
Encounters	in	Theory	and	History	of	Education	
Vol.	19,	2018,	163-185	

ISSN	2560-8371	
Date	of	submission:	2018-06-19																																			http://doi.dx.org/	10.24908/eoe-ese-rse.v19i0.11867	
Date	of	acceptance:	2018-11-14	 			Ó	Encounters	in	Theory	and	History	of	Education	163	

Compara	
	

Marcus	A.	Gordon,	Michael	Carnevale,	Minsheng	Zheng,	Dr.	Sara	Diamond		
Visual	Analytics	Lab,	OCAD	University,	Toronto,	Canada	

	
Abstract:	The	OCAD	Visual	Analytics	Laboratory	(VAL)	has	developed	a	taxonomy	of	end	users,	
software	systems,	data	types,	tasks	and	interactivity	within	the	domain	of	smart	city	
transportation	planning.		This	paper	contributes	to	the	taxonomy	by	creating	Compara,	an	
intuitive,	interactive	and	searchable	index	that	visualizes	the	attributes	of	software	from	a	
wide-range	of	applications	and	technologies.	The	taxonomy	began	as	a	spreadsheet	that	we	
transformed	into	a	custom	interactive	data	visualization	that	could	help	users	find	and	
understand	existing	tools	and	their	attributes	

The	taxonomy	and	interactive	index	are	a	component	of	the	iCity	project	which	brings	
together	academic,	government,	and	industrial	partners	in	order	to	improve	the	quality	of	life	
for	urban	residents	and	visitors	through	the	development	and	integration	of	advanced	IT	
infrastructure	for	the	purpose	of	managing	transit	and	transportation.		The	taxonomy	and	
resulting	tools	discussed	in	this	paper	have	expanded	to	include	resources	for	urban	planning	
which	also	impact	transit	and	transportation.	One	of	the	primary	uses	of	the	taxonomy	is	to	
help	various	iCity	project	teams	and	stakeholders	locate	software	that	may	be	useful	to	their	
design	and	development	process,	as	well	as	to	understand	the	end-users	of	this	technology.	
The	taxonomy	may	be	used	to	develop	a	city	management	dashboard	for	city	planners	and	
analysts,	or	equally,	to	design	a	city-services	facing	mobile	service	application.		
	
Keywords:		Smart	Cities,	Interface	design,	urban	planning,	Data	visualization,	taxonomy	
	
	
Résumé:	Le	Laboratoire	d’Analyse	Visuelle	de	OCAD	(VAL)	a	développé	une	taxinomie	
d’utilisateurs	finals,	de	systèmes	de	software,	types	de	données,	tâches	et	activités	dans	le	
domaine	de	la	planification	du	transport	des	villes	intelligentes.	Ce	papier	contribue	à	une	
taxinomie	en	créant	Compara,	un	index	intuitif,	interactif	et	de	recherche	qui	visualise	les	
caractéristiques	de	software	à	partir	d’une	large	gamme	d’applications	et	de	technologies.	La	
taxinomie	débuta	par	une	feuille	de	calcul	que	nous	avons	transformée	en	visualisation	
interactive	de	données	personnalisées	pour	aider	les	utilisateurs	à	trouver	et	comprendre	les	
outils	disponibles	et	leur	fonction.	La	taxinomie	et	son	index	interactif	sont	un	élément	du	
projet	iCity	qui	relie	les	partenaires	académiques,	gouvernementaux	et	industriels	pour	
améliorer	la	qualité	de	vie	des	résidents	urbains	et	des	visiteurs	en	développant	et	intégrant	les	
infrastructures	de	TI	pour	mieux	gérer	le	transit	et	le	transport.	La	taxinomie	et	les	outils	qui	en	
résultent	et	sont	analysés	dans	ce	document	se	sont	amplifiés	pour	inclure	des	ressources	pour	
la	planification	urbaine	qui	ont	également	un	impact	sur	le	transit	et	le	transport.	La	taxinomie	
est	utilisée	principalement	pour	aider	les	différentes	équipes	de	projets	iCity,	et	les	partis	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

164	•	Encounters	19,	2018,	163-185	
 

intéressés,	à	trouver	le	software	pouvant	être	utile	à	leur	processus	de	design	et	de	
développement,	ainsi	qu’à	comprendre	les	destinataires	de	cette	technologie.	

La	taxinomie	peut	être	utile	pour	aider	à	développer	un	panel	d’administration	pour	les	
planificateurs	de	villes	et	les	analystes,	ainsi	que	pour	aider	à	dresser	un	plan	de	services	
urbains	mobiles	pour	la	ville	en	quête	d’une	application	de	tels	services.	
	
Mots-clés:	Les	villes	intelligentes,	Les	indices	interactifs,	La	planification	urbaine,	Visualisation	
de	données,	Taxonomie	
	
	
Resumen:	El	Laboratorio	de	Analítica	Visual	(VAL)	del	Ontario	College	of	Arts	and	Design	(OCAD)	
ha	desarrollado	una	taxonomia	de	usuarios	finales,	sistemas	de	software,	tipos	de	datos,	tareas	
e	interactividad	dentro	del	dominio	del	plan	de	transportation	de	la	ciudad	inteligente.	Este	
artículo	contribuye	a	una	taxonomía	con	la	creación	de	Compara,	un	index	intuitivo,	interactivo	
e	investigable	que	visualiza	los	atributos	del	software	desde	un	amplio	espectro		de	aplicaciones	
y	tecnologías.	La	taxonomía	comenzó	como	una	hoja	de	cálculo	(spreadsheet)	que	
transformamos	en	visualización	interactiva	personalizada	de	datos	que	puede	ayudar	a	los	
usuarios	a	encontrar	y	entender	herramientas	(tools)	y	atributos	existentes.	

La	taxonomía	y	el	índice	interactivos	son	un	componente	del	proyecto	iCity	que		une	a	
miembros		de	la	academia,	el	gobierno,	y	la	industria	con	el	objeto	de	mejorar	la	calidad	de	vida	
de	los	residentes	urbanos	así		como	de	los	visitantes	a	través	del	desarrollo	e	integración	de	una	
infrastructura	IT	avanzada	con	el	propósito	de	gestionar	(Managing)		tránsito	y	transportación.	
Uno	de	los	usos	primarios	de	la	taxonomía	es	ayudar	a		various	equipos	y	a	las	partes	
interesadas		del		proyecto	iCity	a	localizar	software	que	pueda	ser	útil	para	sus	procesos	de	
diseño	y	desarrollo,	asi	como	entender	a	los	usuarios	de	esta	tecnología.	La	taxonomía	puede	
ser	usada	para	desarollar		un	panel	de	gestión	para	los	planificadoresy	analistas		de	la	ciudad	o	
igualmente	para	diseñar	servicios	móviles	de	la	ciudad.	

	
Palabras	claves:	ciudades	inteligentes,	diseño	interfaz	(interface),	planificación	urbana,	
visualización	de	información,	taxonomía		
	
	

	
Editor’s	note:	

This	is	a	pdf	version	of	a	digital	native	work.		For	a	fuller	appreciation	of	the	work,	we	
encourage	you	to	view	the	html	version,	which	is	currently	housed	at:	
https://ojs.library.queensu.ca/public/journals/6/content/gordon/index.html.			

	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

165	•	Encounters	19,	2018,	163-185	
 

This	work	references	an	interactive	web-based	visualization	that	the	reader	is	
encouraged	to	explore.		The	interactive	web-application	is	currently	housed	at:	
https://ojs.library.queensu.ca/public/journals/6/content/gordon/app.html.	

	
	

	

Description	of	Visualization	Goals	
The	data	visualization	problem	we	address	is	how	to	convert	a	large	and	growing	

spreadsheet	of	categorized,	hierarchical,	and	relational	qualitative	data	into	an	interactive	
visual	diagram	that	can	be	used	to	quickly	understand	the	broad-scale	application	landscape	of	
transit	and	transportation	digital	tools.	We	look	for	hierarchical	patterns	and	represent	the	
associations	that	the	taxonomy	indicates	of	sub-attributes.	Put	another	way,	how	can	we	
visualize	a	software	taxonomy	and	the	relationships	that	it	captures?	It	includes	sub-attributes	
such	as	user-types,	technologies,	data	types	and	format,	tasks,	visualization	types,	and	levels	of	
interactivity.	The	aim	of	the	taxonomy	is	to	help	end-users	sort	through	the	software	landscape	
to	understanding	the	qualities	of	domain	tools	and	then	choose	products	or	design	software	to	
meet	the	needs	of	the	domain.	To	be	successful,	Compara	must	deploy	a	consistent	glossary	of	
terms,	so	that	attribute	terms	appear	for	multiple	software	products.	Compara	must	also	allow	
users	to	identify	software	associated	with	specific	user-types.	Since	user-type	is	one	attribute	
amongst	many,	Compara	must	generalize	the	identification	algorithm	for	other	attributes.	The	
scope	and	limitations	of	this	data	visualization	problem	is	impacted	by	the	reality	that	the	
software	taxonomy	can	never	said	to	be	fully	complete	as	new	software	are	always	being	
released,	and	identifying	every	last	one	in	the	market	is	difficult.	This	is	a	data	collection	
problem	not	a	visualization	problem.	Ideally,	the	visualization	that	we	develop	should	be	able	to	
generalize	to	other	instantiations	of	this	kind	of	problem,	namely	visualizing	an	entire	
hierarchical	index	and	its	associated	attributes.	New	data	can	constantly	be	added.		

Figure	1	illustrates	the	overall	structure	of	the	taxonomy	spreadsheet	in	its	original	
instantiation.	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

166	•	Encounters	19,	2018,	163-185	
 

	
	

Figure	1:	Cropped	subsection	of	spreadsheet	showing	how	the	software	hierarchy	is	organized,	
as	well	as	the	associated	attributes	for	each	software.	Software	are	categorized	based	on	their	
use	and	type.	Smallest	brackets	represent	individual	software.	

	

Objectives	and	Questions	
The	immediate	objectives	and	research	questions	are:	
● To	implement	a	visualization	that	will	simultaneously	show	an	hierarchical	qualitative	

structure,	as	well	as	its	associations	to	external	attributes.	Does	such	a	visualization	
technique	exist?	

● To	determine	if	the	spreadsheet	format	can	be	simplified	to	show	the	overall	structure	of	
its	relational	contents	more	clearly.	

● To	investigate	how	an	indexical	structure	can	be	visualized	in	an	aesthetic	and	engaging	
way.	

● To	investigate	whether	this	visualization	can	be	implemented	most	effectively	as	a	static	
visual	artifact,	or	if	its	functional	purpose	can	be	improved	through	interactive	elements?	

● To	determine	how	a	visualization	technique	for	Compara	can	be	generalized	and	scaled	as	
the	software	taxonomy	continues	to	grow.	

	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

167	•	Encounters	19,	2018,	163-185	
 

Literature	Review	
We	focused	on	the	general	themes	of	hierarchical	structures,	node-link	representation,	

and	examples	of	visual	taxonomy	from	software	research.	A	taxonomy	is	essentially	a	system	of	
classification	that	typically	organizes	categories	by	their	sub-ordinate	or	super-ordinate	
relationships	within	a	hierarchy	(Cain,	2011).	Taxonomic	classification	systems	exist	within	
many	domains	of	research	including	software	engineering,	database	work,	genealogical	
recording,	bibliometrics,	and	others,	but	the	idea	is	most	typically	associated	with	the	
classification	of	organisms	in	the	biological	sciences.	Taxonomies	and	hierarchies	are	often	
visualized	using	tree	diagrams,	a	visualization	technique	that	dates	back	centuries	and	whose	
early	works	are	often	attempts	to	depict	the	ancient	classification	systems	developed	by	
philosophers	such	as	Aristotle.	

	 In	The	Book	of	Trees:	Visualizing	Branches	of	Knowledge	by	Lima	(2014),	various	
kinds	of	tree	diagrams	and	their	historical	origins	are	depicted.	Tree	diagrams	are	not	limited	to	
the	typical	visual	structure	that	actually	looks	like	a	figurative	tree,	and	the	concept	of	
visualizing	hierarchical	structures	has	taken	on	more	and	more	abstracted	forms	over	time,	
each	with	their	unique	advantages.	There	are	eleven	tree	diagrams	described	in	Lima’s	book.	
Some	points	on	each	tree	diagram	adaptation	are	provided	here:	

	
Figurative	Tree	Diagram:	Original	tree	diagrams	that	looked	like	literal	trees.	

Diagrammatic	terms	like	root	node,	branch	link,	and	leaf	were	adapted	from	this	original	
metaphor.	

	
Vertical	Tree	Diagram:	Common	tree	diagram	abstracted	from	figurative	trees.	Nodes	

and	links	can	incorporate	a	variety	of	visual	features,	symbols,	or	icons	to	convey	information.	
	
Horizontal	Tree	Diagram:	Common	tree	diagram	with	correspondence	to	left-to-right	

reading.	
	
Multidirectional	Trees:	Tree	diagram	with	no	hierarchical	ordering	along	a	particular	

spatial	axis.	Effective	for	very	large	hierarchical	systems	as	visual	space	is	optimally	used,	but	
ranking	structure	becomes	unclear	due	to	flexible	layout.	

	
Radial	Tree:	Tree	structure	ordered	circularly,	with	the	root	in	the	center	and	sub-

ordinate	hierarchies	moving	towards	the	peripheral.	Spatially	efficient	compared	to	tree	
diagram.	

	
Hyperbolic	Tree:	Radial	tree	typically	rendered	in	digital	space	where	some	links	and	

nodes	are	more	emphasized	than	others.	Optimizes	screen	space	that	radial	trees	might	waste.	
	
Treemap:	Space	filling	visualization	depicting	hierarchies	using	nested	rectangles.	Size	of	

rectangles	can	correspond	to	quantitative	attributes.	Spatially	efficient	and	legible.	
	
Voronoi	Treemap:	Similar	to	Treemaps	but	use	polygons	rather	than	rectangles	to	

present	hierarchies.	Size	of	polygons	can	correspond	with	quantitative	attributes.	More	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

168	•	Encounters	19,	2018,	163-185	
 

spatially	optimized	than	Treemaps	and	hierarchies	are	easier	to	distinguish	due	to	non-
recurring	shapes.	

	
Circular	Treemap:	Similar	to	other	treemaps,	hierarchies	depicted	as	shapes	within	

shapes,	and	size	can	correspond	to	data.	Unlike	other	treemaps	this	type	wastes	visual	space.	
	
Sunburst:	Treemap	structure	ordered	circularly.	Hierarchies	depicted	with	root	in	center	

and	sub-ordinate	hierarchies	moving	towards	the	periphery.	Size	of	shapes	can	correspond	to	
data.	Spatially	efficient	but	distinctions	between	layers	can	be	hard	to	perceive.	

	
Icicle	Tree:	Combination	between	conventional	Tree	Diagram	and	Treemap.	Organized	

top-to-bottom	or	left-to-right,	hierarchy	is	shown	as	adjacent	rectangles	to	show	rank.	Size	of	
shapes	can	correspond	to	data.	Not	as	spatially	efficient	as	conventional	Treemap.	

	
In	addition	to	the	challenge	of	visualizing	hierarchical	structures,	our	visualization	

problem	also	involves	revealing	attributes	associated	with	individual	software,	which	in	the	
current	project	context	are	found	as	the	most	subordinate	leaf	nodes.	Visualizations	showing	
software	and	associated	attributes	can	be	found	in	software	engineering	research.	One	such	
example	comes	from	Grimstead	et	al	(2005)	where	they	create	a	list	of	categorized	software	
systems	and	score	them	based	on	their	scalability.	In	the	table	they	present,	these	software	
systems	are	each	associated	with	the	presence	or	absence	of	some	attributes.	To	summarize	
the	data,	the	researchers	made	numerous	attribute	values	and	averaged	them,	and	then	
visualized	the	scores	along	the	axes	of	a	polar	plot	to	create	shapes	for	each	software	group.	
Note	that	leaf-level	taxonomical	information	is	lost	in	the	averaged	polar	plot.	

Another	example	of	taxonomy	in	the	area	of	software	development	comes	from	Kucher	
and	Kerren	(2015)	where	they	visualized	a	taxonomic	classification	system	for	text-based	
visualizations.	Their	taxonomy	is	an	attempt	to	understand	the	inventory	of	text-based	
visualization	that	is	a	result	of	social	media	creating	an	explosion	of	data	to	mine.	In	their	paper	
these	authors	offer	a	taxonomy	of	text-based	visualization	software	as	well	as	a	browser-based	
visual	survey	of	text-based	visualizations	that	they	have	identified	(http://textvis.lnu.se/).	

For	our	taxonomy	and	attribute	visualization	to	be	comprehensive,	we	must	be	able	to	
show	connections	at	the	leaf-level	that	reveal	individual	software	to	be	compared.	Types	of	
node-link	visualizations	showing	leaf-level	connections	include	arc-diagrams	and	bi-partite	
diagrams.	Arc-diagrams	draw	link	connections	between	nodes	that	exist	along	a	single	axis	
(Wattenberg,	2002)	while	bi-partite	diagrams	show	linked	associations	between	two	sets	of	
nodes	representing	distinct	classes	(Wang	et	al,	2015).	An	example	of	an	arc-diagram	depicting	
relations	between	software	task	types	is	a	visualization	created	by	Autodesk	in	2010	depicting	
which	application	tasks	are	most	used	in	their	3D	modelling	software	3Ds	Max.	In	contrast,	a	
bipartite	graph	from	a	neuroscience	article	showed	which	of	two	sets	of	brain	regions	are	
connected	(Bohland	et	al,	2009).	 	

While	not	comprehensive,	the	above	brief	literature	review	offers	a	view	of	the	
landscape	for	hierarchical	and	software	taxonomic	visualization.	Interestingly,	we	did	not	find	
an	identical	example	of	software	taxonomy	visualization	that	solves	the	exact	same	problem	as	
our	current	project	mandate.	While	the	taxonomic	systems	visualized	in	the	literature	showed	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

169	•	Encounters	19,	2018,	163-185	
 

categorization	schemes	for	software,	we	have	an	entire	database	of	software	that	must	be	
organized	into	a	hierarchy	and	sorted	based	on	external	attribute	values.		

This	database	consists	of	a	broad	range	of	software	technologies	that	were	chosen	at	
the	inception	of	the	project	as	appropriate	for	use	in	transportation	planning	and	analysis.	We	
concentrated	on	tools	that	incorporated	elements	of	analysis	and	visualization,	and	spanned	
two	and	three-dimensional	approaches	to	visualization.		We	were	guided	by	our	comparative	
evaluation	of	two	applications	that	were	under	development	as	part	of	the	iCity	project:	
Betaville	and	StoryFacets	(Dunne	et	al,	2016).	The	Dunne	et	al.	research	considered	applications	
that	we	built	and	maintained	for	general	public	use,	with	these	two	applications	acting	as	
different	examples	of		analysis	capability	and	visual	representation.	We	recognize	that	the	list	
of	software	that	we	analyzed	for	Compara	are	a	limited	sample	constrained	by	context	and	
timing.		We	did	not	capture	the	constant	infusion	of	new	software	and	upgrades	of	existing	
software	that	occurs	in	urban	informatics.			

In	the	next	section,	we	outline	the	design	process	and	results	of	our	prototyping	efforts.		
	

Methods	–	Design	Process	
To	solve	the	visualization	problem	we	undertook	design	sketching	and	rapid-

prototyping.	For	our	visualization	to	be	useful,	we	aimed	to	visualize	as	much	of	the	
spreadsheet	information	as	possible	without	making	the	visualization	confusing	or	difficult	to	
understand.	We	started	our	design	process	focused	mostly	on	the	hierarchical	structure	of	the	
software	taxonomy	and	later	integrated	attribute	visualizations.	Below	images	that	
demonstrate	our	design	sketching	and	thinking	process.	Some	are	hand-sketched	and	others	
created	with	digital	tools.	A	description	of	each	of	the	sketches	is	provided	below	each	figure.		

	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

170	•	Encounters	19,	2018,	163-185	
 

	
Figure	2:	Early	sketching	ideas	for	the	software	taxonomy.	The	first	instinct	was	to	begin	thinking	
about	standard	tree	diagrams.	

	
We	created	a	tree	diagram	as	a	starting	point	–	Figure	3.	The	root	node	represents	the	

entire	dataset,	which	branches	out	into	software	categories.	The	final	sub-ordinate	level,	the	
leaf	level,	consists	of	each	software	system.	This	diagram	is	an	example	of	a	multidirectional	
tree	diagram	and	was	manually	constructed	using	Simplemind,	a	mind-mapping	application.	
This	first	step	was	promising	as	it	represents	our	first	digital	representation.	This	visualization	
however	was	hand-made	and	not	generated	by	inputting	data	and	running	an	algorithm,	and	
therefore	was	not	a	suitable	finished	solution	for	this	project.		

	

	
	

Figure	3:	Our	 first	 tree	diagram	showing	 the	 software	 taxonomy	categorized	 in	a	hierarchical	
structure.		
	

In	parallel	to	the	taxonomy	research	(Bowes	et	al	2018),	the	software	examples	were	
organized	into	eight	categories.		These	groupings	represented	tasks	that	professionals	in	urban	
informatics	performed.	We	experimented	with	a	series	of	different	ideas.	We	first	planned	to	
connect	the	leaves	of	the	tree	diagram	to	show	relationships	between	software	through	arcs.	
We	then	created	a	sunburst-like	visualization,	with	a	chord	diagram	in	the	center	to	show	
relationships.	We	later	tried	force-diagrams,	a	type	of	multidirectional	tree	diagram	using	web-
based	spatial	auto-organization	based	on	weighted	relationships.	Finally,	we	attempted	
treemaps	with	inner-connections	between	leaves,	and	the	same	using	circular	treemaps.	In	all	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

171	•	Encounters	19,	2018,	163-185	
 

cases,	we	tried	to	represent	a	hierarchy,	and	then	introducing	new	lines	or	visual	variables.	
None	of	these	represent	a	comprehensive	solution,	but	this	was	an	important	brainstorming	
session	when	considering	various	options.	

We	then	revisited	the	original	tree	diagram	but	added	external	nodes	as	illustrated	in	
Figure	4.	Figure	3	can	be	seen	in	the	center	of	the	diagram,	while	the	clusters	are	the	periphery	
represent	the	external	attributes.	Connections	from	the	taxonomy	leaves	to	the	attribute	nodes	
visualizes	which	software	is	associated	with	which	of	the	attributes.	This	visualization	is	a	
precursor	to	our	final	project	solution,	but	reveals	some	important	lessons	and	limitations.	
What	this	indicates	is	that	while	this	complex	node-link	setup	does	in	fact	show	all	the	
information	simultaneously,	it	remains	rather	confusing	and	difficult	to	understand.	Tracing	the	
connections	from	attributes	to	software	taxonomy	is	difficult	to	follow,	and	the	image	is	too	
busy	to	easily	follow	and	see	the	intricate	relationships.	This	visualization	was	also	made	
manually	using	Simplemind.	

	

	
	

Figure	4:	Revisiting	our	initial	tree	diagram	from	Figure	3,	but	now	adding	external	nodes	to	
represent	the	attribute	information.		
	

We	experimented	with	the	idea	of	connecting	multiple	tree	diagrams	in	an	ordered	
fashion,	as	in	Figure	5,	but	it	became	clear	that	this	was	interesting	but	unnecessary,	and	that	
the	concept	of	a	bipartite	graph	(mentioned	in	the	literature	review)	would	be	sufficient	for	
matching	software	with	attributes.	At	this	level	of	design	thinking	we	became	confident	that	
our	visualization	concept	of	combining	tree	diagram	with	a	bipartite	graph	could	actually	work	
to	represent	both	the	taxonomy	and	the	associated	attributes.	From	here	we	felt	comfortable	
to	begin	prototyping	using	more	committed	and	advanced	methods,	as	will	be	shown	below.	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

172	•	Encounters	19,	2018,	163-185	
 

	
	
Figure	5:	Design	sketches	showing	our	conceptualization	for	connecting	an	organized	horizontal	
tree	diagram	representing	the	taxonomy,	with	an	external	set	of	nodes	representing	the	external	
attributes.		

	

Results	-	Design	and	Implementation	of	the	Tree	Diagram	/	Bipartite	Graph	
The	final	result	of	our	design	process	and	implementation	is	an	interactive	web-based	

tree-diagram/bipartite	graph.	This	section	will	describe	the	functionality	and	characteristics	of	
the	final	prototype,	as	well	as	discuss	the	design	process	for	the	final	iterations.	Figure	6	shows	
the	final	iteration	of	the	tree-diagram/bipartite	graph	that	shows	the	entire	software	taxonomy	
as	well	as	associated	attributes	for	each	leaf-level	software	platform.	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

173	•	Encounters	19,	2018,	163-185	
 

	
	

Figure	 6:	 Final	 tree-diagram/bipartite	 graph	 visualization	 of	 the	 software	 taxonomy	 and	
attributes	dataset.		

	
The	horizontal	tree-diagram	(left)	shows	the	hierarchical	categorization	structure	of	the	

individual	software	platforms	that	are	found	as	the	sub-ordinate	leaf	level	of	the	tree.	The	
bipartite	graph	is	composed	of	the	software	leaf-level	from	the	tree-diagram,	combined	with	
the	set	of	nodes	and	links	on	the	right,	which	represent	connections	to	qualitative	attribute	
values	for	the	category	of	“user-type”.	Effectively,	this	visualization	shows	the	entire	taxonomy	
of	software	and	the	types	of	users	(e.g.,	designer,	planner,	citizen,	etc.)	most	likely	to	benefit	
from	using	each	software.	At	the	top-right,	one	can	see	a	drop-down	menu	that	allows	the	user	
to	switch	attributes	from	“user-type”	to	“task	type”	and	vice-versa.	Interactive	elements	were	
added	to	the	visualization	in	order	to	enhance	its	usefulness	in	terms	of	highlighting	
software/attribute	associations	for	analysis,	switching	between	sets	of	attributes	linked	to	the	
tree-diagram,	and	increasing	readability.		Five	interactive	elements	include	link	highlights	
(Figure	7),	node	highlights	(Figure	8),	node	selection	(Figure	9),	attribute	switch	(Figure	10)	and	
zoom.				

	
	
	
(1) Link	Highlight	

	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

174	•	Encounters	19,	2018,	163-185	
 

	
	

Figure	7:	When	the	mouse	hovers	over	a	node	or	link	between	software	and	attribute,	the	node-
link	 connection	 is	 highlighted	 in	 blue.	 If	 a	 node	 has	 multiple	 links,	 all	 attached	 links	 are	
highlighted.	

	
(2)	Node	Highlight	

	

	
Figure	8:	When	the	mouse	hovers	over	a	node	(either	software	or	attribute),	the	connections	to	
that	 node	 are	 highlighted	 in	 blue.	 This	 acts	 to	make	more	 clear	which	 attribute	 features	 are	
related	 to	which	 software	platforms,	 and	vice-versa.	 The	bipartite	graph	with	 its	 grey	 links	 is	
difficult	to	interpret	on	its	own	and	this	was	added	to	help	with	exploring	relationships.	

	
(3)	Node	Selection	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

175	•	Encounters	19,	2018,	163-185	
 

	
	

Figure	9:	When	users	mouse-click	on	a	node,	the	connections	to	that	node	are	highlighted	and	
locked	until	 further	 clicks.	 This	allows	users	 to	 compare	one	 set	of	 selected	connections	 to	a	
second	set	that	is	highlighted	by	mouse-hover.	
	

(4)	Attribute	Switch	
	

	
Figure	 10:	 Using	 the	 drop-down	menu	 at	 the	 top-right	 of	 the	 visualization	 users	 can	 switch	
between	attributes	and	their	value	sets	on	the	right	side	of	the	bipartite	graph.	The	two	attribute	
sets	include	“user	types”	(left)	and	“tasks”	(right).	

	
To	increase	the	legibility	of	our	graph,	users	can	zoom	close	up	to	the	visualization	to	

read	text	or	focus	on	specific	visual	regions.	The	zoom	centers	on	the	current	mouse	location.	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

176	•	Encounters	19,	2018,	163-185	
 

Implementation	
The	implementation	of	our	tree-diagram/bipartite	graph	is	described	below.	To	

implement	the	design	for	the	tree-diagram/bipartite	graph,	we	decided	to	use	the	web-browser	
visualization	technology	D3.	We	chose	D3	as	there	are	many	visualization	techniques	previously	
implemented	in	D3.	D3	is	a	robust	Javascript	library	with	rich	development	resources	and	
extensive	community	support	and	it	is	open	source.	It	effectively	supports	interactivity.	It	is	
easy	to	integrate	D3	into	any	web	application	framework.	There	will	thus	be	less	required	effort	
in	producing	a	web-based	dashboard	application	that	could	be	useful	for	presenting	to	OCAD	U	
researchers	or	stakeholders.	

We	wrote	a	script	that	produces	the	visualization	in	a	web-browser.	The	script	parses	
and	models	the	data	read	from	a	JSON	file	and	renders	a	hybrid	visualization.	The	data	
processing	is	shown	in	Figure	11	System	diagram.	
	

	
Figure	11:	System	diagram.	First,	a	CSV	file	is	converted	to	a	JSON	file.	Next,	the	data	gets	parsed	
and	modelled	 from	a	 JSON	 file	 into	 d3-compatible	 data	 structure.	 Finally,	 the	 visualization	 is	
rendered.	

	
Since	D3	works	best	with	standard	file	formats	such	as	CSV	and	JSON,	we	manually	

extracted	and	formatted	the	data	from	the	raw	spreadsheet	file	to	a	CSV	file.	Then	we	
converted	the	CSV	file	to	a	JSON	file	using	an	external	web	service	with	a	custom	template.	

We	explain	the	algorithm	to	build	the	tree	and	bi-partite	diagram	in	terms	of	node	and	
link	construction.	For	the	nodes	and	links	of	the	tree	diagram,	D3	has	built-in	support	for	
generating	a	tree	layout	object	from	a	provided	JSON	data	file.	The	D3	code	for	creating	
collapsible	tree	diagrams	can	be	found	at	https://bl.ocks.org/mbostock/4339083.	For	the	
styling	of	the	leaf	nodes,	nodes	with	connections	or	links	(as	part	of	the	bi-partite	diagram)	are	
in	blue	and	those	without	connections	are	in	grey.		

For	the	bi-partite	diagram,	since	the	raw	data	itself	does	not	contain	explicit	
relationships,	we	had	to	do	some	text	mining	to	extract	and	construct	relationships	between	
software	leaves	and	its	attributes.	There	are	currently	two	attributes	used	(i.e.,	“user	type”	and	
“user	task”)	from	the	larger	dataset	spreadsheet	which	contains	others.	For	example,	given	an	
attribute	called	“User	Type”,	we	construct	a	list	of	nodes	of	distinct	user	types	from	the	raw	
data.	We	draw	a	link	between	a	software	node	and	a	user	type	node	if	the	software	supports	
that	user	type.	We	also	sort	the	list	of	attribute	nodes	by	their	number	of	connections	from	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

177	•	Encounters	19,	2018,	163-185	
 

most	to	least	in	order	to	reduce	overlap	between	links,	thereby	making	the	visualization	more	
legible.	It	should	be	noted	that	the	bipartite	aspect	of	our	visualization	was	custom	coded	in	d3	
by	the	authors	of	this	project.	

In	terms	of	interactivity,	we	implemented	pan/zoom	and	node/link	highlighting	and	
selection.	Since	the	visualization	is	scaled	to	fit	the	browser	window,	nodes	and	texts	are	scaled	
down	and	may	not	be	legible.	With	panning	and	zooming,	users	are	able	to	freely	adjust	the	
area	of	focus	in	the	visualization.	The	compound	visualization	consists	of	multiple	levels	and	
numerous	nodes	and	edges,	which	may	take	higher	cognitive	loads	to	trace	the	origin	of	one	or	
more	links.	We	implemented	node	and	link	highlighting	to	ease	that	problem.	Currently,	users	
can	highlight	a	single	link	between	a	software	node	and	an	attribute	node	by	hovering	the	
mouse	cursor	over	the	link.	Alternatively,	they	can	hover	on	either	side	of	the	nodes	to	
highlight	a	node	label	and	its	links	if	there	is	any.	Clicking	the	mouse	will	let	the	highlight	
persist,	but	only	one	node	or	link	can	be	highlighted	at	a	time.	

Future	Improvements	for	Prototype	
	 While	our	visualization	results	succeeded	in	fulfilling	the	initial	criteria	for	this	

project,	our	visualization	could	be	improved	and	developed	further.	Below	is	a	list	of	suggested	
immediate	improvements	that	can	be	made:	

	
● Nodes	in	the	hierarchy	should	be	collapsible,	so	that	users	can	observe	connections	

made	between	the	hierarchy	and	attributes	at	different	levels	of	the	hierarchy.	This	
would	allow	the	comparison	of	aggregated	data	rather	than	only	individual	software	
platform	data	points.	

● To	optimize	the	visual	space	and	reduce	clutter,	the	link	nodes	could	be	made	into	
curved	lines	rather	than	straight	lines.	

● The	node	links	could	be	optimized	to	further	reduce	edge	crossings,	thus	reducing	
visual	clutter.	This	process	would	be	algorithmic,	and	automatically	optimize	for	
every	new	set	of	attributes	or	changes	to	the	visualization.	

● Highlighting	parent	nodes	in	the	tree	diagram	should	highlight	its	ancestor	nodes	
and	links	as	well	as	its	children	nodes	and	links	in	the	tree	diagram	and	the	bi-
partite	graph.	This	would	offer	a	more	comprehensive	exploration	by	the	user.	
	

 	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

178	•	Encounters	19,	2018,	163-185	
 

Integrating	the	Visualization	into	a	Comprehensive	Dashboard	Application	
Here	we	propose	a	design	for	taking	our	visualization	a	step	further	and	integrating	it	

into	a	web-based	dashboard	application	that	offers	information	over	and	beyond	what	is	
already	available	through	the	tree-diagram	bi-partite	graph.	We	have	named	this	proposed	
design	a	Project	Compara.	Figure	12	shows	a	visual	mockup	of	the	dashboard	application	
layout.	

To	visualize	the	data	as	a	tree,	a	web-based	dashboard	design	is	created	to	house	the	
visual	and	have	other	support	data	views	to	complement	it.		Based	on	our	research	of	
visualization	methods,	the	force-directed	layout	as	well	as	treemap	reflect	the	ability	to	place	
focus	on	relationships	and	hierarchy,	respectively.	

The	dashboard	design	is	created	with	four	functional	sections	for	analyzing	the	data	of	
the	toolsets.		The	main	section	is	designed	to	have	the	main	visualization	type	as	a	tree,	with	
the	root	titled	as	the	dashboard	title	itself:	Compara.		It	expands	out	into	the	first	level	of	
headings,	which	expands	out	into	another	group	of	subheadings	of	the	software	tools.		
Changing	this	tree	structure	would	be	based	on	the	JSON	data	file	that	is	loaded	into	the	
dashboard.	

The	next	section	consists	of	a	force-directed	layout	that	provides	the	user	the	ability	to	
seek	direct	relationships	between	software	packages.		The	third	section	acts	as	a	middle	
ground,	providing	general	information	about	the	selected	tool,	including	title,	product	
description,	the	highlighting	of	the	user	types	and	tasks	associated.		The	last	section	is	a	
treemap	visualization	that	places	focus	on	hierarchy,	from	main	category	of	software	down	to	
the	software	itself.		Additional	items	considered	for	the	treemap	include	a	list	of	keywords	that	
contribute	to	the	rationale	and	description	of	the	categories.		This	places	emphasis	on	hierarchy	
allowing	the	user	to	have	a	clear	understanding	of	how	software	selected	in	the	tree	relates	to	
the	subject	matter	of	focus,	intended	by	the	manufacturer	of	the	tool.	

	
	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

179	•	Encounters	19,	2018,	163-185	
 

	
	
Figure	12:	Project	Compara	is	a	dashboard	design	created	to	house	the	visualization,	as	well	as	
integrate	other	support	data	views	to	complement	it.		

	
Based	on	our	research	of	visualization	methods,	the	force-directed	layout	(bottom-left)	

as	well	as	treemap	reflect	the	ability	to	place	focus	on	relationships	and	hierarchy,	respectively.	
Extra	D3	visualization	methods	can	be	daisy	chained	from	the	original	data	set,	and	further	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

180	•	Encounters	19,	2018,	163-185	
 

qualitative	information	can	be	embedded	to	offer	extra	information	regarding	software	
platforms	or	other	features	(bottom-middle).	
	

Conclusions	
To	conclude	we	will	review	the	initial	criteria	of	this	project	including	the	project	

purpose	and	the	objectives	and	questions	to	evaluate	the	success	of	our	visualization.	Finally,	
we	will	discuss	potential	future	improvements	as	well	as	possible	applications	for	our	
visualization	project.	

We	believe	our	visualization	is	a	viable	solution	to	the	stated	purpose	of	this	project.	We	
visualized	the	entire	software	taxonomy,	making	clear	its	hierarchical	structure	in	a	way	that	is	
organized	and	understandable	using	a	horizontal	tree-diagram.	We	implemented	a	bipartite	
graph	to	successfully	visualize	how	attributes	are	connected	to	software	platforms,	even	when	
some	software	or	platforms	have	multiple	relationships.	We	achieved	one	of	the	central	uses	
for	this	visualization	project,	which	was	to	help	users	identify	which	software	are	associated	
with	specific	user-types.	We	also	created	a	way	to	discover	relationships	between	different	sets	
of	attributes	and	software	platforms	using	the	drop-down	menu.	We	believe	this	visualization	
technique	can	be	generalized	to	other	domains.	This	visualization	can	definitely	be	scaled	to	
datasets	of	different	sizes	to	show	different	hierarchical	structures	and	associations,	but	
comparing	qualitative	attributes	becomes	difficult	when	the	structure	becomes	too	large.	

Based	on	our	initial	objectives	and	questions,	we	believe	our	visualization	has	
appropriate	answers	for	each.	In	order	to	visualize	a	hierarchical	structure	and	associated	
external	attributes,	we	implemented	a	tree-diagram/bipartite	graph.	From	our	own	research,	
we	cannot	find	an	example	of	this	kind	of	visualization	being	used	in	any	similar	context.	It	is	
possible	that	we	have	created	an	innovative	visualization	approach.	We	converted	a	structured	
spreadsheet	into	a	visualization	that	makes	the	hierarchical	structure	much	clearer	than	a	
traditional	tabular	format.	We	believe	that	our	visualization	has	translated	an	indexical	
structure	into	something	that	is	both	aesthetic	and	engaging,	incorporating	smooth	D3	vector	
visuals	with	exploratory	interactive	features.	Finally,	we	believe	this	visualization	is	most	
effective	when	it	supports	user	interactions,	which	allow	users	to	solve	the	perceptual	
problems	that	arise	when	dealing	with	an	intricate	and	dense	visual	structure	as	this	one.		

	

REFERENCES	
Bohland,	J.	W.,	Bokil,	H.,	Allen,	C.	B.,	&	Mitra,	P.	P.	(2009).	The	brain	atlas	concordance	

problem:	quantitative	comparison	of	anatomical	parcellations.	PloS	one,	4(9),	e7200.	
	
Bowes	J.	et	al.	(2018).	User-Centered	Taxonomy	for	Urban	Transportation	Applications.	

In:	Nah	FH.,	Xiao	B.	(eds)	HCI	in	Business,	Government,	and	Organizations.	HCIBGO	2018.	
Lecture	Notes	in	Computer	Science,	vol	10923.	Springer,	Cham	

	
Cain,	A.J.	(2011).	Taxonomy.	In	Encyclopaedia	Britannica	Online.	Retrieved	from	

https://www.britannica.com/science/taxonomy	
	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

181	•	Encounters	19,	2018,	163-185	
 

Dunne	C.,	Skelton	C.,	Diamond	S.,	Meirelles	I.,	Martino	M.	(2016)	Quantitative,	
Qualitative,	and	Historical	Urban	Data	Visualization	Tools	for	Professionals	and	Stakeholders.	In:	
Streitz	N.,	Markopoulos	P.	(eds)	Distributed,	Ambient	and	Pervasive	Interactions.	DAPI	2016.	
Lecture	Notes	in	Computer	Science,	vol	9749.	Springer,	Cham	

	
Grimstead,	I.	J.,	Walker,	D.	W.,	&	Avis,	N.	J.	(2005,	October).	Collaborative	visualization:	

A	review	and	taxonomy.	In	Distributed	Simulation	and	Real-Time	Applications,	2005.	DS-RT	
2005	Proceedings.	Ninth	IEEE	International	Symposium	on	(pp.	61-69).	IEEE.	

	
Kucher,	K.,	&	Kerren,	A.	(2015,	April).	Text	visualization	techniques:	Taxonomy,	visual	

survey,	and	community	insights.	In	Visualization	Symposium	(PacificVis),	2015	IEEE	Pacific	(pp.	
117-121).	IEEE.	

	
Lima,	M.	(2014).	The	book	of	trees:	visualizing	branches	of	knowledge.	S.	E.	Stemen	(Ed.).	

Princeton	Architectural	Press.	
	
Wang,	L.,	Wu,	H.,	Wang,	W.,	&	Chen,	K.	C.	(2015).	Socially	enabled	wireless	networks:	

resource	allocation	via	bipartite	graph	matching.	IEEE	Communications	Magazine,	53(10),	128-
135.	

	
Wattenberg,	M.	(2002).	Arc	diagrams:	Visualizing	structure	in	strings.	In	Information	

Visualization,	2002.	INFOVIS	2002.	IEEE	Symposium	on	(pp.	110-116).	IEEE.	
	
	

SOFTWARE	SURVEYED	
Autocad	 	 	
https://www.autodesk.com/products/autocad/overview	
	
Revit	 	 	
https://www.autodesk.com/products/revit/overview	
	
3ds	max	 	 	
https://www.autodesk.ca/en/products/3ds-max/overview	
	
Sketchup	 	 	
https://www.sketchup.com/products/sketchup-pro	
	
My.Sketchup	 	 	
https://www.sketchup.com/products/sketchup-free	
	
Sketchup	Viewer	 	 	
https://www.sketchup.com/products/sketchup-viewer	

	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

182	•	Encounters	19,	2018,	163-185	
 

Vectorworks	 	 	
https://www.vectorworks.net	
	
Microstation	 	 	
https://www.bentley.com/en/products/brands/microstation	
	
ArcGIS		 	
https://esri.ca/en/products/arcgis-pro	
	
Betaville	 	 	
https://github.com/Betaville	
	
UrbanSim	 	 	
http://www.urbansim.com	
	
UNA	Toolkit	 	 	
http://cityform.mit.edu/projects/urban-network-analysis.html	
	
StreetFactory	 	
	
Fusion	360	 	 	
https://www.autodesk.com/products/fusion-360/overview	
	
SolidWorks	 	 	
https://www.solidworks.com	
	
Blender	 	 	
https://www.blender.org	
	
CityGML	 	 	
https://www.citygml.org	
	
CityEngine	 	 	
https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview	
	
QGIS	 	 	
https://www.qgis.org/en/site/	
	
Stamen	Map	 	 	
http://maps.stamen.com	
	
Openstreetmap	 	 	
https://www.openstreetmap.org	
	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

183	•	Encounters	19,	2018,	163-185	
 

Kodek	 	
	
BlenderGIS	 	 	
https://github.com/domlysz/BlenderGIS	
	
Unfolding	Mpas	 	
http://unfoldingmaps.org	
	
Mapbox	 	 	
https://www.mapbox.com	
	
Vizicities	 	 	
https://github.com/UDST/vizicities	
	
CartoDB	 	 	
https://carto.com	
	
EDMONTON	 	
DRAM	
DELTA	
TILT	
ALBATROSS	
simDELTA	
	
Cube	Land	 	 	
http://www.citilabs.com/software/cube/cube-land/	
	
ILUTE	 	 	
http://uttri.utoronto.ca/research/projects/icity/icity-orf-research-day-2018/ilute-

integrated-land-use-transportation-and-environment-model-reboot/	
	
Pantonium	 	 	
https://pantonium.com	
	
OneITS	/	CVST		
http://cvstproject.com	
	
PARAMICS	 	 	
http://www.paramics-online.com	
	
TRANSITMIX	 	 	
https://www.remix.com	
	
CELLINT	 	 	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

184	•	Encounters	19,	2018,	163-185	
 

http://www.cellint.com	
	
Miovision	 	 	
https://miovision.com	
	
ROCKETMAN	 	
http://www.rocketmanapp.com	
	
TRIPSPARK	 	 	
https://www.tripspark.com	
	
GoPark		 	
https://www.go-parking.com	
	
Flow	Analytics	/	Coord	 	
https://coord.co	
	
StoryFacets	
	
Livehoods	 	 	
http://livehoods.org	
	
Graphtrail	 	
https://dl.acm.org/citation.cfm?id=2208293	
	
Infraworks	3D		
https://www.autodesk.com/products/infraworks/overview	
	
Crunchbase	 	 	
https://about.crunchbase.com	
	
Engagement	Lab	
	
CoUrbanize	 	 	
https://courbanize.com	
	
Streetmix	 	 	
https://streetmix.net/-/754979	
	
Textizen	 	 	
https://www.textizen.com	
	
Citi’Ease	 	
	



M.A.	Gordon,	M.	Carnevale,	M.	Zheng,	&	S.	Diamond	 Compara		

185	•	Encounters	19,	2018,	163-185	
 

Ecopolicy	Game	Simulation	 	 	
http://www.frederic-vester.de/eng/ecopolicy/	
	
Watson	Analytics	 	 	
https://www.ibm.com/watson-analytics	


