] Problem is formally defined

as

[LD] : Minimize E[R] =
S∑

i=1

K∑
k=0

k∑
v=0

xikPikv(dik)Rv dik/2yD (10)

subject to

D =
S∑

i=1

K∑
k=0

dik (11)

dik ≤ 2y k xik ∀i ∈ I,∀k (12)
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K∑
k=0

xik = 1 ∀i ∈ I (13)

ywgi
l
≥

K∑
k=0

kxik − 1 ∀i ∈ I (14)

ywgi
l
≥

K∑
k=0

kxi−1,k − 1 ∀i ∈ I ∪ {S + 1}\{1} (15)

K∑
k=0

kxi−1,k ≤Mei ∀i ∈ I ∪ {S + 1}\{1} (16)

K∑
k=0

kxik ≤Mei ∀i ∈ I (17)

2l
S∑

i=1

K∑
k=0

kxik + α
S+1∑
i=1

(ei + gi) ≤ L (18)

ei ∈ {0, 1} ∀i ∈ I ∪ {S + 1} (19)

gi, xik ∈ Z ∀i ∈ I,∀k (20)

xik, ei, gi, dik ≥ 0 ∀i ∈ I,∀k (21)

where Eq. 10 minimizes the expected relocations, Eq. 11 is the demand-assignment con-

dition, Eq. 12 is the supply-demand constraint, Eq. 13 ensures that island i’s stacks have

k spots, Eq. 14-17 are the inter-island gap constraints, Eq. 18 is the parking dimension

constraint, and Eq. 19-21 are the integrality and non-negativity constraints. Constraint

18, the parking dimension constraint, indicates that the width of all islands (first term on

right-side) and the width of all gaps (second term on right-side) must not exceed the length

of the parking facility L. In this constraint, the width of the gap i is α(ei + gi) where α is

the required width of each travel-line in the gap. α is a function of the turning radius of

the vehicles and the preferred safety margin in the facility to avoid incidents while moving

the AVs. Technically, α must satisfy α > w because the width of the gap needs to be larger

than the width of the AVs so that the AVs do not crash when they drive in the gap lanes.

The presented mathematical model is difficult to solve because it is a mixed integer

program with a non-linear objective function. Because of the structure of the model, existing

commercial optimization software cannot be used especially if an exact solution is of interest.

Hence, to solve [LD], we present a custom-made exact algorithm that is based on generating

Benders decomposition cuts. Given that the exact algorithm has a high computation time

in several instances, we also present a heuristic algorithm that is much faster.
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4. Solution methodology

4.1. An exact decomposition algorithm

Using Benders decomposition, we divide the problem into a Master Problem [MP] and a

Sub-Problem [SP]. In the [SP], it is assumed that the layout of the facility is already fixed

and predefined. That is, we assume a given feasible x̄ik, gi, ei,∀i ∈ I. With the layout fixed,

the [SP] finds the optimal allocation of the demand D between the islands. The sub-problem

is defined as:

[SP (x̄ik)] : Minimize E[R] =
S∑

i=1

K∑
k=0

k∑
v=0

x̄ikPikv(dik)Rv dik/2yD (22)

subject to

dik ≤ 2yk x̄ik ∀i ∈ I,∀k (supply − demand) (23)

D =
S∑

i=1

K∑
k=0

dik (demand− assignment) (24)

dik ≥ 0 ∀i ∈ I,∀k (25)

which is a non-linear mathematical model with linear constraints. The objective function

22 minimizes expected relocations for a given set of x̄ik, the Inequalities 23 are supply-

demand constraint, Eq. 24 is the demand-assignment constraint, and Constraints 25 ensure

non-negativity of the decision variables. The uniqueness of [SP]’s solution depends on the

convexity of the objective function in Eq. 22 which is discussed in the next subsection.

Whenever we solve [SP], we obtain an upper-bound on the optimal solution of the original

problem [LD]. This upper-bound decreases and gets closer to the optimal solution (of [LD])

as we try out better (more efficient) layouts x̄ik, gi, ei,∀i ∈ I. The results of the [SP] are

used as Benders cuts in the [MP]. Notice that solving [SP] for the first time requires that

we already know a feasible layout for the facility. This feasible solution can be obtained

using an integer program with any objective function subject to Constraints 13 to 20 and

xik, ei, gi ≥ 0,∀i ∈ I,∀k.

The purpose of the [MP] is to iteratively generate different layouts (i.e., xik, gi, ei) until

the best layout is found. Every time a new layout is found in the [MP], the [SP] is solved to

obtain the optimal allocation of demand D to the newly generated layout (i.e., the islands).

When solving the [MP], we do not explicitly account for the demand-assignment constraint
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(Eq. 24) as this constraint has already applied in the [SP]. However, the supply-demand

constraints (Inequality 23) is actually implicitly considered in the form of Benders cuts in

the [MP]. The supply-demand constraint is the only constraint that connects facility layout

to demand assignment.

By solving [MP], we find a lower-bound on the optimal objective function of the original

problem [LD] because the [MP] is missing the supply-demand constraints in Eq. 12. Absence

of these constraints indicates that the objective of the [MP] is always better (lower) than the

true objective of [LD]. Hence, the [MP] provides a lower-bound for [LD]. The [SP]’s solution

is accounted in the [MP] using Benders cuts constraints.

The Master-Problem [MP] is presented as follows:

[MP ] : Minimize Z (26)

subject to

Z ≥
S∑

i=1

K∑
k=0

k∑
v=0

xikPikv(d̄ik)Rv d̄ik/2Dy − uikt 2yk xik ∀i ∈ I,∀t ∈ T,∀k (27)

Constraints (13)− (20)

xik, ei, gi ≥ 0, ∀i ∈ I,∀k (28)

where Z is the best lower-bound found so far in the [MP], d̄ik is the solution of [SP], T is the

set of Benders cuts, and uikt is the Lagrange multiplier of Constraint 24 in [SP] when the

[SP] was solved in the tth iteration. The presented [MP] is a mixed integer-linear program

which can be solved using any commercial software.

We summarize the steps of the exact algorithm as the following:

1. Initialize: Find a feasible layout using an integer program with any objective function

subject to Constraints 13 to 20 and xik, ei, gi ≥ 0,∀i ∈ I,∀k. Solve the Sub-Problem

[SP] and generate Benders cuts T . Let UB be the currently found upper-bound which

is the objective function of [SP].

2. The Master-Problem: Solve the Master-Problem [MP] using the set T of all generated

Benders cuts so far. Let LB be the currently found lower-bound which is the objective

function Z of the [MP].

3. The Sub-Problem: Solve the Sub-Problem [SP] using the most recent facility layout

obtained from the [MP] in Step 2. Update the UB if [SP] has found a smaller upper-

bound than the one available so far. Add the new Benders cuts to set T .
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4. Terminate: Terminate the algorithm if the upper-bound and the lower-bound are close

enough to each other such that UB−LB < ε, where ε is a predefined threshold value.

Go to Step 2 if the termination condition is not satisfied.

4.2. Solving the sub-problem

We discuss how to solve the Sub-Problem [SP]. The [SP] is a convex minimization problem

subject to a convex compact feasible solution space because the solution space is a set of

linear inequalities. By proving that the objective function of [SP] is convex, we can solve

the sub-problem using any standard convex minimization algorithm.

Lemma 1. The objective function of the sub-problem [SP] is convex.

Proof. Let us first rewrite the objective function of the [SP] by moving some terms around:

E[R] =
S∑

i=1

K∑
k=0

x̄ik/D
k∑

v=0

Pikv(dik)Rv dik/2y

where x̄ik/(2yD) are fixed parameters. Notice that E[R] is now a sum of functions

Qik(dik) =
k∑

v=0

Pikv(dik)Rv dik/2y

multiplied by fixed parameters. To show that E[R] is convex, we need to show that each

function Qik(dik) is convex. This holds true because sum of a set of convex functions is

convex as well. Let us first simplify Qik(dik) to

Qik(dik) =
k∑

v=0

Pikv(dik)Rv dik/2y

=
k∑

v=0

(dik/2y)v/v!∑k
t=0(dik/2y)t/t!

v dik/2y

=
k∑

v=0

(dik/2y)v+1/(v − 1)!∑k
t=0(dik/2y)t/t!

We now show that Qik(dik) is convex for any given i and k. We do this by exhaustively

enumerating Qik(dik) for all k. Assuming k = 1 leads to

Qik(dik) =
d2ik

2y(dik + 2y)
k = 1.

Taking the second derivative of the above, we have

∂2Qik(dik)

∂d2ik
=

4y

(dik + 2y)3
> 0 k = 1
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which is strictly positive indicating that Qik(dik) is convex for k = 1.

Using the same procedure for k = 2 and k = 3, the second derivatives of Qik(dik) are,

respectively,

∂2Qik(dik)

∂d2ik
=

32y2(3d2ik + 12diky + 8y2)

(d2ik + 4diky + 8y2)3
> 0 k = 2

and

∂2Qik(dik)

∂d2ik
=

12y(−d6ik + 216d4iky
2 + 1632d3iky

3 + 5184d2iky
4 + 6912diky

5 + 4608y6)

(d3ik + 6d2iky + 24diky2 + 48y3)3
> 0 k = 3.

(29)

Eq. 29 is positive for dik > 0 and y > 0 such that the supply-demand constraint dik/2y ≤ k

(k = 3) is justified. Continuing the same process for other k, we observe ∂2Qik(dik)/∂d2ik > 0.

We conclude that the objective function of the [SP] is convex.

Let us now illustrate an example to better elaborate the sub-problem [SP]. Consider four

islands that have 2, 4, 6, and 8 columns. All islands have 20 rows, i.e., y = 20. We increase

the total demand D and illustrate how it is allocated to the islands. As shown in Fig. 6,

all islands are initially filled up but at different rates. The smaller islands are filled first and

larger are filled last according to our demand assignment strategy.

4.3. A heuristic model

Solving the exact algorithm can be time consuming in cases where there are abundant

geometrical combinations that could fit the plot of land. To circumvent this high computation

time, a heuristic algorithm is presented that provides a sub-optimal solution in a much faster

computation time. The idea of the heuristic algorithm is as follows. To minimize relocations,

we start off by fitting the demand D into two-column islands (which is similar to currently

available parking facilities for regular non-automated vehicles). If the demand is too large

to fit into two-column islands, we test out three-column islands and we continue the process

until we find a layout that is able to serve the demand. As we increase the number of columns

in the islands (i.e., as the islands become bigger), the cost of relocation increases. Hence, we

stop at the smallest number of columns that provides sufficient space for all the vehicles.

We summarize the steps of the heuristic algorithm in the following:
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Figure 6: Solution of the sub-problem for demand D = 0 to D = 400.

1. Form 2-column islands : Set xi = 1 so that each island has two columns.

2. Find the island composition: Set s = d D
2xi
e. If D is divisible by 2xi, then each island

holds 2xi columns. Otherwise, there are s − 1 islands with length 2xi and one island

with length dD − 2(s− 1)xie.

3. Find the inter-island gaps : Calculate gi and ei by solving an integer program with any

objective funciton subject to Constraints 14-18 with fixed xi from Step 2.

4. Feasibility check : It is possible that the current island size xi cannot fit the plot

dimensions when we include the gaps. This leads to infeasibility of the integer program

from Step 2. If a feasible layout is not obtained, set xi = xi + 1 and go back to Step

2. Otherwise, proceed to Step 5.

5. Outputs : Calculate the objective function E[R] based on the currently obtained solu-

tion.

When the demand is not divisible by the number of columns, Step 2 of the algorithm finds

a composition consisting of s islands with the same number of columns and one last smaller

island. The feasibility of the compositions is checked in Steps 3 and 4. The maximum number

of iterations in the heuristic is dD/2ye which happens when the algorithm goes through all

the different layout compositions until it checks the largest possible island. In some cases, it
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is possible that no feasible layout is obtained in the heuristic algorithm because the heuristic

only checks a subset of the entire solution space. In such cases, the exact algorithm provides

the only solution to the problem.

4.4. Measures of effectiveness

We present the following measures to assess and compare the results of the model. The

measures of effectiveness are the following:

• Expected relocations : This is the primary measure indicating the number of relocations

per vehicle retrieval, i.e., the objective function of [LD].

• Parking supply : Parking supply is the number of spots in all islands to serve a given

demand D.

• Utilization: Utilization is the ratio of the total area allocated to the islands over the

area of the entire plot of land. It is clear that utilization is never equal to 1 because

some of the land is allocated to the gaps and the clearance roadway. It is also clear

that utilization increases with demand because the operator has turn more of the plot

into islands.

• Maximum demand : Maximum demand Dmax is the largest demand that can be served

by a given plot of land. To find Dmax, we increase the demand D incrementally to

the point where the exact algorithm can no longer find a feasible solution to serve the

demand.

• Spatial efficiency ratio: This measure is the ratio of Dmax over the maximum pos-

sible demand if we only have 2-column islands. Informally, this ratio indicates the

economic benefit of turning existing conventional car-parks for regular vehicles into

fully-automated AV parking facilities. As an example, a spatial efficiency ratio of 2

indicates that we can fit twice as many AVs than regular vehicles in the same parking

facility. For the 2-column islands we use spot dimensions l = 5 and w = 2.8 which are

the parking dimensions of a regular vehicle. For AV parking spots, we use l = 5 and

w = 2.

5. Numerical experiments

We perform the following numerical experiments to gain managerial insights on AV park-

ing operations and to assess the computational efficiency and accuracy of two solution al-

gorithms. Except stated otherwise, we have used the exact algorithm with a termination
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threshold ε = 0.05 to solve the instances. To solve the Master-Problem integer program,

we use the ILOG CPLEX package. For the sub-problem, we use a Sequential Quadratic

Programming algorithm to find the optimal solution.

5.1. Parking demand

Consider a parking facility with dimensions L = 150[m], W = 65[m], l = 5[m], and

w = 2[m]. There are y = 30 rows in each island and the width of the clearance roadway is

5[m]. We increase the demand from D = 600[veh] to D = 780[veh] and depict the geometrical

shape of the optimal facility in Fig. 7. When the demand is low, the islands all have only

two columns which is very similar to existing parking facilities for regular vehicles. The two-

column design has the lowest relocation cost and is desirable when demand is low to medium.

As the demand increases, the islands become bigger with more columns. The two-column

islands are eliminated at the largest demands because these islands require gaps that takes

up valuable land that could otherwise be used as island space. The maximum demand Dmax

that the facility can serve is 780 [veh]. The parking supply in the six instances is 660, 660,

720, 720, 780, and 780, respectively.

We present the parking supply (i.e., number of spots) and relocation cost (i.e. E[R])

with respect to demand in Fig. 8. It is shown that parking supply increases in a step-wise

fashion. The points where the steps occur are the points where the layout of the facility

changes radically. For instance, from D = 0 to D = 660, the optimal layout is 11 two-

column islands as shown in Fig. 7 (D = 600) with the demand is evenly distributed between

the islands. At D = 661, however, the car-park layout changes radically which leads to a

jump in parking supply. Fig. 8 illustrates that for the highest demand D = 780 [veh], we

need to approximately relocate 5 vehicles at any random retrieval.

For expected relocations E[R], we see the same step-wise jumps where the radical layout

changes occur. However, there is also a gradual increase in every step which is intuitive as a

higher demand requires more relcoations. The insight here is that operators need to choose

their design demand D while considering the jumps in the relocation cost since a marginal

decrease in D can substantially reduce the relocation cost.

5.2. Maximum demand

The maximum demand Dmax depends on the area and dimensions of the parking facility.

We present 13 parking facility dimensions in Table 1. The instances have different length L

and width W but their area is fixed, i.e., LW = 6890[m2] is constant. The highest maximum

demand is Dmax = 560 which occurs in the square orientation with L ≈ W . An observation
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Figure 7: Optimal facility layout at D = 600, 640, 680, 720, 760, 780.

that stands out here is that the square orientation at instance 7 with L = W = 83[m]

is among the instances with the highest maximum demand of Dmax = 560. This square

orientation also has the lowest relocation cost among the other instances which makes it a

desirable orientation. We depict the layout of three instances in Fig. 9 where Instance 5 is

elongated horizontally, Instance 7 is a square, and Instance 9 is elongated vertically.

We now fix the demand at D = Dmax for each instance and obtain the other measures

of effectiveness which are presented in Fig. 10. We perform this for three separate rectangle

areas, i.e., LW is fixed in each facility. Fig.10a and 10b show that Dmax and utilization ratio

are both generally higher in the square orientation where W = L. The highest utilization

is between 75% to 80% in the three cases indicating that 80% of the land is allocated to

the parking spots and the remaining 20% is allocated to the clearance roadway and the
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Figure 8: (a)Parking supply and (b) Expected relocation cost at different demand D.

Table 1: Layout of 13 instances. Key : (2,10x5) means there are 5 islands with 10 columns and one island

with 2 columns.
Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13

y 10 15 20 25 30 35 40 45 50 55 60 65 70

W 23 33 43 53 63 73 83 93 103 113 123 133 143

L 299.5 208.8 160.2 130.0 109.3 94.4 83.0 74.1 66.9 61.0 56.0 51.8 48.2

A 6890 6890 6890 6890 6890 6890 6890 6890 6890 6890 6890 6890 6890

Maximum demand Dmax 520 540 560 550 540 560 560 540 500 440 480 390 420

Objective function 3.46 3.96 5.26 4.03 3.21 6.12 5.26 4.41 2.31 0.50 0.50 0.50 0.50

Utilization (%) 75.48 78.39 81.29 79.84 78.39 81.29 81.29 78.39 72.58 63.87 69.68 56.61 60.97

Spatial efficiency ratio 1.69 1.80 1.67 1.80 1.61 1.60 1.67 1.69 1.79 1.41 1.43 1.41 1.40

Layout 2, 10x5 2, 10, 12x2 14x2 10, 12 8, 10 16 14 12 2, 8 2x4 2x4 2x3 2x3
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Figure 9: Optimal layout of Instance 5, 7, and 9 in Table 1.

inter-island gaps.

Fig. 10c shows that the spatial efficiency is on average 1.6 but can be as high as 1.9

indicating that AV parking facilities can store 90% more vehicles than conventional parking

facilities. When the plot width W is large, the spatial efficiency occur only because each

AV parking spot take smaller space than a regular parking spot (with dimensions w = 2.8

and l = 5). For smaller plot width, however, the spatial efficiency happens due to spot

dimensions and vehicle relocation.

Finally, for each of the instances, Fig. 10d shows the relocation cost versus Dmax. This

highlights the pareto efficiency in Dmax and E[R] for the square layouts.

5.3. Impact of gap width on layout

We analyze the impact of the gap width α on the optimal layout of the car-park. The

measures of effectiveness are presented for 11 instances with different α. The utilization ratio

decreases with α because the gaps take up a longer width and less space is allocated to the

islands. For the same reason, the maximum demand Dmax also decreases with α as fewer

vehicles can be fit in the car-park. The objective function E[R] first experiences a plunge

from Instance 1 to Instance 2 because Instance 2 fits a smaller number of vehicles. From

Instance 2 onward, however, the objective function E[R] strictly increases because although

we are still serving the same demand Dmax = 780 [veh], we have to fit them in less efficient

layouts.

Finally, recall that the spatial efficiency ratio is the ratio of Dmax to maximum demand

that fits in a 2-column design. As we increase α, fewer vehicles fit in the 2-column design

but Dmax = 780 remains constant from Instance 2 to 11. Hence, the spatial efficiency ratio
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Figure 10: (a) Maximum demand, (b) utilization, (c) spatial efficiency ratio, and (d) expected relocation

cost.

increases from 1.55 (Instance 2) to 1.86 (Instance 11).

Table 2: Impact of gap width α on the layout.

Instance 1 2 3 4 5 6 7 8 9 10 11

Gap width α 2 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Maximum demand Dmax 840 780 780 780 780 780 780 780 780 780 780

Objective function 9.79 2.58 3.07 4.10 4.10 4.86 4.86 8.91 8.91 8.91 8.91

Utilization (%) 0.86 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

Spatial efficiency ratio 1.67 1.55 1.69 1.69 1.69 1.69 1.69 1.86 1.86 1.86 1.86

Layout 2, 26 2, 8x3 8x2, 10 2, 12x2 2, 12x2 12, 14 12, 14 2, 24 2, 24 2, 24 2, 24

5.4. Heuristic algorithm

The heuristic algorithm is compared to the exact algorithm for 18 different test instances

as shown in Table 3. We let the exact algorithm continue running until we see convergence

between the upper and lower bounds with the termination threshold of ε = 0.05. The longest

computation time occurs in instance 15 which takes 5.3 hours to run in the exact algorithm

but 0.4 seconds in the heuristic. Clearly, the objective function of the exact algorithm is
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always lower or at least equal to the heuristic. In Instance 1, we observe that the exact

algorithm’s objective function is 18% lower than the heuristic. This happens as the heuristic

fully fills up 13 two-column islands (until the entire demand allocated) whereas the exact

partially fills up 15 two-column islands. Hence, the heuristic is not strong in exploring cases

of partial filling. In Instance 17, we also observe a 15% difference in objective functions

because the exact is able to explore a wider range of possible layout compositions compared

to the heuristic. The same condition applies in Instance 15 for which we illustrate the

exact and the heuristic layouts in Fig. 11. Finally, in Instance 9, we observe that the two

algorithms provide the same objective but the exact algorithm takes 229.62 [sec] to solve

which is significantly longer than the computation time of the heuristic which is only 0.42

[sec]. This indicates that the heuristic is able to find the optimal answer in a shorter time

in some instances.

Table 3: Comparison between exact and heuristic methods. Key: A layout (2x3,8) indicates that there are

3 islands with 2 columns and one islands with 8 columns.

Instances y W L A D
Exact Heuristic

Objective function CPU time [sec] Layout Objective function CPU time [sec] Layout

1 20 43 100 4300 200 0.4167 4.96 2x7 0.5 0.38 2x5

2 20 43 100 4300 280 0.5 27.85 2x7 0.5 0.40 2x7

3 20 43 100 4300 320 2.7573 13.44 8x2 2.7573 0.41 8x2

4 30 63 130 8190 480 0.4706 71.40 2x9 0.5 0.40 2x8

5 30 63 130 8190 540 0.5 159.05 2x9 0.5 0.41 2x9

6 30 63 130 8190 600 1.3769 1211.08 2x4, 6x2 1.8154 0.42 2, 6x3

7 30 63 130 8190 660 4.031 118.85 10, 12 4.031 0.43 10, 12

8 30 63 150 9450 500 0.431 303.31 2x11 0.4808 0.40 2x9

9 30 63 150 9450 630 0.4884 229.62 2x11 0.4884 0.42 2x11

10 30 63 150 9450 690 1.8983 4523.56 2x2, 6x2, 8 1.9236 0.43 6x4

11 30 63 150 9450 720 1.9615 2065.08 6x4 1.9615 0.43 6x4

12 30 63 150 9450 750 4.7623 472.06 12,14 4.7623 0.53 12,14

13 40 83 200 16600 1000 0.4545 13082.17 2x15 0.4902 0.43 2x13

14 40 83 200 16600 1200 0.5 11254.24 2x15 0.5 0.45 2x15

15 40 83 200 16600 1240 1.7804 18956.23 2x3, 6x3, 8 1.839 0.54 2, 6x5

16 40 83 200 16600 1280 1.8702 12426.87 2, 6x5 1.8702 0.47 2, 6x5

17 40 83 200 16600 1360 2.998 10951.65 8x3, 10 3.2962 0.49 4, 10x3

18 40 83 200 16600 1440 6.9813 6740.86 18x2 6.9813 0.51 18x2

6. Conclusions

AVs can have a great impact on the design of car-parks in the future. While existing

parking facilities have islands with only two rows of vehicles, future designs tailored for AVs

can have multiple rows of vehicles stacked behind each other. The multi-row design can

lead to blockage of some vehicles which can be handled if the operator moves the vehicles
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Figure 11: (a) Exact and (b) heuristic layout for Instance 15 in Table 3.

in the facility in an optimal way. Naturally, the number and pattern of relocation changes

with the layout of the car-park. This paper investigates the problem of finding the optimal

car-park layout design that minimizes relocations while fitting a given number of vehicles in

the car-park.

Finding the optimal layout can have many social benefits. For one, we find that AV

car-parks can decrease the need for parking space by an average of 60% and a maximum

of 90%. This substantial revitalization of space that was previously used for parking can

lead to more socially beneficial purposes when car-parks are converted into commercial and

residential land-uses. Second, our study captures the influential factors that impact the

optimal layout of car-parks for AVs. For instance, we show that square-shaped car-parks

can enhance several measures of effectiveness. Finally, we capture the impact of the demand

(for parking) on the optimal car-park layout. We show that when demand is low, the facility

has only two-column islands and when demand is high, the optimal layout becomes more

complex.

This study focuses on the high-level strategic design of car-parks by finding the optimal

layout under several assumptions that are valid for higher level planning. For finer level

operational planning, however, we need to make adjustments to the model. We name some

of these modifications that require further research.

For finer level operational planning, a new model is required that considers individual

characteristics of each vehicle including arrival time, planned departure time, and vehicle

size. Knowledge of departure times can significantly influence how the vehicles are arranged

in the facility. Ideally, the vehicles with earlier departure times should not be buried deep

in the islands. They should instead be on top of the islands for a fast retrieval when they

are summoned. Users can provide their departure times to the facility operator using any
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smart platforms such as a mobile app.

In the model, we assumed that parking demand is constant and fixed throughout the

planning period which led to one optimal layout for the parking facility. In practice, however,

this optimal layout can change within the day according to dynamic parking demand. For

example, the facility can have one layout in the morning and another layout in the afternoon.

As a future research, it is valuable to derive the optimal dynamic layout of the facility

according to changes in demand.

We present a model for cases where the facility plot is a rectangle with given dimensions.

A clear-cut rectangular plot may not always exist in reality. Hence, it is important to extend

the model to solve other irregular plot profiles as well. It is also important to consider the

optimal layout in multi-storey buildings where the floors are connected either through a

elevators (for vehicles) or ramps.
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de Oliveira, Í. R., 2017. Analyzing the performance of distributed conflict resolution among

autonomous vehicles. Transportation Research Part B: Methodological 96, 92–112.

DesignBoom, 2015. Audi urban future initiative brings automated parking garage for

self-driving cars to boston-area.

URL http://www.designboom.com/design/audi-urban-future-initiative-11-20-2015/

Fagnant, D. J., Kockelman, K., 2015. Preparing a nation for autonomous vehicles: opportu-

nities, barriers and policy recommendations. Transportation Research Part A: Policy and

Practice 77, 167–181.

Fagnant, D. J., Kockelman, K. M., 2014. The travel and environmental implications of shared

autonomous vehicles, using agent-based model scenarios. Transportation Research Part C:

Emerging Technologies 40, 1–13.

Gallivan, S., 2011. Ibm global parking survey: Drivers share worldwide parking woes. IBM,

September 18.

Gonçalves, J. F., Resende, M. G., 2015. A biased random-key genetic algorithm for the

unequal area facility layout problem. European Journal of Operational Research 246 (1),

86–107.

Greenblatt, J. B., Saxena, S., 2015. Autonomous taxis could greatly reduce greenhouse-gas

emissions of us light-duty vehicles. nature climate change 5 (9), 860–863.

He, F., Yin, Y., Chen, Z., Zhou, J., 2015. Pricing of parking games with atomic players.

Transportation Research Part B: Methodological 73, 1–12.

Hungerländer, P., Anjos, M. F., 2015. A semidefinite optimization-based approach for global

optimization of multi-row facility layout. European journal of operational Research 245 (1),

46–61.

Jiang, X. J., Jin, J. G., 2017. A branch-and-price method for integrated yard crane deploy-

ment and container allocation in transshipment yards. Transportation Research Part B:

Methodological 98, 62–75.

28

http://www.designboom.com/design/audi-urban-future-initiative-11-20-2015/


Kalra, N., Paddock, S. M., 2016. Driving to safety: How many miles of driving would it take

to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy

and Practice 94, 182–193.

Katrakazas, C., Quddus, M., Chen, W.-H., Deka, L., 2015. Real-time motion planning meth-

ods for autonomous on-road driving: State-of-the-art and future research directions. Trans-

portation Research Part C: Emerging Technologies 60, 416–442.

Krueger, R., Rashidi, T. H., Rose, J. M., 2016. Preferences for shared autonomous vehicles.

Transportation research part C: emerging technologies 69, 343–355.

Larson, R. C., Odoni, A. R., 1981. Urban operations research. No. Monograph.

Le Vine, S., Zolfaghari, A., Polak, J., 2015. Autonomous cars: the tension between oc-

cupant experience and intersection capacity. Transportation Research Part C: Emerging

Technologies 52, 1–14.

Lei, C., Ouyang, Y., 2017. Dynamic pricing and reservation for intelligent urban parking

management. Transportation Research Part C: Emerging Technologies 77, 226–244.

Levin, M. W., Boyles, S. D., 2016. A cell transmission model for dynamic lane reversal

with autonomous vehicles. Transportation Research Part C: Emerging Technologies 68,

126–143.

Liu, W., Geroliminis, N., 2016. Modeling the morning commute for urban networks with

cruising-for-parking: An mfd approach. Transportation Research Part B: Methodological

93, 470–494.

Mahmassani, H. S., 2016. 50th anniversary invited articleautonomous vehicles and connected

vehicle systems: Flow and operations considerations. Transportation Science 50 (4), 1140–

1162.

Mersky, A. C., Samaras, C., 2016. Fuel economy testing of autonomous vehicles. Transporta-

tion Research Part C: Emerging Technologies 65, 31–48.

Mitchell, A., 2015. Are we ready for self-driving cars? World Economic Forum.

Nourinejad, M., Roorda, M. J., 2017. The end of cruising for parking in the era of autonomous

vehicles. Under review.

29



Pel, A. J., Chaniotakis, E., 2017. Stochastic user equilibrium traffic assignment with equili-

brated parking search routes. Transportation Research Part B: Methodological 101, 123–

139.

Shao, C., Yang, H., Zhang, Y., Ke, J., 2016. A simple reservation and allocation model of

shared parking lots. Transportation Research Part C: Emerging Technologies 71, 303–312.

South China Morning Post, 2015. Price volatility high for hong kong parking spaces.

Talebpour, A., Mahmassani, H. S., 2016. Influence of connected and autonomous vehicles

on traffic flow stability and throughput. Transportation Research Part C: Emerging Tech-

nologies 71, 143–163.

TechWorld , 2016. The huge impact driverless cars will have on parking and urban landscapes.

Thompson, C., 2016. No parking here.

Waymo, 2016. On the road.

URL https://waymo.com/ontheroad/

Yang, B., Monterola, C., 2016. Efficient intersection control for minimally guided vehicles:

A self-organised and decentralised approach. Transportation Research Part C: Emerging

Technologies 72, 283–305.

Zhang, C., Wan, Y.-w., Liu, J., Linn, R. J., 2002. Dynamic crane deployment in container

storage yards. Transportation Research Part B: Methodological 36 (6), 537–555.

30

https://waymo.com/ontheroad/

	Introduction
	Background
	The model
	Geometric properties of the facility
	Relocation strategy
	Demand assignment
	Minimizing expected relocations per vehicle retrieval
	Mathematical model

	Solution methodology
	An exact decomposition algorithm
	Solving the sub-problem
	A heuristic model
	Measures of effectiveness

	Numerical experiments
	Parking demand
	Maximum demand
	Impact of gap width on layout
	Heuristic algorithm

	Conclusions

