Real-time Control Strategies for Public-Transport Transfer Synchronization

Mahmood M. Nesheli

13/10/2017
What We Want?

- To shift a significant amount of car users to public transport (PT) in a sustainable manner.

- To improve serviceability by offering routes with "seamless" transfers; this is an important element for retaining existing users and attracting new passengers.

- To aid agencies in providing credible service while attempting to reduce operating costs.
Motivations

- To develop an integrated, multi-modal transport system in order to provide travellers with a viable alternative to private cars.

How To Make Public Transport More “Efficient”, Thus To Attract More Passengers?
Why? What we can do?
Background

- Maximal Synchronized Transfers (MST)

Operation Level
- Synchronized Transfers do not always appear

Resulting in:
- Deterioration in system reliability, missed transfers, and passenger frustration
Research Needs

Possible Causes:

- Some uncertain and unexpected factors such as traffic disturbances and disruptions, inaccurate PT driver behaviour and actions, and random passenger demands;

- Improper or lack of certain control actions.

Improper or lack of a prudent real-time transit control system is of major concern of PT operators.
What is the Goal?

To increase PT service reliability;

- By minimizing passengers’ travel time and reducing the uncertainty of meetings between PT vehicles.

Reducing the uncertainty of missed transfers by the use of control tactics in real-time operation

- “How to create modelling for optimally selecting of operational PT tactics (control actions) for deployment in real-time operations?”
What is the Method?

Simulation:
Data and Route Characteristics

Optimization:
Model Description

Validation:
Using Simulation
What is the Method?

(Study Process)

1. Determine Source of Unreliability
2. Create a Library of Tactics
3. Formulate Optimization Model
4. Simulation Model
5. Experiments

(Solution Approach)

1. Random Events
2. Application of Tactics
3. Simulation (Real-life Network)
4. Schedule-Deviation; Headway-Irregularity
5. Suitable tactics
6. Optimization

Approach
Model Development

- Library of Tactics (LT)
- Direct Transfer (DT)
- Optimization Framework
- Formulation of Control Strategies
- Simulation Framework

Coordination – this is the whole story

- Holding vehicle
- Skip-stop Operation
- Short-turn Operation
- Short-cut Operation
- Changes in Speed
- Boarding-limit
Model Development-DT

- Real-time Synchronization

\[
\Gamma_1 = \text{if } A_{k,n,r} - D_{k,n,\ell} > 0 \text{ then } 1 \text{ else } 0; \\
\Gamma_2 = \text{if } A_{k,n,\ell} - D_{k,n,r} > 0 \text{ then } 1 \text{ else } 0; \\
DT \text{ occurs if } \Gamma_1 + \Gamma_2 = 0
\]
Model Development-Formulation

- Optimization-MIP, CP;

\[
\text{OF= } \min \sum_{r \in R} \sum_{n \in N} \Delta \text{PTTT} \{ (LT)^n_r + (T)^n_r \}
\]

TPTT= Total Passenger Travel Time
Model Development-Simulation

- Event-Activity Process Modeling

The simulation software, ExtendSim 8
Case Study-Auckland, New Zealand

- AVL data
- GPS data
- AT-HOP cards
- AFP data
- APC data
Case Study - Auckland, New Zealand

a)

- Albany Bus Station
- Route #858
- Transfer Points
- Takapuna
- Harbour Bridge
- Britomart Bus Station
- CBD

b)
Scenarios & Policies

Scenarios

• Different schedule deviations (e.g., ±5 min schedule deviation or ±10 schedule deviation, …)
• Different frequencies (e.g., High, Medium, Low)

Policies

• Combination of different tactics (e.g., Holding and Skip-stops, or Holding and Boarding-limit)
Analysis

- Performance Evaluation

 - Total Passenger Travel Time
 - Total Passenger Waiting Time
 - Number of Successful Transfers
 - Number of Missed Transfers
 - Average Vehicle Travel Time
 - Average Cycle Time
 - Average Schedule Deviation
 - Average Standard Deviation of Headways
 - Vehicle Bunching Percentage
Results

- **Summary1-Example**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Policy</th>
<th>Control strength</th>
<th>Total waiting time (s)</th>
<th>Avg. cycle time (s)</th>
<th>CV(h)</th>
<th>DT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>-</td>
<td>9156.87</td>
<td>7565</td>
<td>0.63</td>
<td>26.58</td>
</tr>
<tr>
<td>1</td>
<td>H-BL</td>
<td>$\alpha = 0.75$</td>
<td>3251.94</td>
<td>6859</td>
<td>0.25</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta = 0.75$</td>
<td></td>
<td></td>
<td></td>
<td>115.50</td>
</tr>
<tr>
<td></td>
<td>H-SS</td>
<td>$\alpha = 0.75$</td>
<td>3543.53</td>
<td>6881</td>
<td>0.27</td>
<td>58.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta = 1$</td>
<td></td>
<td></td>
<td></td>
<td>125.58</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>-</td>
<td>11368.62</td>
<td>7740</td>
<td>0.68</td>
<td>24.18</td>
</tr>
<tr>
<td></td>
<td>H-BL</td>
<td>$\alpha = 0.75$</td>
<td>4698.65</td>
<td>7092.4</td>
<td>0.28</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta = 0.5$</td>
<td></td>
<td></td>
<td></td>
<td>140.25</td>
</tr>
<tr>
<td></td>
<td>H-SS</td>
<td>$\alpha = 0.75$</td>
<td>4358.36</td>
<td>6923</td>
<td>0.24</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta = 1$</td>
<td></td>
<td></td>
<td></td>
<td>146.06</td>
</tr>
</tbody>
</table>

Note: H= holding; BL= boarding-limit; SS= skip-stops; CV= coefficient of variation; DT= direct transfer.

1=High frequency; 2=Medium frequency
Results

- **Summary2-Example**

(a) Optimal ‘Holding & Skip-Segment’ scenario

<table>
<thead>
<tr>
<th>Bus Location</th>
<th>Route 858 Time Deviation from Schedule (sec)</th>
<th>Route 880 Time Deviation from Schedule (sec)</th>
<th>Transfers</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skipped Segment Holding at Transfer 1</td>
<td>Skipped Segment Holding at Transfer-point 1</td>
<td>Improved Direct Transfers; from route→to route (Z)</td>
<td>DT</td>
</tr>
<tr>
<td>-128</td>
<td>101...107</td>
<td>61 sec</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>-92</td>
<td>102...107</td>
<td>35 sec</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>-69</td>
<td>103...107</td>
<td>19 sec</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>-47</td>
<td>103...107</td>
<td>-</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>-23</td>
<td>104...107</td>
<td>-</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>858→880</td>
<td>YES</td>
</tr>
<tr>
<td>60</td>
<td>89...92</td>
<td>880→858</td>
<td>YES</td>
<td>-3425.776</td>
</tr>
<tr>
<td>100</td>
<td>18 sec</td>
<td>89...92</td>
<td>880→858</td>
<td>YES</td>
</tr>
<tr>
<td>140</td>
<td>-</td>
<td>NO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>-</td>
<td>NO</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Results

- Summary 3-Example

The results of short headways headways, in Part (a), are completely different from the results of the long, in Part (b) in terms of the shape of the trend before and after the No-Tactics zone.

Parts (a)

Parts (b)
Some Main Findings

- If possible, a combination of tactics should be applied.
 - The utilization of a combination of selected online operational tactics improves the actual occurrence of planned coordinated transfers, reduces transfer waiting times and increases the reliability and regularity of the PT service.

- When the schedule deviation tends to zero, the maximum saving of TPTT occurs without the use of any tactics; this max travel time saving coincides with max numbers of direct transfers.
Some Main Findings

- Generally, the analysis shows significant better results for short headway cases.
- The combination of some tactics yield the better result in high frequency service like holding and boarding-limit policy.
- A considerable improvement in direct transfers is attained in holding and skip-stop control policy.
Related Papers

End of the Presentation

Thank you for your attention!

It certainly opens the window for a future research