Understanding Impact of Transformation on Travel Demand and Travel Behaviour

Dr. Adam Weiss
Professor Khandker Nurul Habib
Presentation Overview

- Travel demand in the context of AV
- What we know and what we don’t know about AV and travel demand
- The problem that AV presents (and the solution!)
- Stated preference backgrounder
- Preliminary analysis of survey data
- Next steps
What are the Potential Impacts of AV

- **Increase** VKT?
- **Increased** in number of trips?
- **Reduced** Transit Modal Share?
- **Reduced** Privacy?
- **Better** Land Use?
- **Increased** Social Equity?
- **Reduced** Auto Ownership?
- **Reduced** Stress?
- **Increased** Safety?
- **Reduced** Emissions?
- And many more...!
Uncertainty of Outcomes

- Most of these impacts are **hypothetical** and depend on a number of different factors:
 - Conventional ownership versus ridehail/rideshare service?
 - How much these services will cost?
 - Will AVs have a noticeable positive impact on traffic flow and by extension travel time?
 - Will people be willing to share AVs or are SOV trips going to continue to be the norm?
Problem for Planners

- Massive set of potential impacts and large amount of uncertainty
- We have no way of predicting what will happen
- We can’t begin to start planning and coordinating to control the paradigm shift towards positive impacts
- We need a comprehensive analysis tool to understand what are the potential impacts
Comprehensive Planning and Analysis Tool

- Needs for developing a comprehensive planning and analysis tool:
 - Data (behavioural data in response to new technology)
 - Policy sensitive models of travel demand
 - Policy sensitive land use transportation interaction models
 - Policy sensitive integrated urban freight model
Technology Frontier

Revealed Preference

Possible Attribute Space of AVs

Time

Cost

Technology Frontier
Stated Preference Survey in a Nutshell

<table>
<thead>
<tr>
<th>Attributes\Alternatives</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>....</th>
<th>Alt M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute 1</td>
<td>Level$_{11}$</td>
<td>Level$_{12}$</td>
<td>...</td>
<td>Level$_{1M}$</td>
</tr>
<tr>
<td>Attribute 2</td>
<td>Level$_{21}$</td>
<td>Level$_{22}$</td>
<td>...</td>
<td>Level$_{2M}$</td>
</tr>
<tr>
<td>....</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Attribute N</td>
<td>Level$_{N1}$</td>
<td>Level$_{N2}$</td>
<td>...</td>
<td>Level$_{NM}$</td>
</tr>
<tr>
<td>Choice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Alternatives are the labels defining the set of options a respondent picks from
 - e.g. carpooling in an AV, riding alone in an AV
- Attributes are the specific measures by which we distinguish an one alternative from another
 - e.g. **travel time** and **travel cost**
- Levels are the specific values of an attribute for a given alternative
 - e.g. carpooling has a travel time of 12 minutes where as riding in an AV alone has a travel time of 10 minutes
Stated Preference vs. Revealed Preference Data

- Data sources are generally complementarity:
 - Weaknesses of one are compensated by the strengths of the other
 - **RP** data provides actual preferences but generally does not provide great insight into behavioural response to new technology
 - **SP** data provides biased hypothetical preferences but gives a much better understanding of shifting technology frontiers
 - Joint modelling of both RP and SP provides deeper insights than modelling only one alone
Consumer Survey vs. Stated Preference

- Simpler approach could be just to ask:
 - Would you take an autonomous vehicle at a given price point?
 - Would you buy an autonomous vehicle at a given price point?

- These sorts of questions represent **consumer surveys**
 - Asks general and vague questions about the willingness to pay for different features
 - Features are often poorly defined (only considers price, not changes to other attributes)
 - Results have limited behavioural interpretability (no ability to develop comprehensive analysis tool)
SP in the Context of Automation

- Generally we have a set of main questions when it comes to AV impacts:
 - How will AVs be used (owned versus ride hail)?
 - Will AVs be shared (HOV) or will they be used as single (or zero) occupancy vehicles (S/ZOV)?
 - How much will AVs cost relative to conventional vehicles?
 - How much faster will our roadways be compared to today?

- Our challenge is to define alternatives, attributes and levels that will specifically allow us to capture potential outcomes.
Summary of SP Design (alternatives)

- Captured choice between conventional ownership and ridehail and HOV versus S/Z OV through creating 4 new modal alternatives
 - Own your own AV and travel alone
 - Own your own AV and carpool
 - Ride Hail an AV and travel alone
 - Ride Hail an AV and carpool
- We also included conventional (with a driver) ride hail options to account for resistance to automation amongst consumers
Summary of SP Design (Attributes and Levels)

- **Travel time** ranges were determined based on key findings from literature (ranging from **no travel time savings** to **20% reduction in travel time**)

- **Travel cost** was set between on **existing travel costs** and forecasted lower end cost ($0.30/km for ride hail, $0.20/km for owned AVs).
 - Owning your own AV and carpooling also potentially acted as an income generator

- Other attributes examined include:
 - Reduced parking cost
 - Number of individuals carpooling with you
 - If you know the individual with who you are carpooling
 - Wait time for pick up
 - Detour times for pick up and drop off of carpool passengers
 - Upfront ownership cost of owning an AV
Data Collection Progress Thus Far

- Funding partnership with MTOs Highway Infrastructure Innovation Funding Program
- Joint RP and SP data set has been collected
- Examined both *commuting* and *non-commuting* trips
- Sample taken from the Greater Golden Horseshoe
- A total of 1894 usable records were collected
- Preliminary analysis of the data looks promising
RP Modal Share Against 2016 TTS

- Generally a higher than expected Transit Share for SP relative to ground truth of TTS
- Not ideal as not entirely a representative sample
- Corrections can be applied for modal share when model used for forecasting
SP Modal Share Commuting Trips

- Observed RP Mode
- Own AV with No Other Passengers
- Own AV Carpool
- Ride Hail AV No Other Passengers
- Ride Hail AV Carpool
- Ride Hail Conventional No Other Passengers
- Ride Hail Conventional Carpool
SP Modal Share Non-Commuting Trips

- Observed RP Mode
- Own AV with No Other Passengers
- Own AV Carpool
- Ride Hail AV No Other Passengers
- Ride Hail AV Carpool
- Ride Hail Conventional No Other Passengers
- Ride Hail Conventional Carpool
General Comments

- Generally similar behavioural patterns between commute and non-commute trips
- Resistance and uncertainty about AVs apparent:
 - Strong reluctance to switch away from observed mode
 - Some interest in ride hailing with a driver despite these modes not being as fast or cheap as autonomous options
- Further modelling of the data is required
Plans for Future Work

- Currently only looking at AV as a stand alone option
 - No integration with transit (first mile last mile solution)

- Value of travel time information can inform land use choice
 - Further data is needed to provide definitive link between AV adoption and land use changes
 - Choice of place of residence and place of work may change drastically as a result of AVs

- Initial data needs to be applied to the development of robust behavioural sensitive models to direct further research (in progress)

- Move towards more complex experimental design procedures (stated adaptation)
Thank you for listening