

Risk Analysis Tool for Safety Management of Railway Grade Crossings in Canada

Lalita Thakali Postdoctoral Fellow University of Waterloo

March 6, 2018

Overview

- Background
- About GradeX tool
 - Crash Frequency Model
 - Crash Severity Model
- Future research plan

Background

- Canada has over 22640 highway railway crossings across Canada.
- $\sim 90\%$ are at-grade crossings.
- Transport Canada invests in safety research for safety improvement of railway network.

Safety Research Projects funded by Transport Canada

Collaborative research involving four Canadian universities

- University of Waterloo
- University of Alberta
- York University
- McGill University
- **Total five subprojects** (2018-19)
 - 1. Update a risk assessment tool i.e., GradeX
 - 2. Develop crossings inspection app
 - 3. Conduct train derailment analysis
 - 4. Perform safety analysis using video data
 - 5. Explore connected vehicle technology for safety warning at grade crossings

University of Waterloo plays the lead role for overall management of the projects

What is GradeX tool

- GradeX is a tool used for risk assessment of grade crossings
- ✤ It has a bunch of frequency and severity models for risk assessment
- ✤ Transport Canada use GradeX for:
 - Data visualization
 - Identify high-risk crossings
 - Inspection program
 - Countermeasure analysis
 - Resource allocation
- Previous GradeX models were calibrated using data from 2011 to 2013.

One of the **Objectives** of current project is to **update collision frequency and severity models** used in **GradeX**

- Data obtained from Transport Canada
- Two databases utilized:
 - Crossing Inventory Database
 - Crossing Collision Database
- Databases merged using unique crossing ID

Frequency Models

- Dependent variable is total frequency of crashes occurring at each crossing over the 6 year study period.
- Independent variables: Exposure, Train maximum speed, road maximum speed, Area type (Urban or Rural), No of tracks, No of lanes, Whistle cessation, avg road gradient, track angle)
- ***** Calibrate a **Negative Binomial Model** for each crossing type.

Frequency Model Results

		Variables	_	
	-7.87	(Intercept)		
	0.517	log(Total Train * Total Vehicles)		
	0.012	Train Max Speed (kph)		
	0.011	Road Posted Speed (kph)		
	0.591	Urban area		
PAILSING		No of Tracks		
CHO POND		No of Lanes		
4 TRACKS		Whistle Cessation(Yes)		
		Avg Road Gradient		Variables
		Urban*WhstleCessation	-5.81	(Intercept)
L.		Track Angle	0.471	log(Total Train * Total Vehicles)
				Train Max Speed (kph)
				Road Posted Speed (kph)
				Urban area
		~	A	No of Tracks
		CROSE	NAY	No of Lanes
		RALL	NG	Whistle Cessation(Yes)
			0.083	Avg Road Gradient
University of		STO	P	Urban*WhstleCessation
Waterloo				Track Angle

Frequency Model Results

		Variables		
۲	-8.16	(Intercept)		
PAILSING	0.276	log(Total Train * Total Vehicles)		
LRO PH	0.013	Train Max Speed (kph)		
	0.014	Road Posted Speed (kph)		
	0.585	Urban area		
	0.274	No of Tracks		
	0.313	No of Lanes		
	0.808	Whistle Cessation(Yes)		
		Avg Road Gradient		
		Urban*WhstleCessation		
		Track Angle		Variables
			-5.65	(Intercept)
			0.325	log(Total Train * Total Vehicles)
				Train Max Speed (kph)
				Road Posted Speed (kph)
				Urban area
		& ?		No of Tracks
				No of Lanes
			0.278	Whistle Cessation(Yes)
			0.057	Avg Road Gradient
University of				Urban*WhstleCessation
Waterloo		4		Track Angle

Severity Model

- ✤ 836 sample collisions from 2011to 2016: 110 are fatal collisions, 95 are major injuries, 122 are minor injuries and 509 are no injuries.
- Dependent variables:
 - o Fatality
 - o Major Injury
 - Minor Injury
 - No Injury (base condition)
- ✤ A multinomial logit model is calibrated

0.074

Avg Road

Gradient

0.006

Road Posted

Speed

Future Research

- Conduct before-after analysis to know safety effectiveness of new countermeasures
- Develop mathematical model for resource allocation
 - There are many crossings
 - ✤ There are many options for countermeasures
 - ✤ There is a limited budget

Resource allocation model will help to find which countermeasure to implement

at which crossings to maximize the safety benefits.

Thanks you!