Development of Zonal Level Prediction Models for Crimes Reduction and Traffic Safety Improvement

March 06, 2018

Emmanuel Takyi, M.Sc., University of Saskatchewan
Seun Daniel Oluwajana, Ph.D. Candidate, York University (Presenter)
Peter Park, Ph.D., P.Eng., York University

Ontario Road Safety Forum, Toronto
Background

Crime Statistics

Traffic related fatalities accounts for 48% of death among young adult aged 15 to 44 (WHO, 2015).

Image Sources:
https://www.thestar.com/news/gta/2011/02/14/3_injured_as_medical_episode_leads_to_collision.html
http://www.who.int/mediacentre/factsheets/fs358/en/
DDACTS

- DDACTS Goal: Reduce social harm and increase the quality of life by decreasing the incidence of crimes, collisions and traffic violations simultaneously in a region through high visibility enforcement.
Conventional DDACTS relies on Kernel Density Estimation (KDE) to determine hotspots.
Study Goal and Objectives

Goal:

- Develop macro-level crime and collision prediction models to support place based law enforcement.

Objectives:

- To develop prediction models for Violent crimes and Fatal-Injury collisions using negative binomial regression.

- Demonstrate how these models could be used to identify Violent crimes and Fatal-Injury collisions location for enforcement.
Study Area and Data

- City of Regina (Capital city in Saskatchewan)
- Populations: 247,200 in 2016

(a) Yearly Crime Occurrences (2009-2013)
(b) Yearly Collision Occurrences (2009-2013)
Collision and Crime Hotspots in Regina

DDACTS
Five Violent Crimes and Collision Hotspots (24 Hours)

Legend
Collision Hotspot
- High
- Very High

Crime Hotspot
- High
- Very High

Police ATOMS

Date: 01/13/2015
Coordinate System: UTM 13 North

Sources: Esri, HERE, DeLorme, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community
Analysis Method

- **Negative Binomial Model**

\[y_j \sim NB \left[t_j \exp(\sum_k \beta_k x_{jk}), \alpha \right] \]

- **Violent crime**: Sum of five crimes (*Arson, Assault, Murder, Robbery, Sexual Assault*).

- **Collision severity**: *Fatal-Injury (FI)*.

\[
\text{Violent Crime} \propto f(\text{Sociodemographic, Landuse Variables})
\]

\[
\text{FI Collision} \propto f(\text{Exposure, Sociodemographic, Landuse Variables})
\]

- A total of 54 input variables were explored

- All information aggregated into Traffic Analysis Zone (TAZ)

- **Empirical Bayes (EB) Method**

\[E[K_j] = w[\mu_j] + (1 - w)y_j \]

\(x_{jk}, y_j\) are the predictor and the response variables traffic zone \(j\). \(\alpha\) represents the global dispersion. \(w_{ij}\) is the geographic weight. \(E[K_j]\) is the Empirical Bayes predicted value. \(\mu_j\) is Negative Binomial model predicted value. \(w\) is the Empirical Bayes (EB) weight.
Result of Analysis

Estimated Model Parameters

| Variable | Estimate | Pr>|Z| |
|-----------------------------------|----------|-----|
| **Violent Crimes** | | |
| Intercept | -0.1890 | 0.1950 |
| Ln(COMMERCIAL_AREA) | 0.5740 | <0.001 |
| POPULATION_DENSITY | 0.0002 | 0.0022 |
| POPULATION_25TO44 | 0.0085 | <0.001 |
| POPULATION_45TO64 | -0.0076 | <0.001 |
| POPULATION_18TO24 | 0.0048 | 0.1385 |
| RETAIL_SPACE | 0.1120 | 0.0799 |
| Dispersion (α) | 0.9921 | |
| **Fatal-Injury Collisions** | | |
| Intercept | -3.7300 | < 0.001 |
| Ln(VKT) | 0.5150 | < 0.001 |
| SEGMENT_80KMHR | -0.0004 | 0.0157 |
| SEGMENT_70KMHR | 0.0002 | 0.0840 |
| FOUR_LEG_INTERSECTIONS | 0.0304 | < 0.001 |
| INTERSECTION_DENSITY | 0.6710 | 0.0017 |
| THREE_LEG_INTERSECTIONS | -0.0140 | 0.0317 |
| Ln(COLLECTOR_LENGTH) | -2.6000 | 0.0039 |
| URBAN_HOLDING_RESIDENTAL_AREA_PROP| -2.7200 | < 0.001 |
| Dispersion (α) | 0.4641 | |
DDACTS Zones
Conclusions

- Regression analysis is a useful tool to identify DDACTS zones for law enforcement.

- Application of a regression analysis facilitates understanding of the factors that influences violent crimes and fatal-Injury collisions.
Recommendations

- Analysis of DDACTS can combine with a GIS technique to display crimes and collision hotzones. This will provide better understanding of the areas for law enforcement to reduce crimes and collision occurrences simultaneously.

- Future researches may consider the influence of weather conditions on the occurrence of violent crimes and fatal-injury collisions at zonal level
The findings, opinions, and suggestions given in this presentation do not necessarily reflect the official perspectives of any of the agencies listed here.