#### **Implications of Automation on Parking, Curb Space, and Urban Goods Delivery**

Matthew Roorda Canada Research Chair, Freight Transportation and Logistics





#### **Presentation Outline**

- 1. Overview of the Broad Research Program
- 2. Overview of Recent Relevant AV Research
  - 1. Designing Parking Facilities for Automated Vehicles
  - 2. Commercial Vehicle Deliveries with Robots/Drones
- 3. Proposed iCity CATTS research
  - 1. Parking / curbside management
  - 2. Freight Deliveries

#### Recent Research Focus Prof. Matthew Roorda



#### Designing Parking Facilities for Automated Vehicles

- A typical vehicle spends 95% of its lifetime in a parking spot. (Mitchell, 2015)
- In the US approximately 6,500 sq miles of land is dedicated to parking (Chester et al. 2011, Thompson, 2016)
- In Hong Kong the average cost of one parking space is \$180,000US (South China Morning Post, 2015)
- A survey of 20 cities around the world reported that drivers spend 20 minutes on average to find parking (Gallivan, 2011)

#### The Emerging Parking Pattern of Autonomous Vehicles (Mehdi Nourinejad, PhD; Sina Bahrami, PhD)



In a recent survey in 10 countries, 44% of the respondents reported that the biggest benefit of AV technology is its self-parking capability (World Economic Forum)

UTTRI

### **AV Parking Considerations**

- Parking lots may no longer need to be located near driver destinations, due to AV self parking capability.
- Potential to locate parking lots at locations with lower land value.
- This may come at the expense of increased congestion due to zero occupancy vehicles.
- How to best design AV parking lots

#### **Conventional Vehicle Parking**





(a)

UTTRI

#### **Autonomous Vehicle Parking**



2 m<sup>2</sup>/veh savings per spot because of narrower driving, elevators and staircases become obsolete, and no space needed to open a vehicle's doors

#### **Optimal Parking Facility Design**

1-Optimal Parking Facility Layout2-Optimal Allocation of Vehicles to Spots3-Optimal Vehicle Relocation Policy





#### **Relocation Policy**

Any vehicle can be discharged at any time

This requires space in the aisles to store "blocking" vehicles



0

(a)

0

(C)

#### **Vehicle Relocation in Larger Islands**



#### **Expected Relocations Per Vehicle Retrieval**

$$E[R] = \sum_{i=1}^{S} \sum_{v=0}^{x_i} \frac{d_i}{2yD} P_{iv}(d_i) R_v.$$

$$P_{iv}(d_i) = \frac{(d_i/2y)^v/v!}{\sum_{t=0}^{x_i} (d_i/2y)^t/t!}$$



#### **Impact of Demand on Optimal Layout**



UTTRI

#### **Plot Shape Analysis**



Testing of different parking lot dimensions shows that square shaped lots have the greatest capacity



#### **Measures of effectiveness**







#### Percent of Area used for Parking







(d)

UTTRI

### Some key conclusions

- a) Square lots can accommodate the maximum parking demand
- b)The maximum proportion of floor area for parking spaces is about 80% (20% of floor area needs to be used for clearance lanes)
- c)A well designed AV parking lot can handle 65% to 85% more vehicles than a traditional parking lot on the same area.
- d)As you near the maximum capacity, the number of relocations increases

#### Recent/Current Research on Urban Logistics

- Off-peak delivery pilot program in the Region of Peel
- Evaluation of City Logistics Concepts including:
  - Pack stations
  - Walk/cycle networks in downtown Toronto
  - Mobile distribution centres

### Commercial Vehicle Deliveries with Robots/Drones (Paul Deng, MASc)

#### 2. DRONES

Fly autonomously on flight routes predefined by the system. Payload 2 kg, delivery radius 10 km, four propellers each measuring 21.5 inches in diameter.

#### 3. MODULAR BATTERY SYSTEM

Adaptable to the individual application in order to achieve the best possible proportion of weight and range.

**5. RACKING SYSTEM** 

Lightweight racks made of carbon with load carriers made of aluminum sheet, adapted to the contours of the vehicle.

1. RACK FEEDER

Controlled via IT-based backend-processes.

Transfers parcels to the integrated drones and the deliverer.

4. E-DRIVE

Locally emission-free and virtually silent. 75 kW permanent system performance, 270 Nm torque, a range of up to 270 km.

### Commercial Vehicle Deliveries with Robots/Drones (Paul Deng, MASc)



#### Commercial Vehicle Deliveries with Robots/Drones (Paul Deng, MASc)

- Objective
  - Evaluate truck travel savings in urban areas by deploying delivery drones/robots from trucks to assist in deliveries

Conventional

Proposed



### **Remaining Challenges**

- Complex operations research problem
- Solvable heuristic solutions required
- Implications of delivery robots/drones operating in busy urban areas
- Customer interactions with robots
- Other technological options are arising

- Urban Freight Automation
  - Predicting the operations of new 'modes' of urban automated vehicle deliveries
    - Delivery robots, Drones, Driverless vehicles, Platooned trucks, Crowdsourcing in personal AVs
  - Incorporating these AV delivery scenarios in the Aimsun simulation model
  - Evaluating impacts
  - Identifying infrastructure policy needs to best prepare
    - Specialized delivery zones, delivery robot lanes, sidewalk use policy, transfer areas

- Urban Freight Automation
  - Predicting the operations of new 'modes' of urban automated vehicle deliveries
    - Delivery robots, Drones, Driverless vehicles, Platooned trucks, Crowdsourcing in personal AVs
  - Incorporating these AV delivery scenarios in the Aimsun simulation model
  - Evaluating impacts
  - Identifying infrastructure policy needs to best prepare
    - Specialized delivery zones, delivery robot lanes, sidewalk use policy, transfer areas

- Urban Freight Automation
  - Predicting the operations of new 'modes' of urban automated vehicle deliveries
    - Delivery robots, Drones, Driverless vehicles, Platooned trucks, Crowdsourcing in personal AVs
  - Incorporating these AV delivery scenarios in the Aimsun simulation model
  - Evaluating impacts
  - Identifying infrastructure policy needs to best prepare
    - Specialized delivery zones, delivery robot lanes, sidewalk use policy, transfer areas

- Understanding passenger AV parking needs
  - Evaluating demand for MaaS and AVs in urban areas
    - Gaming approaches to data collection, stated preference
  - Translating this demand into parking, drop-off and pick-up demand
    - Scenarios based on survey results
  - Optimal parking facility location, and facility design
    - Minimize empty vehicle distance travelled, minimize traffic disruption
  - Assessment of curbside management strategies to best prepare
    - Curbside reservations, drop-off pick-up zones, zerooccupancy vehicle restrictions, pricing

- Understanding passenger AV parking needs
  - Evaluating demand for MaaS and AVs in urban areas
    - Gaming approaches to data collection, stated preference
  - Translating this demand into parking, drop-off and pick-up demand
    - Scenarios based on survey results
  - Optimal parking facility location, and facility design
    - Minimize empty vehicle distance travelled, minimize traffic disruption
  - Assessment of curbside management strategies to best prepare
    - Curbside reservations, drop-off pick-up zones, zerooccupancy vehicle restrictions, pricing

- Understanding passenger AV parking needs
  - Evaluating demand for MaaS and AVs in urban areas
    - Gaming approaches to data collection, stated preference
  - Translating this demand into parking, drop-off and pick-up demand
    - Scenarios based on survey results
  - Optimal parking facility location, and facility design
    - Minimize empty vehicle distance travelled, minimize traffic disruption
  - Assessment of curbside management strategies to best prepare
    - Curbside reservations, drop-off pick-up zones, zerooccupancy vehicle restrictions, pricing

- Understanding passenger AV parking needs
  - Evaluating demand for MaaS and AVs in urban areas
    - Gaming approaches to data collection, stated preference
  - Translating this demand into parking, drop-off and pick-up demand
    - Scenarios based on survey results
  - Optimal parking facility location, and facility design
    - Minimize empty vehicle distance travelled, minimize traffic disruption
  - Assessment of curbside management strategies to best prepare
    - Curbside reservations, drop-off pick-up zones, zerooccupancy vehicle restrictions, pricing

### **Questions!**