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Efficient parking management strategies are vital in central business districts of cities
where parking is limited and congestion is intense. Hourly parking pricing is a common
parking management strategy where vehicles pay based on their parking duration (dwell
time). In this paper, we derive comparative static effects for a small network to show that
road pricing and hourly parking pricing are structurally different in how they influence the
traffic equilibrium with elastic demand. Whereas road pricing strictly reduces demand,
hourly parking pricing can reduce or induce demand depending on the parking dwell time
elasticity (to the hourly parking price). When dwell time is elastic, demand always
increases with parking price. However, when dwell time is inelastic, demand may increase
or decrease with the parking price. Hence, hourly parking pricing can actually cause higher
congestion and decay social welfare if imposed imprudently. For larger networks, we pre-
sent a Variational Inequality model that characterizes the emergent equilibrium.
Numerical experiments on a large network validate our analytical findings from a smaller
and stylized case study. Our results also show a lower standard deviation in the parking
search time (i.e., time to find a parking spot) when dwell time is highly elastic to the hourly
parking price.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Efficient parking management strategies are vital in Central Business Districts (CBDs) of cities where parking is limited
and congestion is intense. A great deal of parking demand in these regions is generated by travelers who visit their destina-
tion for some specified period (called dwell time) before returning to their origin location (Anderson and de Palma, 2007). To
find parking for these activities (e.g., shopping activities), travelers incur a cost comprised of traveling to a chosen parking
area, searching for a spot, paying the parking price, and walking to the final destination.

In day-to-day equilibrium conditions or in the presence of information systems such as mobile apps, travelers adjust their
travel patterns to minimize their experienced costs. This adjustment includes choosing an affordable parking area in the
vicinity of the final destination. Parking areas are underground or multi-floor parking garages, surface lots, or a collection
of on-street parking spots. They can be public or private and generally require a parking fee with a fixed price (e.g. $3 for
entrance) and an hourly price (e.g. $0.5 per hour). The hourly price plays a key role in parking management. Its impact
on parking demand is twofold. First, increasing the hourly price of a parking facility increases user costs and explicitly
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Nomenclature

Sets
GðN;AÞ graph with node set N and arc set A
N set of nodes
R set of external nodes
I set of parking nodes
S set of internal zones
A set of arcs
Ad set of driving arcs
Aw set of walking arcs
V set of O-D pairs
Xðr; sÞ parking choice set of O-D pair ðr; sÞ 2 V travelers
wðr; s; iÞ set of routes for O-D pair ðr; sÞ 2 V travelers who choose parking i 2 Xðr; sÞ

Constants
wb walking time on walking link b 2 Aw

ki capacity of parking i 2 I
Da;b link-path incidence matrix
ri maintenance cost of one spot at parking zone i 2 I
li average searching time at parking i 2 I
li constant representing how drivers adopt occupancy information at parking i 2 I
a marginal cost of each hour of driving time
b marginal cost of each hour of parking search time
c marginal cost of each hour of walking time
h dispersion parameter in the parking choice model

Decision variables
xb flow on link b 2 Ad
sbðxbÞ travel time on driving link b 2 Ad
dirs flow of O-D pair ðr; sÞ 2 V travelers who choose parking i 2 Xðr; sÞ
drs flow of O-D pair ðr; sÞ 2 V travelers
dirs;a flow of O-D pair ðr; sÞ 2 V who choose parking i 2 Xðr; sÞ via route a 2 wðr; s; iÞ
di flow of travelers into parking i 2 I
qi occupancy of parking i 2 I
hirs dwell time of O-D pair ðr; sÞ 2 V travelers who choose parking i 2 Xðr; sÞ
pi
rs probability that an O-D pair (r, s) traveler chooses parking i 2 Xðr; sÞ

grs expected perceived travel cost of O-D pair ðr; sÞ 2 V travelers
DrsðgrsÞ demand function of O-D pair ðr; sÞ 2 V travelers
Ci
rs observed cost of O-D pair (r, s) travelers who choose parking i 2 Xðr; sÞ

eirs unobserved cost of O-D pair (r, s) travelers who choose parking i 2 Xðr; sÞ
pi hourly price of parking at zone i 2 I measured in dollars per hour
C feasible region of the Variational Inequality program
ui
rs Lagrange multiplier associated with conservation of flow for O-D pair (r, s) travelers who choose parking

i 2 Xðr; sÞ
krs Lagrange multiplier associated with conservation of flow for O-D pair (r, s)
di Lagrange multiplier associated with conservation of flow at each parking zone i 2 I
ui

rs;a Lagrange multiplier associated with conservation of flow for O-D pair (r, s) travelers who choose parking
i 2 Xðr; sÞ via route a 2 wðr; s; iÞ

Functions
HrsðpiÞ dwell time function for O-D pair ðr; sÞ at parking zone i 2 Xðr; sÞ
FiðqiÞ searching time at parking i 2 I
PM profit maximization function
SS social surplus function
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reduces demand. Second, the same increase in the hourly price motivates travelers to shorten their dwell time which leads to
lower parking occupancy and searching time (to find a spot), but higher demand. Hence, the hourly parking price influences
travel demand in two counterbalancing ways. This paper investigates the impact of hourly parking pricing on traffic equi-
librium conditions and parking search time. We show that, despite intuition, hourly parking pricing can actually increase
demand if imposed imprudently.

Parking pricing has long been advocated and deployed as a policy to reduce congestion. Whereas a wealth of research is
dedicated to parking pricing in areas such as mall parking services (Chang et al., 2014), commercial vehicle parking
(Marcucci et al., 2015; Nourinejad et al., 2014; Nourinejad and Roorda, 2016; Amer and Chow, 2016), curbside parking
(Millard-Ball et al., 2014), private firm parking (Tsai and Chu, 2006; Nourinejad and Roorda, 2014), morning commute park-
ing (Qian et al., 2011; Liu et al., 2014a, 2014b; Liu and Geroliminis, 2016), dynamic parking pricing (Zheng and Geroliminis,
2016; Zakharenko, 2016), and parking permits (Rosenfield et al., 2016), fewer studies have investigated the role of hourly
pricing as a travel demand management (TDM) policy. Among the few, Glazer and Niskanen (1992) showed that if roads
are sub-optimally priced or not priced at all, then fixed parking pricing can increase welfare but hourly pricing may not.
Glazer and Niskanen (1992) conclude that, despite intuition, an increase in the hourly parking price will induce demand
because more parking spaces become available as drivers shorten their dwell times. In this paper, we show that this is
not always the case by proving that the changes in demand (with respect to the hourly price) are sensitive to the elasticity
of parking dwell time (with respect to the hourly price). Thereafter, we define three market regimes, investigate the equi-
librium conditions, and present a network-based model to capture the spatial effects of hourly parking pricing.
1.2. Background

Parking studies are broadly categorized based on modeling framework, search mechanism, and turnover. The two main
modeling frameworks are simulation and analytic formulations. Simulations capture complex dynamics of parking but
require detailed data for calibration. Often, lack of sufficient data is accommodated by applying behavioral assumptions
which are mostly inconsistent among different studies (Benenson et al., 2008; Gallo et al., 2011; Nourinejad et al., 2014).
In Benenson et al. (2008), for instance, vehicles relinquish their on-street parking search after some time threshold
(10 min) and head for off-street parking instead. In Nourinejad et al. (2014), on the other hand, vehicles start to search
for parking when within 500 m of their final destination. In comparison, analytical models, with a few exceptions, are less
data-hungry and more insightful but are generally aggregate and not amenable to detailed results (Arnott and Inci, 2006;
Arnott and Rowse, 1999; Anderson and De Palma, 2007). In Arnott and Inci (2006), for instance, a parking model is developed
for downtown areas with equal-sized blocks and a constant demand over the region. Although aggregate, the model provides
very useful insights such as showing that it is efficient to raise the on-street parking fee to the point where cruising for park-
ing is eliminated without parking becoming unsaturated. More recently, there is growing advocacy for network-based ana-
lytical and traffic assignment models that allow for a finer level of policy support. Boyles et al. (2014) and Qian and Rajagopal
(2014) formulate equilibrium models to assign vehicles to spatially disaggregate parking areas.

Searching mechanisms are either zone-based1 or link-based. In zone-based searching, vehicles only start searching for a
spot when they reach a zone and each zone is associated with a search time which is assumed to be a function of the zone’s
occupancy (i.e., number of occupied parking spots) (Qian and Rajagopal, 2014). Applications of zone-based searching are not
limited to parking. In taxi equilibrium models, taxi drivers search for passengers in different zones and incur a searching cost
which is generally assumed to be a function of the total number of searching taxis and passengers in that zone. Taxi searching
time is usually lower when there are more passengers and fewer taxis in the zone (Yang and Wong, 1998; Yang et al., 2002,
2010a, 2010b). In link-based searching, vehicles search for a spot in any of the links that are on their route to a final destination
zone. One of the interesting implications of a link-based search model, as is shown in Boyles et al. (2014), is the smooth tran-
sition of vehicles from ‘‘driving” to ‘‘searching for parking” which is inherent in the equilibrium structure of the model.

Parking studies are classified into zero and non-zero turnover rate models. Turnover refers to the rate at which vehicles
leave a parking area. Hence, zero turnover parking indicates that vehicles only enter parking areas without leaving. This type
of parking is common in the morning commute context where the major concern is the dynamic arrival pattern of vehicles at
the parking zones. These studies are usually defined for stylized settings such as a single bottleneck linear city (Zhang et al.,
2008; Qian et al., 2012) or a parallel bottleneck city with several corridors (Zhang et al., 2011). A more general network-
based zero turnover model is developed by Qian and Rajagopal (2014). Non-zero turnover models, on the other hand, are
suitable for short duration activities such as shopping. These models capture both the arrival and departure rate of vehicles
from each parking area. Under steady-state conditions, the arrival rate is equal to the departure rate from each parking area
(Arnott, 2006, 2014; Arnott and Rowse, 2009, 2013; Arnott and Inci, 2010; Arnott et al., 2015). In non-zero turnover simu-
lation models such as Guo et al. (2013) and Nourinejad et al. (2014), the sum of vehicles entering and leaving each parking
area are assumed to be equal.

The policy implications of parking have also been the subject of many studies (Inci, 2014). Among the more innovative
ones are parking permit schemes that involve distributing a fixed number of permits among travelers and restricting vehicles
to spend the permits for parking (Zhang et al., 2011; Liu et al., 2014a, 2014b). He et al. (2015) study the optimal assignment
1 By zone, we refer to either an off-street parking lot or a collection of on-street parking spaces.
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of vehicles to parking spots while considering the competition game between the vehicles. They show the existence of mul-
tiple equilibria and propose a robust pricing scheme. Qian and Rajagopal (2014) study parking pricing strategies using real-
time sensors to manage parking demand. Using parking pricing and information provision systems, Qian and Rajagopal
(2014) propose a dynamic stabilized controller to minimize the total travel time in the system. Parking prices are then
adjusted in real-time according to occupancy information collected from parking sensors. Finally, Xu et al. (2016) consider
a policy where private parking slots can be shared between a pool of drivers.
1.3. Contributions and organization

In this paper, we present a non-zero turnover, zone-based search, analytical model for parking. Given the non-zero turn-
over rate, we consider both arrival and departure rates of vehicles to parking areas which are assumed to be equal under
steady-state conditions. Our model is therefore distinguished from Qian and Rajagopal (2014) which is a zero turnover
model. Contrary to Boyles et al. (2014), we use the zone-based search mechanism which, due to its simplicity, helps deriva-
tion of the analytical results and improves policy evaluation. The presented model is also distinguished from the analytical
models of Arnott and Inci (2006), Arnott (2014), and Arnott et al. (2015) since it investigates parking patterns at a network
level. Although our analytical findings are only derived for a simple case study, we show through numerical experimentation
that our results are generalizable to larger networks as well.

We particularly focus on unassigned parking where drivers have to cruise to find a spot. These trips have shorter dwell
times and tend to belong to frequent drivers. We present cases where parking supply can be varied such as in Arnott and Inci
(2006) and cases where parking supply is fixed. Each parking zone has a specified capacity and can either be an off-street
parking facility or a group of on-street parking spots. The modeled network is a CBD where travelers reside far away. This
assumption is previously imposed by Anderson and De Palma (2007) as well.

The remainder of this paper is organized as follows. The model is presented in Section 2. Comparative statics effects of
regulatory variables are investigated in Section 3. Equilibrium conditions are discussed in Section 4. Three market regimes
are presented in Section 5. Numerical experiments are provided in Section 6. Conclusions are presented in Section 7.
2. The model

2.1. The network

Consider a transportation network GðN;AÞwith node and arc sets N and A, respectively. To model parking, we further par-
tition the node set N into external nodes denoted by R, parking zones denoted by I, and internal zones denoted by S so that
N ¼ R [ I [ S. Let R ¼ f1; . . . ; r; . . . ; jRjg, I ¼ f1; . . . ; i; . . . ; jIjg, and S ¼ f1; . . . ; s; . . . ; jSjg. The reason for this terminology is that
external zones are located at the boundary of a study region whereas internal zones are within the study region as shown
in Fig. 1. External zones are gateways that provide accessibility to a region and internal zones are attraction locations (e.g. a
shopping center) that vehicles want to visit.

Each vehicle completes two types of trips: inbound and outbound. In the inbound trip, vehicles leave an external zone, r,
and drive to a parking zone, i. After parking, the inbound traveler walks from the parking zone, i, to an internal zone, s, as is
shown in Fig. 1a. Hence, the path of every inbound traveler includes the sequence r ! i ! s. Outbound trips are the reverse
direction of inbound trips. The path of every outbound vehicle includes the sequence s ! i ! r. Fig. 1a depicts the general
inbound and outbound trip trajectories and Fig. 1b illustrates an example of internal and external zones where the internal
zones are attraction locations in the Toronto CBD and the external zones represent the gateways to the CBD. Let us also par-
tition the link Set A into Ad and Aw representing the driving and walking links, respectively, as is also shown in Fig. 1a.

The following sets are now defined. Let V ¼ R� S be the set of external-internal zone pairs. For each pair ðr; sÞ, let Xðr; sÞ
be the set of parking zones that are within the parking zone choice-set of these travelers. The Set Xðr; sÞ can be defined
according to features such as walking distance from parking i to destination s and the cost of parking. Clearly, parking zones
that are too far from the internal destinations zones are less likely to be included in the choice set. For every pair ðr; sÞ 2 V
and parking zone i 2 Xðr; sÞ, let wðr; s; iÞ be the set of routes for the segments of the tour that include driving links. Each route
is comprised of a set of driving links connecting zone r to i and zone i to s. For instance, in Fig. 1a, there is only one route that
includes the sequences of zones r ! i ! s.

Let di
rs;a denote the flow of vehicles belonging to pair ðr; sÞ 2 V that choose parking area i 2 Xðr; sÞ via route a 2 wðr; s; iÞ. Let

xb be the flow and sbðxbÞ the travel time of driving link b 2 Ad, and let wb be the walking time on link b 2 Aw. It is commonly
assumed that the travel time on driving link b 2 Ad is a continuous and monotonically increasing function of link flow xb and
the travel time on walking link b 2 Aw is independent of the flow. Let D represent the path-link incidence matrix where
Da;b ¼ 1 if link b 2 Ad is included in route a 2 wðr; s; iÞ and Da;b ¼ 0, otherwise. Hence we have

xb ¼
P

ðr;sÞ2V
P

i2Xðr;sÞ
P

a2wðr;s;iÞd
i
rs;aDa;b.



Fig. 1. (a) Inbound and outbound trip trajectories; (b) example of zone types.
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2.2. The non-zero turnover parking process

The parking search process is explained in this section. First, the following assumption is imposed:

Assumption 1. Under equilibrium conditions, travelers park at a zone with the lowest generalized cost.
Assumption 1 is justified under at least two conditions. First, if the trips are recurrently performed, travelers become

familiar with the process and choose to park at a zone with the lowest generalized cost. Second, when parking information
such as parking occupancy is provided to users via apparatus such as mobile apps, travelers are better informed about which
zone to choose for parking. Assumption 1 implies that travelers will not hop between parking zones (i.e. they will not drive
from one parking area to another) and will instead choose the one with the lowest generalized cost. The cost of parking is
comprised of the cost of traveling from the external zone to a parking zone, the cost of searching for parking, the parking fee
which can include both a fixed and an hourly component, the cost of walking from the parking area to the internal zone, the
cost of walking from the internal zone to the parking area, and the cost of driving from the parking area to the external zone.

Using Assumption 1, we can now analyze the parking pattern of travelers. Let di
rs, 8ðr; sÞ 2 V , i 2 Xðr; sÞ, be the flow of vehi-

cles that originate at zone r, terminate at zone s, and park at zone i, and let drs ¼
P

i2Xðr;sÞd
i
rs be the total flow from r to s. All

travelers of pair ðr; sÞ that park at i, remain there for hi
rs [hours] called the dwell time. This assumption is justified as travelers

belonging to the same origin-destination pair are likely to be homogenous (Yang and Huang, 2005).
Let qi be the total occupancy of parking i 2 I under equilibrium and let ki be the capacity of parking imeasured in vehicles.

Note that ki is a given whereas qi is obtained from the equilibrium:
qi ¼
X
ðr;sÞ

di
rsh

i
rs 8i 2 I ð1Þ
Parking search time is typically assumed to be a convex function of parking occupancy qi and capacity ki (Axhausen et al.,
1994; Anderson and De Palma, 2007; Qian and Rajagopal, 2014). The general form of this function FiðqiÞ, as explained in
Axhausen et al. (1994), is:
FiðqiÞ ¼
lili

1� qi
ki

8i 2 I ð2Þ
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where li is the average searching time in parking area i when occupancy is low or medium and li is a constant representing
how drivers react to occupancy information. When li ¼ 0, drivers are unaware of the searching time and when li ¼ 1 drivers
are completely aware of searching time. Axhausen et al. (1994) estimated the search time function with a coefficient of
determination R2 ¼ 0:91 for Frankfurt, Germany. The searching time function FiðqiÞ asymptotically goes to infinity as qi

approaches ki, i.e., limqi!ki FiðqiÞ ¼ 1. This implies that a driver entering a full occupancy parking area will never find a spot.

2.3. Generalized travel costs

The hourly price of parking at i 2 I is pi [dollars per hour]. Hence, for the pair ðr; sÞ a traveler who chooses parking i pays

pih
i
rs dollars for parking. We can now derive the generalized travel costs. Let Ci

rs;a be the generalized travel cost for travelers of
pair ðr; sÞ who choose parking i 2 Xðr; sÞ via route a 2 wðr; s; iÞ. This cost is composed of the following six terms: (i) traveling
from external zone r to parking i via route a with a travel time tri;a, (ii) searching for parking for a period of FiðqiÞ, (iii) a park-

ing cost of pih
i
rs dollars, (iv) walking from parking i to zone s, (v) walking from zone s to parking i, and (vi) traveling from

parking i to external zone r via route a:
Ci
rs;a ¼ atri;a þ bFiðqiÞ þ pih

i
rs þ cwis þ cwsi þ atir;a 8ðr; sÞ 2 W;8i 2 Xðr; sÞ;8a 2 wðr; s; iÞ ð3Þ
In Eq. (3), a, b, and c are the marginal cost of travel time, parking search time, and walking time, respectively. For the first
term on the right-side of Eq. (3), we have tri;a ¼

P
bsbDa;b.

The minimum cost of the shortest route for a traveler of pair ðr; sÞ 2 V that parks at zone i 2 Xðr; sÞ is Ci
rs ¼ mina2wðr;s;iÞC

i
rs;a.

However, Ci
rs only represents the observed cost of travel. Let us also assume an additional unobserved cost of eirs which is

independently and identically Gumbel distributed for all parking zones i 2 I that can be chosen by travelers of pair ðr; sÞ. With
this assumption, the probability that a pair ðr; sÞ 2 V traveler chooses parking i 2 Xðr; sÞ is denoted by pi

rs which is obtained
from the following logit-based probability function:
pi
rs ¼

expð�hCi
rsÞP

j2Xðr;sÞ expð�hC j
rsÞ

8i 2 Xðr; sÞ ð4Þ
where h is a dispersion parameter representing the variation in the cost perception of travelers. Eq. (4) relies on the following
assumption:

Assumption 2. Travelers are stochastic in choosing a parking area but deterministic in choosing routes. This assumption is
justified due to the availability and accuracy of route-guidance advanced traveler information systems.

We also assume that travel demand is a continuous and decreasing function of the generalized travel cost. The demand
function is denoted by Drsð:Þ and the expected, generalized travel cost is denoted by grs for each ðr; sÞ 2 V . Hence, we have:
drs ¼ DrsðgrsÞ 8ðr; sÞ 2 W ð5Þ

Given the logit-based parking choice model in Eq. (4), the expected minimum cost for each ðr; sÞ 2 V is:
grs ¼ E min
i2Xðr;sÞ

fCi
rsg

� �
¼ �1

h
ln

X
i2Xðr;sÞ

expð�hCi
rsÞ

 !
8ðr; sÞ 2 W ð6Þ
2.4. Parking dwell time

Recall that parking dwell time hi
rs is the time spent by ðr; sÞ travelers at parking zone i 2 Xðr; sÞ. The following assumption

is now imposed:

Assumption 3. The dwell time of pair ðr; sÞ travelers at parking zone i 2 Xðr; sÞ is assumed to be a function of the hourly
parking cost pi. As pi increases, dwell time decreases.

Let HrsðpiÞ denote this function which is assumed to be convex and monotonically decreasing with pi. It is also sound to
assume that dwell time approaches zero as pi tends to infinity, i.e. limpi!1HrsðpiÞ ¼ 0. The dwell time function is:
hi
rs ¼ HrsðpiÞ 8ðr; sÞ 2 W;8i 2 Xðr; sÞ ð7Þ
We now investigate the impact of the hourly price, pi, on the out-of-pocket cost of parking, pih
i
rs. The hourly parking price,

pi, may or may not increase pih
i
rs. If h

i
rs decreases slowly with pi, then the term pih

i
rs increases with pi, thus showing that the

travelers pay more when the hourly parking price is increased. On the other hand, if hi
rs decreases rapidly with pi, then trav-

elers pay less when pi is increased.
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3. Comparative static effects of parking pricing

We use comparative static effects (De la Fuente, 2000) to show that road pricing and parking fares are structurally dif-
ferent in how they influence the traffic equilibrium. Whereas road pricing reduces demand, hourly parking pricing may
reduce or induce demand. Mathematically, we have dD

dbp < 0 where bp is the road toll, whereas dD
dp > 0 or dD

dp < 0 where p is

the hourly parking price and D is the demand function. Consider the network of Fig. 1a with one origin r, one destination
s, and one parking area i. A road toll bp is imposed on the driving link ðr; iÞ and an hourly parking price p is imposed on parking

area i. The demand function is defined such that demand decreases with generalized cost, i.e., dDðgÞdg < 0. For the remainder of

this section, we drop the subscripts r; i, and s for brevity.
The following two lemmas demonstrate the changes in demand with respect to the road toll, bp; and the hourly parking

price, p.

Lemma 1. Demand strictly decreases with the road toll, i.e., dD
dbp < 0.
Proof. Let us rewrite dD
dbp as
dD
dbp ¼ dD

dg
dg
dbp : ð8Þ
It is already assumed that dD
dg < 0 as demand decreases with the generalized cost. It is also evident that dg

dbp > 0 because bp is the

out-of-pocket money paid by travelers to traverse road ðr; iÞ. Hence, the product of the two terms on the RHS of Eq. (8) is
negative and dD

dbp < 0: h
Lemma 2. Changing the hourly parking price, p, may induce or reduce demand, i.e., dD
dp <> 0.
Proof. Let us rewrite dD
dp as
dD
dp

¼ dD
dg

dg
dp

: ð9Þ
It is already assumed that dD
dg < 0 as demand decreases with the generalized cost. Hence, we focus on the second term on the

RHS of Eq. (9). By taking the derivative, dg=dp, we have
dg
dp

¼ dðHpÞ
dp

þ dF
dp

: ð10Þ
By taking the derivative, dF=dp, the second term on the RHS of Eq. (10) can be rewritten as
dF
dp

¼ ll½ðdH=dpÞDþ ðdD=dpÞH�
kð1� Hd=kÞ2

: ð11Þ
By inputting Eq. (11) into Eq. (10), inputting Eq. (10) into Eq. (9), and simplifying the terms, we have
dD
dp

¼ dD
dg

ðdðHpÞ=dpÞ þxðdH=dpÞD
1�xHðdD=dgÞ

� �
ð12Þ
where x ¼ l=½kð1� HD=kÞ2� > 0. Analysis of Eq. (12) concludes the following:
dD
dp

> 0 if D > D� ð13aÞ

dD
dp

< 0 if D < D� ð13bÞ
where D� ¼ �ðdHp=dpÞ
xðdH=dpÞ . Eq. (13) shows that marginal change of demand with respect to the hourly parking price, p, depends on

the value of the materialized demand, D. If D > D�, then travel demand, D, increases with the hourly parking price, p, and if
D < D�, then travel demand, D, decreases with the hourly parking price, p. h
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Lemma 1 and 2 show that although road pricing reduces demand, variable parking pricing can reduce or induce demand.
This implies that parking pricing is not always an appropriate policy for lowering congestion. Lemma 2 also has the following
remark:

Remark 1. The hourly parking price has the same effect as the road toll when travelers’ dwell time is insensitive to the
hourly parking price.
Proof. When traveler dwell time is insensitive to the hourly parking cost (i.e. dH=dp ! 0), we have D� ¼ �H
xðdH=dpÞ ! 1 which,

according to Eq. (13b) indicates, that demand, D, strictly decreases with hourly parking price, p. In other words, when
dH=dp ! 0, the hourly parking price has a similar impact on demand as a road toll. h

Let ehp ¼ @H
@p

p
H be the elasticity of dwell time with respect to hourly parking price. By definition, dwell time is elastic when

ehp 6 �1 and inelastic when �1 < ehp 6 0. We now summarize the findings of this section in the following proposition:

Proposition 1. Demand increases with hourly parking price (i.e., dDdp > 0) when dwell time is elastic (i.e., ehp 6 �1). However, when
dwell time is inelastic (i.e., �1 < ehp 6 0), demand may increase or decrease with hourly parking price (i.e., dDdp <> 0Þ.
Proof. Given that ehp ¼ @H
@p

p
H and @ðpHÞ

@p ¼ ð1þ ehpÞH, we can rewrite D� in Eq. (13) as D� ¼ �pð1þ ehpÞ=xehp. When dwell time is

inelastic (i.e., �1 < ehp 6 0) we have D� > 0 indicating that the demand both increases and decreases with the hourly parking

price, p. However, when dwell time is elastic (i.e., ehp 6 �1), we have D� 6 0 which, according to Eq. (13), indicates that
demand strictly increases with hourly parking price, p. h
4. Equilibrium conditions

4.1. A Variational Inequality formulation

In this section, we formulate the equilibrium problem using Variational Inequality (VI). The idea behind VI is to find an
equilibrium point (say vector d�) within a feasible (closed and compact) solution space such that for all other points (say d) in

the solution space, we have Zðd�ÞTðd� d�Þ P 0, where Z is a continuous function. Informally, d� is a point in the feasible
region that does not bear any force from the function Z. For novel applications of VI, see Wong et al. (2008) which presents
a taxi equilibriummodel and Nourinejad et al. (2016) which uses VI to model activity patterns in the presence of vehicle-to-
grid technology.

Let us define the feasible region C route flows of the equilibrium model as the following set of equations where di is the
flow of vehicles to parking zone i 2 I and the variables in brackets are the dual variables.
X

a2wðr;s;iÞ
di
rs;a ¼ di

rs ½ui
rs� 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð14aÞ

X
i2Xðr;sÞ

di
rs ¼ drs ½krs� 8ðr; sÞ 2 V ð14bÞ

di ¼
X

ðr;sÞ2V
di
rs ½di� 8i 2 I ð14cÞ

di
rs;a P 0 ½ui

rs;a� 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð14dÞ

Constraints (14a) and (14b) ensure conservation of flow, constraints (14c) represent occupancy of parking i, and constraints
(14d) ensure non-negativity of path flows.

For clarity, let us now partition the cost Ci
rs;a (as shown in Eq. (3)) into the following terms:
Ci
rs;a ¼ 1irs;a þ bFiðqiÞ 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ;8a 2 wðr; s; iÞ ð15Þ
where 1irs;a ¼ atri;a þ cwis þ cwsi þ atir;a þ ðgi þ pih
i
rsÞ represents the total observed travel cost including the cost of driving

from r to i, walking from i to s, walking from s to i, parking at parking area i, and driving from i to r. The VI model is now

presented as follows. Let d ¼ fdi
rs;a 2 Cg be a feasible solution. We plan to find the equilibrium solution d� ¼ fdi�

rs;a 2 Cg by
showing that it always satisfies the following inequality:
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X
ðr;sÞ2V

X
i2Xðr;sÞ

X
a2wðr;s;iÞ

1irs;aðd�Þðdi
rs;a � di�

rs;aÞ þ
1
h
ln di�

rsðdi
rs � di�

rsÞ
 !

� 1
h
ln d�

rsðdrs � d�
rsÞ � D�1

rs ðd�
rsÞðdrs � d�

rsÞ
 !

þ b
X
i

Fiðq�
i Þðdi � di� Þ P 0 8d 2 C ð16Þ
The Karush-Kuhn-Tucker (KKT) conditions of the VI program in Eq. (16) are derived as
di
rs;a : varsigmairs;aðd�Þ � ui

rs �ui
rs;a ¼ 0 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð17Þ

di
rs : ui

rs þ di � krs þ 1
h
lndi

rs ¼ 0 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð18Þ

drs : krs � D�1
rs ðdrsÞ � 1

h
ln drs ¼ 0 8ðr; sÞ 2 V ð19Þ

di
: bFiðqiÞ � di ¼ 0 8i 2 I ð20Þ
The complementarity conditions include constraints (14a)–(14d) and the following two:
di
rs;au

i
rs;a ¼ 0 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ;8a 2 wðr; s; iÞ ð21Þ

ui
rs;a P 0 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ;8a 2 wðr; s; iÞ ð22Þ
At equilibrium, di is interpreted as the cost of searching at parking area i as per Eq. (29) and ui
rs is interpreted as the minimum

generalized travel cost (both driving and walking) of pair ðr; sÞ 2 W travelers parking at zone i as per (Eq. (17)). We now show
that the presented VI in equivalent to the equilibrium conditions of Section 2.

First, assume that demand is always non-negative di
rs;a > 0, so that ui

rs;a ¼ 0. Given that ui
rs;a ¼ 0, taking the exponential

function of both sides of Eq. (18) and simplifying the terms, we have
di
rs ¼ expð�hðui

rs þ di � krsÞÞ 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð23Þ

Using Eq. (14b), (Eq. (23)) can be rewritten as:
X

i

di
rs ¼ expðhkrsÞ

X
i

expð�hðui
rs þ diÞÞ ¼ drs 8ðr; sÞ 2 V ð24Þ
Thus,
expðhkrsÞ ¼ drsP
i expð�hðui

rs þ diÞÞ 8ðr; sÞ 2 V ð25Þ
Substituting Eq. (25) into Eq. (23) gives
di
rs ¼

expð�hðui
rs þ diÞP

j expð�hðuj
rs þ djÞÞ

drs 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð26Þ
where the term di can be related to the cost of searching at parking area i. This makes Eq. (26) equivalent to the logit-based

choice probability indicating that di
rs ¼ pi

rsdrs.
Eq. (19) can also be reorganized as
krs ¼ 1
h
ln drs � 1

h
ln
X
i

expð�hðui
rs þ diÞÞ 8ðr; sÞ 2 V ð27Þ
Substituting Eq. (27) into Eq. (25) gives:
D�1
rs ðdrsÞ ¼ �1

h
ln
X
i

expð�hðui
rs þ diÞÞ 8ðr; sÞ 2 V ð28Þ
which is equivalent to Eq. (6) as the demand function.
We have shown that the solution of the VI program satisfies all the functional relationships that are required by the park-

ing model as defined in Section 2. The VI program has at least one solution when its feasible region, C; is a compact and con-
vex set. Given that the feasible region C as is a set of linear constraints, and given that the VI function in Eq. (16) is
continuous within the feasible region, we conclude that the VI has at least one solution (Florian et al., 2002).
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4.2. Solving for equilibrium

An extensive review of solution algorithms for finding the traffic equilibrium is presented by Patriksson (1994). To solve

the VI, traffic flows are assigned to parking areas ðdi
;8iÞ to find parking search times. Calculating parking search times can

lead to infeasible solutions when the parking occupancy is larger than the parking capacity, i.e. qi P ki, because the search
time function (Eq. (2)) is discontinuous with a vertical asymptote. To rectify this issue, the parking search time function is
replaced with the following BPR-type equation:
FiðqiÞ ¼ lili 1þ qi

ki

� �#
" #

ð29Þ
where li is the average searching time in parking area i, li is a constant representing how drivers adopt occupancy informa-
tion, and # is a calibration parameter. The parking search times are then used to find generalized costs and the origin-
destination demands. The algorithm terminates upon convergence. The steps of the algorithm are the following:

Step 1. Initialization
Set the iteration number t ¼ 0. Select an initial feasible demand solution dt. The feasible solution can be obtained by set-

ting all travel times equal to free-flow travel times and setting the parking search time equal to zero for all parking areas.

Step 2. Computation of generalized costs

First, using dt, find the flow of vehicles into each parking area. The product of vehicle flows into each parking area and the
parking dwell times (obtained for a given hourly price) gives parking occupancy which is input to Eq. (29) to find the search
time of each parking area. Second, using dt, find the travel times and the generalized costs as per Eq. (3).

Step 3. Direction finding

Perform a stochastic network loading procedure on the current set of link travel times. This yields an auxiliary link flow

vector bd.
Step 4. Method of successive averages

Using the demand obtained from Step 3, find the new flow pattern by setting
dtþ1 ¼ t� 1
t

dt þ 1
t
bd ð30Þ
Step 5. Convergence test
Terminate if the following condition is satisfied with , being a small number. Otherwise, set t! tþ 1 and go to Step 2.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðdtþ1 � dtÞ2
q

P
dt

6 , ð31Þ
5. Market regimes

Let us first assume that a single operator is in charge of managing all the parking facilities. This operator can be either a
public or a private entity. In such cases, the two objectives of interest are profit maximization (denoted by PM) and social
surplus maximization (denoted by SS). The former can be associated to the private and the latter to public authorities.
The parking profit, PM, is:
PM ¼
X

ðr;sÞ2V

X
i2Xðr;sÞ

½ðpih
i
rs þ giÞdi

rs� �
X
i2I

kiri ð32Þ
where the first term is the revenue from parking and the second term is the maintenance cost of all parking spots with ri

denoting the maintenance cost of one parking spot at parking zone i 2 I. The maintenance cost is not necessarily the cost of
physical rehabilitation and can include other supervisory costs such as the cost of parking enforcement for on-street parking.
The second objective function is social surplus which is:
SS ¼
X

ðr;sÞ2V

Z drs

0
D�1

rs ðzÞdz�
X
i2I

kiri ð33Þ
where D�1
rs ðzÞ is the inverse of the demand function. With the two objective functions, we can now define the following three

markets: (i) monopoly, (ii) first best, and (iii) second best. Let us assume for now that the parking operator has monopoly
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rights and can simultaneously decide on the capacity and the fee structure of all parking zones. Under this market, the objec-
tive is to maximize the total profit as shown in Eq. (32). Alternatively, in the first-best market, the objective is to maximize
social surplus and in the second-best market, the objective is to maximize social welfare while ensuring a positive profit.
Hence, under the second-best market we have:
maximize
X

ðr;sÞ2V

Z drs

0
D�1

rs ðzÞdz�
X
i2I

kiri
subject to
X
ðr;sÞ2V

X
i2Xðr;sÞ

½ðpih
i
rs þ giÞdi

rs� P
X
i2I

kiri ð34Þ
6. Numerical experiments: the case of the city of Toronto

The first set of numerical experiments are performed on a simple case study with variable parking capacity. Thereafter,
we present a network with fixed parking capacity and show that the analytical remarks are generalizable to larger networks.

6.1. A simple example with one origin, one destination, and one parking area

We present a simple example to visually present the three defined market regimes of Section 5. Consider the network in
Fig. 1a with one O-D pair ðr; sÞ and one parking zone i 2 Xðr; sÞ. Let a ¼ b ¼ 10 dollars per hour, wsi ¼ wis ¼ 0 h, c ¼ 0 dollars
per hour, h ¼ 1, li ¼ 1, and li ¼ 3 min. The functions are defined as follows. Let tri ¼ tir ¼ 0:5þ x2

1000 [measured in hours]
where x is the total demand obtained from the demand function x ¼ DrsðgrsÞ ¼ 20� grs. The dwell time function is
HrsðpiÞ ¼ 3p�0:4

i .
The profit and social surplus contours are depicted in Fig. 2 for the simple example. As illustrated, the monopoly equilib-

rium occurs at the optimum of the profit objective function and the first-best equilibrium occurs at the optimum of the social
surplus contours. The second-best equilibrium has to lie on the zero profit line where social surplus is maximized.

We further investigate the generated profits from the following three dwell time function scenarios:

I. HrsðpiÞ ¼ 3p�1
i : Unit-elastic, ehp ¼ �1

II. HrsðpiÞ ¼ 3p�0:4
i : Inelastic, ehp ¼ �0:4

III. HrsðpiÞ ¼ 3p�1:4
i : Elastic, ehp ¼ �1:4
Fig. 2. Profit and social surplus contours for the simple example.



Fig. 3. Demand, profit, and occupancy for Scenario I with unit elasticity dwell time.

Fig. 4. Demand, profit, and occupancy for Scenario II with inelastic dwell time.

Fig. 5. Demand, profit, and occupancy for Scenario III with elastic dwell time.
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The demand and profit for Scenarios I, II, and III are illustrated in Figs. 3–5, respectively. For each scenario, demand and

profit are plotted for five parking capacities. Before discussing the scenarios, let us redefine Ci
rs by substituting Eq. (1) and Eq.

(2) into Eq. (3):
Ci
rs ¼ atri þ b

liliki
ki �

P
ðr;sÞd

i
rsh

i
rs

þ ðgi þ pih
i
rsÞ þ cwis þ cwsi þ atir 8ðr; sÞ 2 V ;8i 2 Xðr; sÞ ð35Þ
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As is now shown in Eq. (35), hi
rs generally influences Ci

rs in two separate terms (second and third terms of Eq. (35)). However,

under Scenario I, given that pih
i
rs ¼ pi3p�1

i ¼ 3 is a constant, hi
rs influences C

i
rs only via the second term. Hence, as pi increases,

hi
rs decreases causing Ci

rs and consequently drs to approach their asymptotic values as is shown in Fig. 3. The profit of this
scenario also reaches its asymptotic value for the same reason. In Scenario II, demand initially increases with price and then
decreases as is shown in Fig. 4. The initial increase occurs because increasing pi leads to a lower dwell time and lower gen-
eralized cost, which in turn increases demand as elaborated in Section 3. The latter decrease in demand occurs because pi

directly contributes to the generalized cost which reduces demand. The demand in Scenario III somewhat follows the same
pattern as Scenario I (as shown in Remark 2 of Section 3) but the profit patterns are different as shown in Fig. 5. In Scenario
III, the profit reaches a peak value due to the higher influence of price on reducing dwell time. In all three scenarios, cases
with higher parking capacities have higher demand, profit, and occupancy due to the lower cost of searching for parking (sec-
ond term of Eq. (35)). Moreover, for all parking capacities in all three scenarios, demand, profit, and occupancy converge. The
reason of convergence is that at high pi values, dwell time and parking occupancy become so low that the parking capacity no
longer imposes any restriction.

6.2. A network example

The second network is a grid network with 32 origins (external) nodes, 49 destination (internal) nodes, and 64 parking
areas as shown in Fig. 6. The network includes a total of 144 bidirectional traffic links and a total of 196 bidirectional walk
paths that connect the parking areas to the final destination zones. Travel time on each walking link is fixed and equal to

5 min but the travel time of each traffic link is obtained from the BPR function t ¼ f ½1þ ðx=capÞ4� where f ¼ 5 min is the
free-flow travel time and cap = 1000 vehicles per hour is the capacity of each link. The parking search time at each parking

area is obtained from the BPR-type function FðqÞ ¼ ll½1þ ðq=kÞ2� where l ¼ 0:5 min l ¼ 1 and k ¼ 30 vehicles is the capacity
of each parking area. The dispersion parameter in the stochastic equilibrium model is set to h ¼ 0:9. The demand function is
Drsðgrs; zÞ ¼ 9ð1� z=20Þ expð�0:07grsÞ where z is the distance from node r to the geometrical center of the network. The
demand function leads to higher demand in the center of the of network, thus replicating a CBD. The travelers of all OD pairs

are assumed to homogenous. Parking dwell times are obtained from HrsðpiÞ ¼ 1:5pehp where ehp is the dwell time elasticity to
hourly parking price.

The parking search time and demand are depicted in Fig. 7 when dwell time is inelastic (i.e., �1 < ehp 6 0). As illustrated,
increasing the hourly parking price, p, from $1 to $3, reduces parking search time because dwell time is shorter at p ¼ $3 and
more spots are available. This reduction in parking search time increases demand because of the lower generalized cost of
Fig. 6. Example network.



Fig. 7. Parking demand and search time for inelastic dwell time with ehp ¼ �0:3.
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travel. From $3 to $5, on the other hand, parking demand decreases because the low parking search time is offset by the high
hourly price of $5 dollars per hour. To sum up, when dwell time is inelastic, the hourly parking price may increase or
decrease demand but the parking search time always decreases. This remark is consistent with Proposition 1 which was
proved for a simple case with only one origin, one destination, and one parking area. The parking search time and demand
for the elastic case (i.e., ehp < �1) are presented in Fig. 8. As illustrated, increasing p strictly decreases search time and
increases demand. This remark is also consistent with Proposition 1.

To investigate the impact of hourly parking price on parking behavior, Fig. 9 illustrates the average parking search time
and demand (for the 64 parking areas) for a range of dwell time elasticities and hourly parking prices. As shown, when dwell
time elasticity, ehp, is very low and close to zero, parking demand strictly decreases with p. This shows that at ehp � 0, the
hourly parking price has the same impact as a road toll on demand as they both decay demand. However, when
�1 < ehp < 0, parking demand first increases then decreases with p, and when ehp < �1, parking demand strictly increases
with p. Fig. 9 also shows that search time always decreases when p regardless of the elasticity.

Fig. 10 shows the scatter of parking demand and search time for inelastic dwell time (Fig. 10a and b) and elastic dwell
time (Fig. 10c and d). It is evident from Fig. 10b and d, that search time has a lower standard deviation when dwell time
is elastic (compared to the inelastic case) because drivers are more sensitive to the hourly parking price. Precisely, the high
sensitivity to p leads to a faster reaction (of drivers) to hourly parking prices. For the same reason, the mean of search time
(as marked in the box plots) reaches zero at a faster rate when dwell time is elastic. Parking demand is shown to be fairly
constant in the inelastic case shown in Fig. 10a (although it slightly increases and then decrease with p) but it increases at a
fast rate in the elastic case. Finally, Fig. 11 shows the convergence of the algorithm by depicting demand at each parking area
at 8 iterations of the algorithm for ehp ¼ �0:5.
7. Conclusions

This paper investigates the impact of hourly parking pricing on travel demand. Parking pricing, if imposed wisely, has the
potential to complement or even substitute road pricing. When imposed imprudently, however, it can increase demand and
create more congestion. This paper shows that road pricing and hourly parking pricing are structurally different in how they
influence the traffic equilibrium. While road pricing reduces demand, parking pricing can reduce or induce demand depend-
ing on the elasticity of parking dwell time to the hourly parking price. Hence, neglecting the dwell time elasticity can lead to
suboptimal pricing and reduced social-welfare. To capture the impact of the hourly price on demand, a simple case is



Fig. 8. Parking demand and search time for elastic dwell time with ehp ¼ �1:3.
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Fig. 9. (a) Average parking search time [hours], and (b) average parking demand [vehicles per hour].

42 M. Nourinejad, M.J. Roorda / Transportation Research Part A 98 (2017) 28–45
presented with one origin, one destination, and one parking area. For this simple case, we prove that increasing the hourly
parking price always induces demand when dwell time is highly elastic to the parking price. On the other hand, when dwell
time is inelastic to parking price, an increase in the hourly parking price may increase or decrease demand. Hence, dwell time
elasticity requires special attention in design of parking policy.



Fig. 10. (a) Parking demand, and (b) search time for inelastic dwell time (ehp ¼ �0:5). (c) parking demand, and (d) search time for elastic dwell time
(ehp ¼ �1:5).

Fig. 11. Demand at each parking area at eight iterations of the algorithm.
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For more realistic networks, we present a Variational Inequality model that captures the parking (and route) choice equi-
librium. To gain managerial insight, we perform sensitivity analysis on a network with 64 parking areas. Numerical results
show that the dwell time elasticity is still a key factor in travel demand. When dwell time elasticity is equal to zero, the
hourly parking price has the same impact as a road toll on travel demand where increasing the parking price decreases
demand. The numerical experiments also show a lower standard deviation in the parking search time (i.e., time to find a
parking spot) of the 64 parking areas when dwell time is highly elastic to the hourly parking price. Moreover, when dwell
time is inelastic, demand is fairly constant, whereas when dwell time is elastic, demand is asymptotic.

In conclusion, the main finding in this paper is that parking pricing policies should be devised with sufficient knowledge
of dwell time elasticities. While this paper emphasizes the role of dwell time in parking policy, there are several aspects that
are worthy of future research. First, user heterogeneity should be addressed by segmenting travelers based on their value of
time and dwell-time elasticity. In a heterogeneous setting, demand of each traveler segment is sensitive to that segment’s
dwell time elasticity as well as the dwell time elasticity of all other segments. Second, with the growing interest in dynamic
parking pricing in many major cities, the model can be modified with hourly prices changing within a day. This implies that
parking occupancies are dynamic as well. Third, non-linear pricing can further improve social welfare where the hourly park-
ing price increases (or decreases) with time. Finally, the impact of hourly parking pricing is amplified in the presence of mul-
tiple public and private parking management authorities who are generally in competition with each other (Arnott and
Rowse, 2009, 2013). This leads to competitive price-setting environment which requires further research when prices are
hourly-based.
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