Evaluation of Protected Left-Turn Phasing and Leading Pedestrian Intervals Effects on Pedestrian Safety

Safety Evaluation of Protected Left-Turn Phasing and Leading Pedestrian Intervals on Pedestrian Safety

PUBLICATION NO. FHWA-HRT-18-044

AUGUST 2

US Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

Study Background

- VHB, UNC and Persaud and Lyon Inc.
- FHWA sponsored through DCMF pooled fund
- Goals are to develop CMFs
- Two treatments covered for signalized intersections
 - Adding protected-permissive or protected left-turn phasing
 - Adding leading pedestrian interval (LPI)

Previous Findings for Left-Turn Phasing

- ¹Hauer suggested a CMF of 0.3 for left-turn opposing crashes for adding protected phasing and no effect for other crash types
- ¹Hauer suggested a CMF of 1.0 (no effect) for changing from permissive to permissive-protected
- ²Lyon et al. estimated a CMF of 0.88 and 0.75 for flashing advance green and LTGA for left-turn opposing crashes

¹Hauer, E. (2004). Left-Turn Protection, Safety, Delay and Guidelines: A Literature Review, ResearchGate, Berlin, Germany. Available online:

https://www.researchgate.net/publication/280310470_Left_

_turn_protection._Safety._Literature_review_up_t0_2003, last accessed November 2017. ²Lyon, C., Haq, A., Persaud, B., and Kodama, S. (2005). "Safety Performance Functions for Signalized Intersections in Large Urban Areas: Development and Application to Evaluation of Left-Turn Priority Treatment." Transportation Research Record: Journal of the Transportation Research Board, 1908, pp. 165–171, Transportation Research Board, Washington, DC.

Previous Findings for Left-Turn Phasing

- ³Srinivasan et al. found decreases in left-turn opposing (CMF 0.86) and increases in rear-ends (CMF 1.08) for a mix of permissive to protected-permissive or protected phashing
- ⁴NY estimated a CMF of 0.52 for veh-ped crashes for a mix of permissive to protected-permissive or protected phasing

³Srinivasan, R., Gross, F., Lyon, C., Persaud, B., Eccles, K., Hamidi, A., Baek, J., et al. (2011). Evaluation of Safety Strategies at Signalized Intersections, National Cooperative Highway Research Program Report 705, Appendices to Final Report, Transportation Research Board, Washington, DC.

⁴Chen, L., Chen, C., Ewing, R., McKnight, C.E., Srinivasan, R., and Roe, M. (2013). "Safety Countermeasures and Crash Reduction in New York City: Experience and Lessons Learned." Accident Analysis and Prevention, 50, pp. 312–322, Elsevier, Amsterdam, Netherlands.

Previous Findings for LPI

- ¹King found the crash rate of LPI sites to be 28% lower for veh-ped crashes
- ²Fayish and Gross estimated a CMF of 0.61 for veh-ped crashes based on 10 sites

¹King, M.R. (2000). "Calming New York City Intersections," Transportation Research E-Circular: Urban Street Symposium, Number E-C019, Transportation Research Board, Washington, DC. Available online:

http://onlinepubs.trb.org/onlinepubs/circulars/ec019/Ec019_i3.pdf, last accessed June 28, 2018.

²Fayish, A.C. and Gross, F. (2010). "Safety Effectiveness of Leading Pedestrian Intervals Evaluated by a Before–After Study With Comparison Groups." Transportation Research Record: Journal of the Transportation Research Board, 2198, pp. 15–22, Transportation Research Board, Washington, DC.

Study Methodology

- empirical Bayes Before-after
- Uses Safety Performance Functions
- Analysis controls for three important confounding factors:
 - Regression-to-the-mean
 - Changes in traffic volumes
 - Time trends in crash counts unrelated to the treatment

Data

inj

- Intersection geometry, traffic volumes, crash data, ped volumes
- Data for treated and reference sites
- Looked at veh-ped primarily but also veh-veh and veh-veh

Evaluation	City	Treatment Sites	Reference Sites
Left-Turn Phasing	Chicago	27	149
	New York City	7	146
	Toronto	114	776
LPI	Chicago	56	183
	New York City	42	157
	Charlotte	7	111

Results for Left-Turn Phasing

City	Treatment Sites	CMF for Vehicle– Vehicle Crashes (SE)	CMF for Vehicle– Vehicle Injury Crashes (SE)	CMF for Pedestrian– Vehicle Crashes (SE)
Chicago	68 protected- permissive, 2 protected	1.031 (0.040)	0.890 (0.079)	1.136 (0.146)
New York City	1 protected- permissive, 8 protected	0.672* (0.110)	0.788 (0.153)	0.718 (0.196)
Toronto	134 protected-permissive,2 protected	1.025 (0.011)	0.951* (0.020)	1.106 (0.061)
All cities combined	203 protected- permissive, 12 protected	1.023 (0.016)	0.942* (0.028)	1.091 (0.066)

Results for Left-Turn Phasing

- Disaggregate analysis undertaken
- No relationships between CMF and site characteristics found for veh-veh or veh-veh injury crashes
- For veh-ped some indications that CMF is lower at higher pedestrian volumes
- $CMF = exp(1.4179)(PEDVOL)^{-0.1645}$

Where,

PEDVOL = sum of 24 hr pedestrian counts for all legs

 CMFunction indicates a CMF less than 1.0 for PEDVOL >5,500

Results for LPI

City	Treatment Sites	CMF for Total Crashes (SE)	CMF for Total Injury Crashes (SE)	CMF for Vehicle– Pedestrian Crashes (SE)
Chicago	56	0.90*	0.83*	0.81*
		(0.027)	(0.046)	(0.070)
New York City	42	0.84*	0.86*	0.91
		(0.031)	(0.037)	(0.062)
Charlotte	7	0.90	1.09	0.54
		(0.09)	(0.18)	(0.38)
All cities combined	105	0.87* (0.02)	0.86* (0.03)	0.87* (0.05)

Implications

- Dependable estimates of safety benefits are required to prioritize safety treatments
- Safety benefits can vary based on site characteristics
- A scientific approach to selecting locations is critical for success

