HUMAN FACTORS CHALLENGES OF SEMI-AUTOMATED DRIVING

Alison Smiley, PhD, CCPE

Advanced Driver Assistance Systems (ADAS)

* ABS

- * Electronic Stability Control
- Navigation
- Lane control systems
- Adaptive cruise control with assisted braking
- Forward collision warning with assisted braking
- * AEB

Advanced Driver Assistance Systems (ADAS) (cont)

- * Curve speed warning
- Blind spot monitoring
- Back up warning
- * Cross-traffic detection
- * Fatigue warning
- * Lane change control
- * Road sign recognition
- * Intelligent headlight control
- * Automated parking

What are the human factors challenges?

Human Factors Challenges

- * Transfer of control and loss of situational awareness
- * Behavioural adaptation
- * Transfer of control and distraction
- * Accuracy of mental model
- * Allowance for driver variability

Challenge 1: Transfer of Control

- Sharing of control
 between the system and
 the driver
 - Expectation of drivers to continue monitoring semiautonomous system
 - Sudden re-introduction of out-of-loop driver into control loop

Challenge 1: Transfer of Control

* Simulator study of driver response to critical events

- * Faster response to critical events (0.4 s vs 1.9 s)
- * Longer minimum headways
- Longer time to contact
- * In manual vs. semi-automated mode
- Drivers may have reduced situational awareness and/or over-trust automated system
- * Need to keep drivers engaged and in the loop

(Merat & Jamson, 2008)

Challenge 2 : Behavioural adaptation

Simulator study found:

- Increased driver engagement in secondary tasks (entertainment, eating, grooming) with increased automation (3 levels)
- Most sustained attention to DVD and listening to radio
- * 33% fewer glances to centre for autonomous vs. manual

(Carsten et al. 2012)

Challenge 3 : Distraction

Simulator study of manual vs. semi-automated, with and without distraction (Twenty Questions), found:

- If no distraction, response to critical incidents is similar in manual and highly automated conditions
- Worst performance occurred when drivers in automated mode were called upon to handle a critical incident while distracted

(Merat et al., 2012)

Eyes on the Road

* Looking away from forward view for more than 2 sec in a 5 sec period doubles risk of a crash

(Klauer et al., 2006)

Challenge 4 : Accuracy of Mental Model

* Driver mental model of system operation

- Knowing role (e.g., daytime headlights)
- Knowing system mode
- Using unfamiliar (e.g., rental) vehicles
- Understanding system limitations
 - e.g., ACC and detection of debris/rocks/queued vehicles

2018 Toyota Manual ACC

DO NOT USE ACC WHERE:

- * There are pedestrians, cyclists, etc.
- * On slippery roads
- * Where there is rain, snow, etc. on front of sensor
- Where there are sharp changes between up and down gradients
- * On winding roads

Challenge 5: Allowance for Driver Variability

- * How much leeway to allow drivers in setting desired speed, headway?
- * What are appropriate warning intervals?

Crashes Involving Semi-Automated Vehicles

Crash Case 1

- Driver using Tesla Autopilot
- * Requires touching wheel at regular intervals to indicate paying attention
- Driver crashed into white trailer crossing in front while watching movie, daytime
- * NHTSA investigation
 - * Driver had 7 seconds to respond
 - * System functioned as designed
 - Concern re misleading use of term "autopilot"
 - * Crash rate down by 40% since introduction of Autopilot

Crash Case 2

- * Uber semi-automated vehicle struck woman crossing two lanes per direction roadway at night
- * Woman pushing a bicycle
- * Mid-block crossing in open lane
- * When ACC/LC on, AEB does not work
- * Pedestrian detected at 6 sec to collision
- * AEB responded at 1. 3 sec to collision

Crash Case 2

Closing Thoughts

- * Transition period will be lengthy
- * Transfer of control problematic due to distraction temptation and loss of situational awareness
- Exceptions to coverage so drivers must continue to attend
- But unrealistic to expect drivers to monitor the same way with automatic vs. manual
- * Over-trust may be a problem
- Potential for large reduction in crashes but also for new crash types

Thank You for Your Attention