Impacts of Autonomous Vehicles on Parking and Congestion

Sina Bahrami, Ph.D. Candidate Matthew J. Roorda, Professor

AVs legislation and policy

USA TODAY

First ride in driverless car is a bit jerky, but still 'pretty cool'

Ehe New York Eimes

Wielding Rocks and Knives, Arizonans Attack Self-Driving Cars

Speed up the integration of AVs

Conventional Car-parks

AV Car-parks

	Street Access		The second provide the second pr
_ }		DRIVEWAY	
		STRFFT	
	Building		

Optimal Parking Facility Geometry

1- Design Demand
 2- Plot Dimensions

Relocation Policy

Any vehicle can be discharged at any given point in time

Vehicle Relocation in Larger Islands

Expected Relocations Per Vehicle Retrieval

$$P_{iv}(d_i) = \frac{(d_i/2y)^v/v!}{\sum_{t=0}^{x_i} (d_i/2y)^t/t!}$$

$$R_v = \frac{1}{v} \Big[\sum_{a=1}^v a + \sum_{a=1}^v (a-1) \Big] = \frac{1}{v} \Big[\frac{v(v+1)}{2} + \frac{(v-1)v}{2} \Big] = v$$

$$E[R] = \sum_{i=1}^{S} \sum_{v=0}^{x_i} \frac{d_i}{2yD} P_{iv}(d_i) R_v.$$

Solution Methodology

- A mixed integer program with a non-linear objective function.
- The purpose of the [MP] is to iteratively generate different layouts until the best layout is found.
- The [SP] finds the optimal allocation of the demand between the islands.

Impact of Demand on Optimal Layout

12/35

Plot Shape Analysis

Capacity 540 Capacity 560

Parking capacity increase

Where to park?

Full information scenario

- All arrival and departure times are known in
 - advance.
- The problem is modelled as an integer
 - program.

Full information scenario

 $[A_1, A_2, A_3, A_4, A_5, D_4, A_6, A_7, A_8, A_9, A_{10}, A_{11}, D_9, A_{12}, D_7, D_2, D_3, D_5, D_8, D_1, D_{12}, D_6, D_{10}, D_{11}]$

Partial information scenario

Sequential stochastic optimization model

$$min_{\pi\in\Pi}E^{\pi}\sum_{t=0}^{T}C(S_t, X^{\pi}(S_t)),$$

$$S_{t+1} = S^M(S_t, x_t, W_{t+1})$$

- Infinite state space
- Test and compare different policies using a simulation model

- Allocation policies
- Arrival time
 - ${\rm \odot}$ Only considers the arrival time
- Clustering based on dwell time
 - Cluster AVs as short term vs long term
- Blockage probability

 \odot Blockage probability based on average dwell

times

Key operational findings

arrivals.

 Considering Retrieving vehicles from the rear side does not reduce the number of relocations.

Regular Vehicle Parking

Parking options

Home

$$\circ C_h = 2x_h c_t$$

Car-park

$$\circ C_p = 2x_pc_t + r_p(t_p - 2x_p)$$

Cruise

$$\circ C_c = t_p c_t$$

- *x* Travel time
- *c* Travel cost
- r Parking rate
- *t* Activity time

Hypothetical city

Base case scenario with
$$r_p = 3\left[\frac{\$}{hr}\right]$$
 and $t_p = 12\left[\frac{\$}{hr}\right]$

(c) Daily spatial distribution of parking at park- (d) Daily spatial distribution of parking at ing lots. homes.

Parking cost sensitivity analysis

Travel cost sensitivity analysis

c,=6

c,=10

90

Parking location analysis

Daily spatial distribution of cruising

Daily spatial distribution of Parking

Key findings

5 pm traffic flow snapshot

	No policy	Same parking price	Zero- occupant toll
Maximum cruising time	18 min	30 min	15 min
Average travel time to car-parks	12 min	10 min	11.5 min
Maximum travel time to car-parks	47 min	50 min	43 min
Change in VKT	-	+1 %	- 3.5 %

Capacity enhancement

Vehicle to Vehicle

Vehicle to Infrastructure

Relation between link capacity and AV proportion

The Equilibrium Condition

- The equilibrium condition can be formulated as NCP.
- The UE does not have a unique solution
 because the travel time function changes
 regarding HV and AV flows is not symmetric.

A simple example

 $(t^0, C^0) = (0, 1)$

Best User Equilibrium flow

Traffic management policies

- HV exclusive, AV exclusive, or shared links.
- There are 3^{|A|} different scenarios for a network G(V, A).
- System optimal traffic assignment is used as the lower bound.
- For a real size network, policies can decrease the gap between user equilibrium and system optimal to less than 1%.

Review

Thank You!

Sina Bahrami Email: <u>sina.bahrami@mail.utoronto.ca</u> LinkedIn: www.linkedin.com/in/bahrami-sina

