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ABSTRACT 1 
Bunching is a well known operational problem for transit agencies and it has negative impacts on 2 
service quality and users’ perception.  While there has been a substantial amount of literature on 3 
understanding the causes of bus bunching and strategies used to mitigate the effects of this 4 
problem, there has been little research on streetcar bunching. Although bus and streetcar systems 5 
share many similarities, one major difference between the two is that streetcars cannot overtake 6 
each other.  This makes bunching in streetcar networks more critical to the reliability of the 7 
system and an important topic that requires more in-depth understanding.  This research aims at 8 
understanding the factors that impact the likelihood of streetcar bunching and to investigate in 9 
more detail the external and internal factors that impact the time to bunching since the departure 10 
of a streetcar from its route’s terminal. To achieve the first goal, the study uses a binary logistic 11 
regression model, while it uses survival analysis - accelerated failure time (AFT) model to 12 
address the second goal. The study utilizes automatic vehicle location (AVL) system data 13 
acquired from the Toronto Transit Commission (TTC), the transit provider for the City of 14 
Toronto. The models’ results show that headway deviations at terminals both increase the 15 
probability of bunching and accelerate the time to bunching. The discrepancy in vehicle types 16 
between two successive streetcars also increases the likelihood of bunching and accelerates the 17 
time to bunching. This study offers a better understanding of the factors that impact streetcar 18 
service bunching, which is an important component of transit service reliability. 19 
 20 
 21 
 22 
Keywords: Streetcar, bunching, reliability, accelerated failure time (AFT) model, survival 23 
analysis   24 
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INTRODUCTION 1 
Public transit systems face many different operational problems and disruptions that can degrade 2 
the quality and reliability of service. One of the most common disruptions is vehicle bunching. 3 
Bunching occurs when two or more consecutive vehicles on the same route are unable to 4 
maintain their scheduled headways and end up following each other too closely.  Bunching 5 
causes serious challenges to both the passengers and operators. For the passengers, bunching 6 
causes longer or variable wait times and vehicle overcrowding, which both contribute to 7 
reducing users’ satisfaction.  For the transit agencies, bunching leads to increased costs due to 8 
the inefficient use of resources since overcrowded vehicles at the front of a bunch would be 9 
followed closely by near-empty ones. Bunching also impacts the overall image of transit 10 
agencies, making it harder to attract new transit riders and retain the existing ones (1, 2).  For all 11 
these reasons, bunching has been a popular topic in the literature over the past two decades. 12 
 Bunching is a well known problem that is frequently experienced in the City of Toronto, 13 
not only along bus routes but even worse along streetcar routes (3).  Although buses and 14 
streetcars share many similarities, one major difference between the two is that streetcars cannot 15 
overtake each other since they are limited to the path of their track infrastructure.  This subtle 16 
difference makes bunching incidents more critical to the streetcar system quality than buses, 17 
which can overtake each other.  The problem is exasperated in Toronto by the very high 18 
frequency of streetcar services relative to bus services. Yet, there is very little literature found on 19 
streetcar bunching.  This is likely due to the fact that streetcars are an uncommon transit vehicle 20 
mode and are utilized in very few cities around the world.  However, many cities are now 21 
planning or in the construction stage of building new light rail or streetcar systems including 22 
Minneapolis, Kansas City, and Montreal (4). For example, in 2016, Kansas City introduced a 23 
new streetcar line, with further plans of expansion (5).  Streetcar technology may be mature, but 24 
streetcar bunching is a topic that needs a more comprehensive study as streetcar and light rail 25 
systems become more popular.   26 
 The TTC streetcar system is one of the largest in North America.  In 2016, the TTC 27 
operated 11 streetcar routes, covering 338 km (6).  Approximately 300,000 passengers ride the 28 
streetcars on a typical weekday.  Headways range from 2 to 10 minutes on the streetcar network 29 
with the average being approximately 4 minutes on weekdays during the morning and afternoon 30 
peak periods.  The TTC has a fleet of 250 streetcar vehicles using a combination of three 31 
different types which are listed in order of increasing capacity: a standard vehicle (Canadian 32 
Light Rail Vehicles - CLRV), an articulated vehicle (Articulated Light Rail Vehicles- ALRV), 33 
and a new low-floor articulated vehicle (Flexity Outlook) that was just introduced in 2014. The 34 
majority of streetcar routes operate on a shared right of way.  However, there are a few that 35 
operate on a dedicated right of way and some on a hybrid right of way with portions that are 36 
dedicated and others shared.   37 
 The TTC publishes a daily customer service score card that shows how well it meets its 38 
target goals (7).  Its goal for the streetcar service is to provide on-time departures from end 39 
terminals at least 90% of the time.  However, the streetcar service performance continues to 40 
hover around the 50-60% range, falling well short of its 90% goal.  Therefore, in an effort to 41 
improve service, the TTC plans to replace its old fleet with over 200 Flexity vehicles on a 42 
gradual basis.  The TTC believes that the higher capacity vehicle will reduce bunching on its 43 
network (7). This is because the new vehicles will be operated with longer headways compared 44 
to the ones currently in effect, while maintaining the same route capacity.  The City of Toronto is 45 
also currently in the process of constructing the Eglinton Crosstown, a new high-end light rail 46 
line, and it is planning the addition of more light rail routes (Finch West LRT and Sheppard East 47 
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LRT). Therefore, with the expected growth of the network and the city population, it is more 1 
critical now than ever to have a clear understanding of the factors that influence streetcar 2 
bunching to ensure a better service operation overall. This will help transit agencies, including 3 
the TTC, minimize the occurrence of bus bunching, which will likely lead to better service 4 
efficiency and higher rider satisfaction.  5 
 This research aims at understanding the factors that impact the likelihood of streetcar 6 
bunching within the City of Toronto. It also explores in more detail the external and internal 7 
factors that impact the time to the initial bunching incident.  The first model explores the odds of 8 
a headway becoming a bunching incident, irrespective of the location of the incident. The 9 
knowledge gained from this model could help transit operators formulate policies and strategies 10 
to reduce the occurrence of bunching incidents.  The second model estimates the time to the 11 
initial bunching incident, given that one occurs.  The later a bunching incident occurs, the better 12 
it is for the operator; in other words, it is extremely useful to formulate policies that delay the 13 
onset of bunching and its detrimental effects as far down the line as possible knowing that 14 
bunching cannot be eliminated completely.  The second model can help inform and guide such 15 
strategies.  The combined results of the two models can help inform policies that minimize the 16 
occurrence of bunching and delay their onset if they do occur.  17 
 18 
LITERATURE REVIEW 19 
A sizable body of the transit literature has focused on bus bunching in terms of generating and 20 
proposing several holding strategies to reduce bunching once it has occurred. For example, 21 
Daganzo has developed several studies that provide theoretical holding techniques and other 22 
corrective actions to deal with bus service bunching (8, 9). Daganzo and Pilachowski proposed a 23 
control strategy whereby bus speeds are adjusted to maintain headways and consequently, reduce 24 
bus bunching (10).  Similarly, Moreira-Matias et al. and Liang et al. have developed different 25 
theoretical methods to handle bunching once it has occurred (11, 12). Other researchers have 26 
focused on exploring the factors that affect bus service travel, running time and dwell time (13, 27 
14).  28 

Despite these previous efforts, there is little that has been done on understanding the 29 
causes and factors that impact bus bunching. There is also an absence of research on estimating 30 
the time until a bunching incident occurs and the factors that impact this.  In fact, only a few 31 
studies can be found in the literature that investigated bus bunching using statistical analyses. 32 
One of them is done by Mandelzys & Hellinga (15), where they attributed bus bunching to 33 
fluctuating travel times between stops and dwell times. These characteristics were also attributed 34 
to bus bunching in (16, 17).  Diab et al. (1) developed a bus bunching model that was used to 35 
investigate several factors such as passenger volume, delay at start, and their impact on the 36 
probability of bunching. In contrast to work that has been done regarding bus bunching, it is rare 37 
to find articles on streetcar bunching.   38 

Other researchers have focused on understanding the impacts of several factors on 39 
streetcar service performance, but not specifically on streetcar bunching. For example, Currie has 40 
generated multiple articles regarding the impacts of different factors on streetcar service 41 
performance. He explored streetcar safety (18), weather impacts (19), and dwell times (20, 21) 42 
and compared streetcar performance in different countries (22, 23). He also discussed how transit 43 
signal priority (TSP) handles bunched streetcar vehicles (24).  Ling and Shalaby developed a 44 
reinforcement learning approach to control streetcar bunching (25). With this very little research 45 
on streetcar service operations, and even lesser on streetcar bunching, a better understanding of 46 
the streetcar service bunching is needed. With the availability and the accuracy of AVL data, we 47 
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are now able to investigate streetcar bunching, while isolating the effects of different influential 1 
variables on the service. 2 

Similar to streetcar bunching, the application of survival analysis in bunching incidents 3 
has not been explored before.  Survival analysis was applied to the disruption duration in the 4 
TTC’s subway system (26) and provided a satisfactory model to predict the effects of different 5 
factors on disruption durations.  In Yu et al.’s (27) work, bus travel time predictions and 6 
associated uncertainties were generated from survival analysis.  Survival analysis seemed to 7 
provide promising results in both studies and has much potential for its application in our study 8 
to investigate the time it would take for two vehicles to bunch.       9 
  10 
METHODOLOGY 11 
The objectives of this analysis is to understand the general factors that impact the likelihood of 12 
streetcar bunching as well as to investigate in more detail the external and internal factors that 13 
impact the time to bunching.  The data used in the analysis come from the TTC’s AVL system 14 
for eight streetcar routes within the City of Toronto for the last week of January 2016. The routes 15 
are 501, 504, 505, 506, 509, 510, 511 and 512; they are highlighted in Figure 1.  The other three 16 
routes that were removed from the analysis (i.e., routes 502 and 503) were operated only by 17 
buses due to a shortage of streetcar vehicles at that time or was completely new (i.e., Route 514). 18 
The TTC’s AVL system records each vehicle’s location every 20 seconds. The acquired data 19 
included both weekends and weekdays, with a total of six million observations.  The week 20 
chosen for data collection had mild and clear weather with minimal track construction, closures, 21 
or diversions. The eight routes included in the analysis are all high frequency routes, operated 22 
every 10 minutes or better anytime of the day every day of the week (28).  Each streetcar route 23 
operates using one or a combination of the three different vehicle types mentioned in the 24 
introduction. 25 
 26 
 27 

 28 
 29 
FIGURE 1  Map of TTC Streetcar Routes Included in the Study 30 

 31 
The unit of analysis in this paper is the headway between consecutive vehicles. Since 32 

streetcars cannot overtake one another, the study focuses on the location when any pair of 33 
consecutive streetcars first form a bunch on the route.  Bunching incidents were isolated at the 34 
segment level. A bunching incident is defined to be when the actual headway between two 35 
vehicles is less than half of the scheduled headway.  To assist in understanding the dynamic 36 
factors that influence the streetcar bunching phenomenon, information about the previous 37 
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headway of a bunching occurrence 1 
in Figure 2 to better understand the methodology. The vehicle in question is labelled as 2 
Following (F), vehicle in front of it is labelled Leading (L), and vehicle prior to the3 
labelled as Leading+1 (L+1). If a bunching incident was observed between F and L, the headway 4 
between L and L+1 was considered 5 
if the Leading+1 vehicle is leaving the terminal early and the 6 
latter will likely pick up more passengers in addition to its normal load7 
for itself. Meanwhile, the Following vehicle (vehicle8 
serve along the route even if it is leaving the terminal on time,9 
with the Leading vehicle at a point down the line10 
incident is defined to be the time it takes for the first11 
subsequent bunching incidents) in a trip12 
Following streetcar leaves its route terminal 13 
streetcar.  14 

 15 

16 
 17 
FIGURE 2  Streetcar Vehicle Labelling S18 
 19 
 The first model is a binary logistic regression 20 
different factors on the likelihood of a streetcar bunching.  21 
and those that did not experience 22 
tested but were eliminated from the model due to insignificance23 
both the following and leading vehicle as well as headway ratios. 24 
independent variables were used to account for a possible non25 
variable and the dependent variable, if such a relationship 26 
number, direction, day of the week 27 
models.  28 
 A set of headway deviation dummy variables were used in the model to reveal the29 
of different combinations of headway deviation30 
the terminal and is categorized into three c31 
scheduled headway, or longer than scheduled headway.  Headways that fall between 8032 
the scheduled headway are defined to be the same as scheduled headway or on time.  Headways 33 
that are less than 80% are defined to be shorter than scheduled headway and those greater than 34 
120% are longer than scheduled headway.  These values were arbitrarily chosen, but seemed 35 
logical as some tolerance is required in defining on36 

The second model, an AFT37 
external factors on the time to the first bunching incident for pairs of successive streetcars.  The 38 
time is calculated from the terminal to the following vehicle 39 
vehicle. Therefore, the model only focuse40 
In this model, only bunched trips 41 
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AFT model, was used to explore the impact of both 
factors on the time to the first bunching incident for pairs of successive streetcars.  The 
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only focuses on the first location where bunching began to occur. 

In this model, only bunched trips were used.  The AFT models are typically used in medicine to 
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analyze the time to an event, which is usually death or failure.  In our case, a bunching incident 1 
can be considered as a failure event.  External factors such as traffic volume, existence of transit 2 
signal priority, and the number of signalized intersections were included in this model. The 3 
internal factors discussed above were also included in the model. A detailed description of the 4 
variables used in both models can be found in Table 1.   5 
 6 
TABLE 1  Description of the Independent Variables Used in the Models      7 
 8 
Variable  
Name 

Variable 
Type 

Description 

Weekday/Weekend Dummy Weekend (0) or weekday (1) 
Trip Direction Dummy Eastbound/Southbound (0) or Westbound/Northbound (1) 
Vehicle 
Combination 

Categorical Following & leading are same vehicle type = 0 
Following vehicle capacity is larger than leading vehicle 
capacity = 1 
Following vehicle capacity is smaller than leading vehicle 
capacity = 2 

Time Period Categorical AM Peak=1, Midday=2, PM Peak=3, Evening = 4 
Route # Categorical Streetcar route number; it captures route characteristics 

such as route length, right of way and average stop distance 
Following & Lead 
Headway Ratio 

Continuous Ratio of actual F, L vehicle headway to the scheduled 
headway 

Lead & Lead+1 
Headway Ratio 

Continuous Ratio of actual L, L+1 vehicle headway to the scheduled 
headway 

Scheduled 
Headway 

Continuous Scheduled headway between vehicles 

Scheduled 
Headway2 

Continuous Squared value of scheduled headway 

Cumulative TSP Continuous Number of intersections equipped with transit signal 
priority between the terminal and bunching location 

Stop Combination Continuous Stop placement at route level: if same stop (all near or all 
far side) placement (0), Combination of near and far side 
stops (1) 

Cumulative 
Pedestrian 
Crossing 

Continuous Number of pedestrian crossings between the terminal and 
the bunching location 

Cumulative 
Signalized 
Approaches 

Continuous Number of signalized intersections between the terminal 
and the bunching location 

Traffic Volume Categorical Traffic volume is define to be a proportion of the highest 
volume. Low volume (0-33% of highest volume) (0), 
medium volume (34-66%) (1), high volume (67-100%) (2) 
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Lshort Dummy Leading vehicle is not short turned from the opposite 

direction (0), leading vehicle is short turned (1) 
Short/Short Dummy Actual headway between F, L is shorter than scheduled 

headway and actual headway between L, L+1 is shorter 
than scheduled headway at terminal 

Short/On Time Dummy Actual headway between F, L is shorter than scheduled 
headway and actual headway between L, L+1 is the same 
as scheduled headway at terminal 

Short/Long Dummy Actual headway between F, L is shorter than scheduled 
headway and actual headway between L, L+1 is longer 
than scheduled headway 

On Time/Short Dummy Actual headway between F, L is the same as scheduled 
headway and actual headway between L, L+1 is shorter 
than scheduled headway at terminal 

On Time/ On Time Dummy Actual headway between F, L is the same as scheduled 
headway and actual headway between L, L+1 is the same 
as scheduled headway at terminal 

On Time/Long Dummy Actual headway between F, L is the same as scheduled 
headway and actual headway between L, L+1 is longer 
than scheduled headway at terminal 

Long/Short Dummy Actual headway between F, L is longer than scheduled 
headway and actual headway between L, L+1 is shorter 
than scheduled headway at terminal 

Long/On Time Dummy Actual headway between F, L is longer than scheduled 
headway and actual headway between L, L+1 is the same 
as scheduled headway at terminal 

Long/Long Dummy Actual headway between F, L is longer than scheduled 
headway and actual headway between L, L+1 is longer 
than scheduled headway at terminal 

Route 501 x 
Short/Short 

Dummy An interaction variable between trips that belong to Route 
501 and also experience shorter than scheduled headways 

 1 

ANALYSIS 2 
 3 
Descriptive Statistics 4 
Table 2 shows the summary statistics of the trips used in the study and the % of bunched 5 
headways per route.  If a headway experiences bunching in any segment (i.e. less than half the 6 
scheduled headway), it is considered a bunched headway.  In total, about 30,500 headways were 7 
included in the analysis. The majority of the analyzed headways occurred on weekdays. Out of 8 
the total number of headways, approximately a quarter of them were involved in a bunching 9 
incident. Route 504, with the highest ridership in Toronto (65,000 riders per day), experiences 10 
the highest number of bunched headways (38.9%).    11 
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 1 
TABLE 2  Descriptive Statistics of Headways Used in Models 2 

 
Direction Day Time Period 

   

Route 
EB/ 
SB 

WB/ 
NB 

Week   
end 

Week   
day 

AM 
Peak 

Mid 
day 

PM 
Peak 

Even-
ing 

Grand 
Total 

Bunching 
Events 

% 
bunch 

501  3894 3880 1006 6768 1282 2242 1602 2648 7774 2141 27.5% 

504  2918 2662 543 5037 1156 1367 1284 1773 5580 2171 38.9% 

505  1313 1279 399 2193 423 791 505 873 2592 508 19.6% 

506  1154 1080 260 1974 482 750 470 532 2234 839 37.6% 

509  1212 1210 409 2013 331 732 610 749 2422 877 36.2% 

510  1711 1715 554 2872 430 1213 779 1004 3426 741 21.6% 

511  1242 1197 354 2085 432 724 483 800 2439 415 17.0% 

512  2034 2004 468 3570 742 1183 864 1249 4038 65 1.6% 

Total 15478 15027 3993 26512 5278 9002 6597 9628 30505 7757 25.4% 

% 50.7% 49.3% 13.1% 86.9% 17.3% 29.5% 21.6% 31.6% na na na 

 3 
Bunching Probability Model 4 
In this model, headways that have experienced bunching are coded as “1” and those that have not 5 
experienced bunching are coded as “0”.  The results of this model are reported in Table 3.  6 
Variables that are found to be statistically significant of at least 90% are bolded in the table.  7 
This model has a Nagelkerke R Square value of 0.59, which indicates that 59% of the variance 8 
has been explained by the model.  This R square value is comparable to other binary logistic 9 
models that investigate on-time performance (1, 29).   10 
 The route number variables, which have been included in the model as control variables, 11 
show a significant coefficient.  This is expected since each route has different right of way 12 
characteristics, length, as well as the average stop distance.  As shown in the descriptive 13 
statistics, Route 512 experienced the least amount of bunching, and therefore this model shows 14 
that all other routes have higher odds of bunching compared to this route.  The model also 15 
indicates that the odds of bunching are higher on weekdays compared to the weekend.  This is 16 
expected as there is an increase in ridership, frequency and traffic congestion during the week 17 
than the weekend. In addition, the midday, PM peak, and evening time periods were found to 18 
increase the odds of bunching compared to the AM peak.  The increased chances of bunching 19 
frequency in the midday and evening peaks are likely due to the combined effect of the relatively high 20 
streetcar frequencies with lower volumes of the general traffic. .      21 

Interestingly, the model shows that when the following vehicle has a greater capacity than 22 
the leading vehicle, this reduced the odds of bunching by 24%.  This can be explained by the fact 23 
that since the following vehicle has a higher capacity, it will be able to hold more passengers and 24 
thus have a longer dwell time as well as total travel time. These longer times will prevent it from 25 
catching up with the leading vehicle.  However, when the following vehicle has a lower capacity 26 
than the leading vehicle, the odds of bunching are increased by 124%.  This is due to the fact that 27 
the leading vehicle will likely have longer dwell times, making it easier for the following vehicle 28 
to catch up and bunch with it. To summarize, both of the previous cases indicate that vehicles 29 
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with higher capacity are slower, and therefore they bunch with the following ones while 1 
increasing the headway gap with the leading ones.  2 

 The model indicates that for every minute that scheduled headway is increased, the odds 3 
of bunching is reduced by 44%, which is expected and was found in the bus literature (1).  4 
Therefore, schedule design plays a big role in bunching for streetcar service, and transit agencies 5 
should address this problem. This can be done by providing higher volume vehicles with longer 6 
headways, which is currently the TTC’s plan (7). The dummy variable Lshort was added to the 7 
model to understand the effects of short-turning on bunching incidents.  On routes 504 and 510, 8 
up to 20% of the vehicles are short-turned.  The strategy of short-turning is used in streetcar 9 
operations to address a serious effect of bunching occurrence, namely the long gaps in service 10 
downstream of bunched vehicles. It is assumed that the TTC short-turning procedure is only 11 
implemented when there is a long gap ahead of a streetcar bunch extending into the opposite 12 
direction.  The model indicates here that when the leading vehicle is short-turned, it decreases 13 
the odds of bunching by 64%.  This is logical since the following vehicle will still have to go to 14 
the terminal and run back in the opposite direction, which will create a gap between originally 15 
bunched trips.     16 

With respect to headway deviation at terminals, only five of the nine combinatory dummy 17 
variables were found to be significant.  A pattern can be noted with the significant combinatory 18 
headway deviation variables: when the following vehicle has an actual headway that is shorter 19 
than the scheduled headway, the odds of bunching is increased and when the following vehicle 20 
has an actual headway that is longer than the scheduled headway, the odds of bunching is 21 
reduced.  The headway deviation combination that increases the odds of bunching the most is 22 
when the following vehicle has a shorter headway and the leading vehicle has a longer headway 23 
at the terminal, increasing the odds of bunching by 146%.  This scenario essentially represents 24 
when the leading vehicle is delayed at start and the following vehicle leaves early at start.  When 25 
the leading vehicle is delayed, it is likely to pick up more passengers, thus experiencing longer 26 
dwell times.  When the following vehicle leaves the terminal early, it has very fewer passengers 27 
to pick up and therefore can easily catch up to the leading vehicle.  In contrast, when the 28 
following vehicle has a longer headway and the leading vehicle has a shorter headway, this 29 
situation provides the greatest reduction in the odds of bunching out of all the cases where the 30 
following vehicle has a longer headway.  An interaction variable between route 501 and 31 
short/short headway deviation combination is included in the model due to the fact that route 501 32 
experiences a lot of short/short headway deviations and skews the results of the short/short 33 
variable.   34 

 35 
TABLE 3  Streetcar Bunching Probability Model Results 36 
 37 

  
Coefficie

nt 
Wald Significance 

Odds 
Ratio 

95% Confidence 
Interval 

Lower Upper 
Wkday 2.15 2450.65 0.00 8.62 7.92 9.39 
Trip direction 0.32 72.73 0.00 1.37 1.28 1.47 
Lshort -1.02 253.45 0.00 0.36 0.32 0.41 
Vehicle Combination (Reference to same vehicle type for both following and leading 

vehicles) 
FVehCap > 
LVehCap 

-0.27 18.60 0.00 0.76 0.67 0.86 
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FVehCap < 
LVehCap 

0.33 32.36 0.00 1.39 1.24 1.56 

Time Period (Reference to AM Peak 
Mid Day 0.78 183.44 0.00 2.19 1.95 2.45 
PM Peak 0.18 10.17 0.00 1.20 1.07 1.34 
Evening 0.94 145.62 0.00 2.56 2.19 2.98 
Route Number (Reference to Route 512) 
Route 501 8.16 2121.09 0.00 3494.14 2469.15 4944.62 
Route 504 3.12 547.37 0.00 22.62 17.42 29.37 
Route 505 3.88 696.07 0.00 48.58 36.40 64.82 
Route 506 4.94 1190.14 0.00 139.23 105.19 184.31 
Route 509 3.88 747.04 0.00 48.53 36.73 64.10 
Route 510 2.03 212.45 0.00 7.61 5.79 9.99 
Route 511 2.49 305.49 0.00 12.05 9.11 15.92 
Scheduled Headway -0.59 938.62 0.00 0.56 0.53 0.58 
Headway Deviation 
Combination (Reference to On Time/On Time) 

Short/Short 0.00 0.00 0.96 1.00 0.83 1.22 
Short/On Time 0.18 2.68 0.10 1.20 0.97 1.48 
Short/Long 0.38 14.26 0.00 1.46 1.20 1.77 
On Time/Short -0.04 0.11 0.74 0.96 0.78 1.20 
On Time/Long 0.05 0.18 0.67 1.05 0.84 1.32 
Long/Short -0.68 40.58 0.00 0.51 0.41 0.63 
Long/On Time -0.51 16.88 0.00 0.60 0.47 0.77 
Long/Long -0.27 6.26 0.01 0.76 0.62 0.94 
Route 501 x 
Short/Short 

-24.59 0.00 0.96 0.00 0.00 na 

Constant -0.45 6.29 0.01 0.64 na na 
 1 
Bunching Survival Model 2 
A linear regression model as well as an ordinal logit model were developed to try to investigate 3 
the impact of the internal and external factors on the time to bunching.  However, both of these 4 
models resulted in very low R squared and ρ squared values.  Thus, a survival analysis was 5 
attempted next to model the time to the first bunch along the route.  The model used the AFT 6 
specification rather than the Cox Proportional Hazard specification, because the study was 7 
interested in understanding the impact of the various factors on the survival time, not the hazard 8 
ratios.   9 

Different distributions were tested to find the best fit.  Comparing the Akaike Information 10 
Criterion (AIC) values for each distribution, the loglogistic distribution was found to have the 11 
best fit and was thus chosen for this model.  The loglogistic distribution had the lowest AIC 12 
value at 14907 compared to the lognormal (15487), weibull (14975), and exponential (18461) 13 
distributions.  The output of this model is reported in Table 4. Bolded variables indicate 14 
statistical significance of at least 90%.  The reference variables are kept the same as in the first 15 
model to allow for comparison.  A negative coefficient of a variable in this model indicates that 16 
as the magnitude of the associated variable increases the departing streetcar from the terminal 17 
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will catch up with the leading streetcar (i.e. creating a bunching incident) sooner than later 1 
compared to the baseline scenario.  In other words, a negative coefficient indicates an accelerated 2 
time to bunch (failure) or a reduction in the survival time.  The acceleration factor is determined 3 
by exponentiating the coefficient, eβ (30).    4 

Since the weekday variable has a negative coefficient, this means that on weekdays initial 5 
bunching incidents, when they happen, take place sooner (relative to the departure time of the 6 
following vehicle from the terminal) compared to weekends.  The acceleration factor of e-0.038 = 7 
0.96 indicates that the survival time or time to bunch on a weekday is 0.96 as large as on a 8 
weekend.  However, this was not found to be statistically significant. This indicates that while 9 
the odds of bunching are higher during weekdays (according to the previous model), these 10 
weekday bunches also take a shorter time to occur (according to this model).   11 
 Compared to the time periods to the AM peak, the results show that during the midday, 12 
PM peak, and evening periods initial bunching incidents take longer to happen compared to the 13 
AM peak.  The PM peak indicates that the time to bunching is increased by a factor of 1.67 14 
compared to the AM peak.  Again, the route numbers are included in the model as control 15 
variables.  Regardless of the vehicle type combinations, when the vehicle capacities are different, 16 
the model indicates that the time to initial bunch will be accelerated compared to when they are 17 
the same vehicle type for both following and leading vehicles.  This is expected because the 18 
differences in capacities will impact the dwell times and thus, time to bunching. Therefore, while 19 
the previous model indicates a difference in the impact of the size of vehicle on the probability of 20 
bunching, this model shows that when bunching occurs, it occurs quicker when combinations of 21 
different vehicle types are involved compared to the case of only one type of vehicles along the 22 
route.  23 
 Other internal variables such as scheduled headway, headway ratio between actual and 24 
scheduled headway for the following and leading vehicle, as well as the cumulative number of 25 
TSP-equipped intersections all indicated they would cause a longer time for the initial bunching 26 
incident to occur.  For every additional minute of scheduled headway, the survival time is 1.11 27 
times longer.  Increasing the number of TSP-equipped intersections and headway ratio do not 28 
increase the time to initial bunching as much as increasing the scheduled headway, but they still 29 
do prolong the time to initial bunching.  This is logical since increasing the headway ratio would 30 
imply an increase in the actual headway which is likely to prolong the time for two consecutive 31 
streetcars to meet in a bunching incident.  However, the model shows that a combination of 32 
different stop placements will accelerate the time to initial bunching compared to when stops are 33 
placed all on the same side, whether it be far or near side.  This could be because when stop 34 
placements are alternated, they can still be between two consecutive intersections (i.e. farside 35 
stop followed by a nearside stop) thus allowing the following vehicle to catch up more easily 36 
with the leading one.   37 
 In terms of the external factors, the cumulative number of pedestrian crossing and 38 
signalized approaches also accelerate the time to initial bunching.  This is likely due to the effect 39 
of signalized approaches on interrupting streetcar movements.  On routes that do not have 40 
dedicated right of way, streetcars must interact with vehicular traffic. High vehicular traffic 41 
actually increases the survival time by a factor of 1.30.  This may sound counterintuitive but 42 
makes sense because the more traffic there is, the more vehicles there will likely be between the 43 
successive streetcars.  A microsimulation model of streetcar operation in Toronto found similar 44 
results (31).  This increased number of traffic vehicles between streetcars will increase the time it 45 
takes for a bunching incident to occur.         46 
    47 
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TABLE 4: AFT Model Results 1 
 2 

Variable 
Coefficient 

(β) 
Standard 

Error 
z P>z 

95% C.I.for 
Coefficient 

Lower Upper 

Wkday -0.038 0.02 -1.55 0.12 -0.09 0.01 

Trip direction 0.044 0.02 2.99 0.00 0.02 0.07 

TimePeriod (Reference to AM Peak) 

    Midday 0.129 0.02 5.89 0.00 0.09 0.17 
    PM Peak 0.154 0.02 7.28 0.00 0.11 0.20 
    Evening 0.066 0.03 2.54 0.01 0.02 0.12 

Route (Reference to Route 512) 

   501 -0.196 0.10 -1.97 0.05 -0.39 0.00 
   504 0.639 0.09 6.87 0.00 0.46 0.82 
   505 0.286 0.11 2.68 0.01 0.08 0.50 
   506 0.109 0.11 1.04 0.30 -0.10 0.32 

   509 -0.180 0.10 -1.84 0.07 -0.37 0.01 
   510 0.162 0.10 1.71 0.09 -0.02 0.35 
   511 -0.078 0.10 -0.77 0.44 -0.28 0.12 

VehCombination (Reference to same vehicle type for both) 

   FVehCap > LVehCap -0.079 0.02 -3.67 0.00 -0.12 -0.04 
   FVehCap < LVehCap -0.084 0.02 -4.30 0.00 -0.12 -0.05 

SchedHead 0.101 0.05 2.22 0.03 0.01 0.19 
SchedHead2 -0.011 0.00 -3.16 0.00 -0.02 0.00 
FLHeadRatio 0.002 0.00 18.04 0.00 0.002 0.002 
LL1HeadRatio 0.000 0.00 -0.44 0.66 0.00 0.00 

CumTSP 0.077 0.00 23.79 0.00 0.07 0.08 
StopComb -0.373 0.13 -2.84 0.01 -0.63 -0.12 
CumPedCross -0.030 0.00 -7.09 0.00 -0.04 -0.02 
CumSigApp -0.006 0.00 -10.97 0.00 -0.01 -0.01 

Traffic Volume Cat (Reference to low traffic volume category) 

    Medium Volume -0.012 0.02 -0.74 0.46 -0.04 0.02 

    High Volume 0.267 0.04 6.84 0.00 0.19 0.34 

Constant 1.909 0.16 11.97 0.00 1.60 2.22 
 3 
CONCLUSION 4 
The overall results indicate that transit operators of streetcar systems should pay more attention 5 
to headway deviations at terminals particularly on weekdays.  To reduce the likelihood of 6 
bunching occurrence, they should try to ensure that headways at terminal are not shorter than 7 
scheduled headway.  Ensuring this will also lengthen the time to a bunching incident, if one 8 
occurs.  During the planning process, stop locations should also be considered carefully, since 9 
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different stop placements cause initial bunching incidents to occur sooner than later.  Heavy 1 
traffic volume delays the onset of initial bunching, but this may also cause longer than 2 
anticipated travel times, which will also be a nuisance to passengers.  In conclusion, it would be 3 
best if the TTC focused on the factors that could provide the most improvement (decreased odds 4 
of bunching and longer time to bunch) for both parties (operator and passenger) such as 5 
scheduled headway adherence and changes in fleet for consistency.     6 
 Since it is rare to find streetcar bunching models in the literature, this paper provides 7 
valuable insights into streetcar bunching. Nevertheless, with additional data such as passenger 8 
volume, which were not available for this paper, the models can be improved to provide more 9 
information to streetcar operators.  The results from this study can be combined to build a real-10 
time predictive model for bunching, which can allow transit operators to act proactively with 11 
expected bunching incidents.  Such a model would be able to warn operators of potential and 12 
upcoming bunching incidents and the time it would take for the bunching incident to occur with 13 
a given accuracy.   14 
 The results and future work from this study provide great potential for streetcar operators.  15 
Armed with the knowledge gained from this study, operators can make informed decisions when 16 
trying to improve streetcar services or when planning and building new streetcar routes.  This 17 
will allow operators to make evidence-based decisions instead of ad-hoc ones; and, therefore, 18 
they would be able to develop actual procedures or decision making processes to prevent and 19 
reduce bunching.  Analogous to a screening procedure developed to give patients early treatment 20 
in an attempt to extend their life, a real-time predictive bunching model could “detect and cure” 21 
vehicles from bunching and extend its time away from the terminal to provide an efficient transit 22 
service to the public.          23 
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