Disruptions in railway/public transport networks

Francesco Corman
francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems
Those slides

- Bad models
- Good reality
- Interactions
- Understanding more
- Understanding even more
Bad Models

F Corman, Assessment of advanced dispatching measures for recovering disrupted railway situations. Transportation Research Record
Routing /scheduling: Interesting instances

- When things are constant, and nobody influences anybody else: relatively easy
- In reality, there is some influence

- Routing in time and space models explicitly changes over time

- Interesting case: When capacity of links or intersections is limited
- Opportunity: When vehicles/people can be “controlled”
- Issues: when things “interact”
A space network in Toronto
An extended time space network
Some disruption management models

\[
\begin{align*}
\text{min} & \quad t_n - t_0 \\
\text{s.t.} & \quad t_j - t_i \geq w_{ij} \\
& \quad (t_j - t_i \geq w_{ij}) \lor (t_k - t_h \geq w_{hk}) \\
& \quad (i,j) \in F \\
& \quad ((i,j),(h,k)) \in A
\end{align*}
\]
Delay minimization via optimized traffic management

Distribution of delay propagation depending on traffic control algorithm

2700 block sections, 150 trains / h, ~300 km

Average Delay decreases

Variation in observed delays decreases

Traffic Control Algorithms:
- Optimized Orders
- First In First Out
- Rule-based
- Keep the Timetable Order

Delay Propagation in the systems, [s] average over all traffic
Disruption situation

Situation → Resolution → Disposition
A lot of resolution scenarios
A lot of performance indicators

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Gener Traveltime Ht→Aco</th>
<th>Freq Services Ht→Aco</th>
<th>Freq Services Ht→Ut</th>
<th>Gener TravelTime Ut→Aco</th>
<th>Freq Services Ut→Aco</th>
<th>Gener TravelTime Aco→Ut</th>
<th>Freq Services Aco→Ut</th>
<th>Gener Traveltime Aco→Ht</th>
<th>Freq Services Aco→Ht</th>
<th>Gener Traveltime Aco→Ht</th>
<th>Freq Services Aco→Ht</th>
</tr>
</thead>
<tbody>
<tr>
<td>12_0_0</td>
<td>3765</td>
<td>6.5</td>
<td>4040</td>
<td>8</td>
<td>2144</td>
<td>15</td>
<td>2398</td>
<td>6.5</td>
<td>4455</td>
<td>4.5</td>
<td>3423</td>
</tr>
<tr>
<td>12+shuttle_0_0</td>
<td>3714</td>
<td>5</td>
<td>4057</td>
<td>8</td>
<td>3179</td>
<td>15</td>
<td>2518</td>
<td>6.5</td>
<td>7697</td>
<td>3.5</td>
<td>4010</td>
</tr>
<tr>
<td>8_4_0</td>
<td>3854</td>
<td>6.5</td>
<td>3844</td>
<td>6.5</td>
<td>3216</td>
<td>14.5</td>
<td>2104</td>
<td>6</td>
<td>5215</td>
<td>4</td>
<td>4704</td>
</tr>
<tr>
<td>8+shuttle_4_0</td>
<td>3839</td>
<td>3.5</td>
<td>3821</td>
<td>6.5</td>
<td>4333</td>
<td>15.5</td>
<td>2187</td>
<td>6</td>
<td>9358</td>
<td>2.5</td>
<td>5164</td>
</tr>
<tr>
<td>8__0_4</td>
<td>3735</td>
<td>3.5</td>
<td>4326</td>
<td>5.5</td>
<td>3010</td>
<td>8.5</td>
<td>3153</td>
<td>3</td>
<td>5502</td>
<td>2</td>
<td>3660</td>
</tr>
<tr>
<td>8__0_4+shuttle</td>
<td>3708</td>
<td>3.5</td>
<td>4326</td>
<td>5.5</td>
<td>2653</td>
<td>12</td>
<td>2440</td>
<td>6.5</td>
<td>6545</td>
<td>3.5</td>
<td>4028</td>
</tr>
<tr>
<td>8+shuttle__0_4+shuttle</td>
<td>3723</td>
<td>3.5</td>
<td>4592</td>
<td>5.5</td>
<td>2929</td>
<td>12</td>
<td>2518</td>
<td>6.5</td>
<td>7826</td>
<td>2.5</td>
<td>4248</td>
</tr>
<tr>
<td>4_4_4</td>
<td>3744</td>
<td>1.5</td>
<td>5055</td>
<td>3.5</td>
<td>5014</td>
<td>8.5</td>
<td>3390</td>
<td>2</td>
<td>7175</td>
<td>0.5</td>
<td>4370</td>
</tr>
<tr>
<td>4_4_4+shuttle</td>
<td>3719</td>
<td>1.5</td>
<td>5055</td>
<td>3.5</td>
<td>3828</td>
<td>12.5</td>
<td>2187</td>
<td>6</td>
<td>8194</td>
<td>1</td>
<td>4706</td>
</tr>
<tr>
<td>4__0_8</td>
<td>4000</td>
<td>0</td>
<td>4000</td>
<td>2</td>
<td>4000</td>
<td>0</td>
<td>4000</td>
<td>0</td>
<td>4000</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>4__0_8+shuttle</td>
<td>3750</td>
<td>1</td>
<td>5471</td>
<td>2</td>
<td>2424</td>
<td>9</td>
<td>2518</td>
<td>6.5</td>
<td>8776</td>
<td>1.5</td>
<td>5592</td>
</tr>
<tr>
<td>TIMETABLE REF</td>
<td>3672</td>
<td>7</td>
<td>3589</td>
<td>8</td>
<td>2840</td>
<td>14</td>
<td>2540</td>
<td>6.5</td>
<td>4294</td>
<td>4.5</td>
<td>3228</td>
</tr>
</tbody>
</table>

Situation → Resolution → Disposition
A lot of performance indicators

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Average Delay (s)</th>
<th>Total Delay (s)</th>
<th>Max Total Delay (s)</th>
<th>Average Consecutive Delay (s)</th>
<th>Max Consecutive Delay (s)</th>
<th>Punctuality 5 min (% of running trains)</th>
<th>Canceled trains (absolute number)</th>
<th>Capacity occupation, Ht ↛ Ut</th>
<th>Extra Units compared to plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>12_0_0</td>
<td>43.8998</td>
<td>510</td>
<td>21.2463</td>
<td>510</td>
<td>94.73684</td>
<td>0</td>
<td>1.231</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12+shuttle_0_0</td>
<td>43.258</td>
<td>510</td>
<td>21.0339</td>
<td>510</td>
<td>95.83333</td>
<td>0</td>
<td>1.242</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8_4_0</td>
<td>98.8813</td>
<td>1739</td>
<td>67.4402</td>
<td>1206</td>
<td>88.88889</td>
<td>0</td>
<td>1.143</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8+shuttle_4_0</td>
<td>96.73</td>
<td>1739</td>
<td>65.6454</td>
<td>1206</td>
<td>89.16667</td>
<td>0</td>
<td>1.154</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8_0_4</td>
<td>37.2391</td>
<td>510</td>
<td>14.6082</td>
<td>510</td>
<td>97.22222</td>
<td>4</td>
<td>0.959</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>8_0_4+shuttle</td>
<td>37.1944</td>
<td>510</td>
<td>14.4421</td>
<td>510</td>
<td>97.2973</td>
<td>4</td>
<td>0.948</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8+shuttle_0_4+shuttle</td>
<td>36.7468</td>
<td>510</td>
<td>14.2366</td>
<td>510</td>
<td>96.49123</td>
<td>4</td>
<td>0.948</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4_4_4</td>
<td>56.6107</td>
<td>1739</td>
<td>24.9972</td>
<td>1206</td>
<td>92.79279</td>
<td>4</td>
<td>0.948</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4+shuttle_4_4+shuttle</td>
<td>56.818</td>
<td>1739</td>
<td>25.2173</td>
<td>1206</td>
<td>92.98246</td>
<td>4</td>
<td>0.948</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4_0_8</td>
<td>28.668</td>
<td>510</td>
<td>6.70236</td>
<td>510</td>
<td>92.98246</td>
<td>8</td>
<td>0.959</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>4_0_8+shuttle</td>
<td>29.3327</td>
<td>510</td>
<td>6.78802</td>
<td>510</td>
<td>100</td>
<td>8</td>
<td>0.959</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TIMETABLE REF</td>
<td>26.8934</td>
<td>510</td>
<td>5.81801</td>
<td>510</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIMETABLE REF

Institut für Verkehrsplanung
Institute for Transport Planning

F. Corman | 30.03.2019 | 18
Comparing them

| Alternative | Average Delay (s) | Total Max Total | Average Consecutive Delay (s) | Max Consecutive Delay (s) | Punctuality % (min) | Cancelled trains (absolute number) | Capacity | Extra compared plan | Units:Gener | Traveltime Ht→Aco | Freq Services Ht→Ut | Gener TravelTime Ht→Ut | Freq Services Ut→Aco | Gener TravelTime Ut→Ht | Freq Services Aco→Ut | Gener TravelTime Aco→Ut | Freq Services Aco→Ht | Gener TravelTime Aco→Ht | Freq Services Aco→Ut |
|-------------|-------------------|-----------------|------------------------------|----------------------------|---------------------|-----------------------------------|----------|-------------------|----------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 12_0_0 | 43.8998 | 510 | 21.2463 | 510 | 94.78684 | 0.234 | 0 | 3714 | 5 | 4075 | 8 | 2344 | 15 | 2198 | 6.5 | 4455 | 4.5 | 3452 | 11.5 |
| 12+shuttle_0_0 | 43.256 | 510 | 21.0339 | 510 | 85.8333 | 1.242 | 0 | 3714 | 5 | 4075 | 8 | 3179 | 15 | 2518 | 6.5 | 7697 | 3.5 | 4010 | 12.5 |
| 8_4_0 | 98.8813 | 1739 | 67.4402 | 1206 | 88.88889 | 1.143 | 4 | 3854 | 6.5 | 3844 | 6.5 | 3216 | 14.5 | 2104 | 4 | 6215 | 4 | 4704 | 11 |
| 8+shuttle_4_0 | 96.73 | 1739 | 65.6454 | 1206 | 89.16667 | 1.114 | 8 | 3839 | 3.5 | 3825 | 6.5 | 4333 | 15.5 | 2187 | 6 | 9358 | 2.5 | 5164 | 12.5 |
| 8_0_4 | 37.2391 | 510 | 14.6082 | 510 | 97.22222 | 0.959 | 0 | 3748 | 3.5 | 4326 | 5.5 | 3010 | 8.5 | 3153 | 3 | 5502 | 2 | 3660 | 7 |
| 8_0_4+shuttle | 37.1944 | 510 | 14.4421 | 510 | 97.2973 | 0.948 | 0 | 3708 | 3.5 | 4326 | 5.5 | 2653 | 12 | 2440 | 6.5 | 6545 | 3.5 | 4028 | 9 |
| 8+shuttle_0_4+shuttle | 36.7468 | 510 | 14.2366 | 510 | 96.49123 | 0.948 | 0 | 3732 | 3.5 | 4593 | 5.5 | 2929 | 12 | 2518 | 6.5 | 7826 | 2.5 | 4248 | 8.5 |
| A_4_4 | 56.6107 | 1739 | 24.9972 | 1206 | 92.79279 | 0.948 | 0 | 3744 | 3.5 | 5055 | 3.5 | 5055 | 8.5 | 3390 | 2 | 7175 | 0.5 | 4370 | 4.5 |
| 4_4_4+shuttle | 56.818 | 1739 | 25.2173 | 1206 | 92.98246 | 0.948 | 4 | 3719 | 1.5 | 5055 | 3.5 | 3828 | 12.5 | 2187 | 6 | 8194 | 1 | 4706 | 5.5 |
| 4_0_8 | 28.668 | 510 | 6.70236 | 510 | 100 | 0.959 | 0 | 4000 | 0 | 4000 | 2 | 4000 | 0 | 4000 | 0 | 4000 | 0 | 5000 | 1.5 |
| 4_0_8+shuttle | 29.3327 | 510 | 6.78802 | 510 | 100 | 0.959 | 0 | 3750 | 1 | 5471 | 2 | 2424 | 9 | 2518 | 6.5 | 8776 | 1.5 | 5592 | 4.5 |
| TIMETABLE REF | 26.8934 | 510 | 5.81801 | 510 | 100 | 0 | 0 | 3672 | 7 | 3589 | 8 | 2840 | 14 | 2540 | 6.5 | 4294 | 4.5 | 3228 | 11.5 |
Disruption management is complex

- Models can help, ...
- If you know which solutions would be acceptable (automatic scenario generation?)
- If you know which constraints exist (better model, more integration)
 If you know how dispatcher would take decisions (?)
- If you know how passengers would react
- Statistics cannot help
- More integration/optimization make smaller problems disappear, bigger problems arise
Some positive thoughts

T Partl, Master Thesis ETH
Rastatt

- Disruption for about two months, 15.08 to 02.10 2018. No traffic.
Rastatt

- European corridor Rotterdam Genoa
Cancellations; delays

- Cancel train
- Buses, passengers
- Freight? (not counted)

Figure 7: Numbers of extra and cancelled trains arriving at Zurich HB and Olten
Primary delays

- Trains coming from Germany

Figure 19: Yearly pattern of average delays of all trains from Germany arriving at Basel SBB

Figure 21: Delays of all trains from Germany arriving at Liestal and Zurich HB, which non-stop came from Basel SBB
Secondary delays

- (delays at other stations have been checked and are not relevantly changed)

Figure 15: Yearly pattern of median delays in Liestal, Laufen and Rheinfelden including its moving average

Figure 17: Yearly pattern of median delays in Zurich HB and Olten including its moving average
Disruptions are good (?)

- Clear effect of isolation of network, → less delays
- Possibility to understand the degree of interconnection of networks
- Lessons learnt for internal dynamics/ external dynamics
- Never again!
Interaction modelling
Passengers Routing in public transport networks

- Divide hierarchically into layers post process, simulate, adjust
- Equal importance given to problem: iterate coordinate, converge
Schedule-based Transit assignment

Knowing passengers demand per time
Routing of passengers is based on shortest travel time
Vehicles (trains) have infinite passengers capacity

(relatively strong assumptions!)

Schedule-based assignment → min cost flow problem
scheduling trains in an infrastructure with limited capacity, taking into account the number of passengers per train

What I believe the other person would do

What will I do?

routing of passengers by taking into account the train schedule, their origin and destination, the minimization of their discomfort

What I believe the other person would do

What will I do?
Possible solutions – who does what, why?

- Optimize everything (integrated model) ~System optimum

- Minimize delay weighted by passengers; Passengers react to schedule, trains react to passengers choice ~Nash

- Keep the timetable order; or optimize schedule Passengers adjust route choices ~Inv. Stackelberg

- Passengers publish their choices / cost functions; optimize schedule to minimize travel time ~Stackelberg
Upper bound to optimum

Delaying trains instead of passengers:
12% shorter travel time vs timetable
11% optimality gap
Larger/better models

N. Leng, Agent-based simulation approach for disruption management in rail schedule, CASPT
Operations are not terribly good

- Example delay in Zurich
- Very dense network
A larger perspective onto activities - MATSim
Example disruption, Zurich

Oerlikon
~300 trains/ day
~85000 pax/day

Main station
~2900 trains/ day,
450000 pax/ day
I know things in advance
“Vision of God”

I never update my plan;
Pessimistic
Lessons learnt

- Large simulation models are complex
- The realistic behavior of people is complex to attain
- Interplay between operations, passengers decisions and (limited) information is crucial, but hard to model
- New developments possible soon
More understanding

A, Marra, Multimodal passive tracking of passengers to analyse public transport use, STRC
Study mobility in-vivo

- Typically user interaction-intensive
- Typically battery intensive
- Own developed
- Tested on ~50 students
Cleaning of data
This is different!

Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have the same color, that goes from red to yellow according to the time spent in the activity. A white space indicates absence of signal.
Lessons learnt

- Disruptions are gray
- Large samples might help; data must be complemented with annotations
- Choice models can be estimated
- Mobility providers might know about us than we know
Disruptions in railway/public transport networks

Francesco Corman
francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems