An Linked Data Repository for Transportation Planning Data

Megan Katsumi, Mark Fox
Enterprise Integration Lab (eil.utoronto.ca)
University of Toronto Transportation Research Institute (uttri.ca)
University of Toronto

Friday, May 31, 2019
Problem: Planning transportation infrastructure over a 30 year horizon

- What will demand for public transportation and roads be over the next 30 years?
- How do changes in transportation infrastructure affect travelers?
- What are the environmental impacts of growth?
GTAModel V4.0
Travel demand forecasting

Pop & Emp by Zone

- Synthesize persons, households, cars & jobs
 - PORPOW
 - PORPOS

 - TASHA
 - Activity generation
 - Activity scheduling
 - Tour-based model choice
 - Auto allocation
 - Ridesharing

Location choice for non-work/school activities

- Surface transit speed updating
- Emme Road & Transit Assignments by Time Period
- High-order transit P&R station choice

Converged?
- Yes: STOP
- No
Challenges for transportation planning data

1. Data representation:
 • Multitude of transportation planning tools are in use by researchers and cities
 • No easy way to compare results as each has their own unique data models
 We need a standard for transportation planning data!

2. Data storage:
 • Heterogeneity of data: Data required to support transportation planning is available in different formats with different representations. Consequently, related data are often stored in isolation.
 • Wasted effort: Data that is cleaned and integrated for one task may not be reused for others
 We need a more effective way of storing transportation planning data!
Challenge #1: Data representation

• Problem:
 • Multitude of transportation planning tools are in use by researchers and cities
 • No easy way to compare or reuse results as each tool has its own unique data models
Solution: a standard for transportation planning data

• The problem may be addressed with a standard that:
 • Facilitates interoperability between heterogeneous data
 • Works with different tools, data formats
 • Is easily extensible: tools and approaches are always changing
 • Has a unique interpretation; incorrect and correct interpretations should be clearly identifiable

• Claim: an ontology can be used to specify a standard that will satisfy these requirements
Transportation Standards for Interoperability

- Data Standards
 - Transmodel
 - gtfs
 - ISO 19107 Road network model
 - ISO 14825 Geographic Data Files (GDF) standard
 - Geographic Markup Language (GML)
 - DATEX II
 - W3C Vehicle Information Service Specification
 - SENSORIS
 - ADASIS
 - ...
Existing data standards

• Don’t focus on transportation planning
• Subject to ambiguity
 • Potential for misinterpretation
 • Correspondences with other standards unclear
• May support syntactic interoperability, but cannot support *semantic* interoperability
What is Semantic Interoperability?

• The ability of computer systems to exchange data with unambiguous, shared meaning.
 • A requirement to enable machine computable logic, inferencing, knowledge discovery, and data federation between information systems.

• Is concerned not just with the packaging of data (syntax), but the simultaneous transmission of the meaning with the data (semantics)
Sources of Data Semantics

- Documentation
- Source Code
- Ontology

Implicit

Explicit
What is an Ontology?

• (More than) a reference model for the domain.
• Answers the questions:
 • What are the core concepts and properties that span the city’s data?
 • To what extent can we generalize them in a useful way?
 • What are the key distinctions?
 • Can we formally define necessary and/or sufficient conditions (using properties) for something to be an example (member) of a concept?
• A precise, formal (logical language) representation that supports:
 • Reuse
 • Integration
 • Automated deduction
How are Ontologies Used?

• Data Integration:
 • Ontology to serve as an *interlingua*
 • Data and systems may be mapped into the ontology to support exchange of information

• Automated Deduction
 • New information may be inferred based on the data and knowledge of the domain formalized with the ontology.

• Model Checking:
 • Data may be automatically validated against the ontology to check whether it conforms to the definitions.
Ontology Components

Micro-Theory
- Axioms/Rules
- Deduction – answering questions

Definitions and Constraints
- Class Definitions (in Logic)
- Automated classification

Knowledge Graph
- Classes and Properties
- Taxonomy and Inheritance

- For each year above the age of 14, a member of a household will leave with a probability $p(Age)$
- Household is composed of at least one person who resides at the same address
- Households
- Transportation Network
- Vehicles
Example: City Resident

- **Toronto**: “you are identified as a resident if you reside in, own property, or own or operate a business in Toronto” (311 Toronto).

- **Beijing**: “all individuals holding the nationality of the People’s Republic of China who [have] a domicile in Beijing and nowhere else. If the individual maintains a regular dwelling somewhere else, the more regular dwelling is considered their place of residence” (Li, 1991).

- **New York**: “the place which an individual intends to be his permanent home – the place to which he intends to return. It is the home with range of sentiment, feeling and permanent association. One must be domiciled in New York and maintain a home in New York, the time spent in the State is irrelevant” (McGladrey, 2009).

- **Germany**: “a resident of Germany generally refers to an individual who has a domicile in Germany or spends more than six consecutive months in Germany (habitual place of abode)” (Seidel, 2011).
How to Express the Semantics of Resident?

“you are identified as a resident if you reside in, own property, or own or operate a business in Toronto”

TorontoResident is-a Resident

and (residesIn.Toronto

or ownsPropertyIn.Toronto

or operates.(Business

and hasAddress.(Address and inCity.Toronto)))
Different Views of a Concept

- Toronto Resident
- Beijing Resident
- Mumbai Resident

Defined in terms of shared fundamental properties and concepts

- residesIn
- ownsProperty
- operates
- hasAddress
- inCity
- Address
- Business
An ontology-based standard for transportation planning data

- Requirements
 - Facilitate interoperability between heterogeneous data
 - Must work with different tools, data formats
 - Must have a **unique** interpretation; incorrect and correct interpretations should be clearly identifiable
 - Must be easily extensible: tools and approaches are always changing
Ontologies for Transportation Data

iCity Projects

- ILUTE
- ATIS
- Transit
- Parking
- Complete Streets

iCity Ontologies

TPSO
ISO WG11 NWIP
TPSO: Components

- Transportation Network
- Transit
- Vehicle
- Travel Cost
- Trip Cost
- Household
- Person
- Organization
- Trip
- Contact
- Building
- Land Use
- Parking
- Location
- Time
- Units of Measure
- Change
- Activity
- Sensors
Solution for Challenge #1

- Use **ontologies** to specify a standard for transportation planning data
 - Project 1.1 has been developing an ontology for the iCity project
 - This ontology is being applied to serve as the basis for a standard for transportation planning (the TPSO) with ISO WG11
Challenge #2: Transportation Data Storage

• Problem:
 • Heterogeneity of data: Data required to support transportation planning is available in different formats with different representations. Consequently, related data are often stored in isolation.
 • Wasted effort: Data that is cleaned and integrated for one task may not be reusable for others
Solution: a more effective data repository

• The challenges for transportation data storage may be addressed with a repository that:
 • Interprets data semantics in a clearly defined, commonly agreed upon, and unambiguous way
 • Captures and leverages the relationships between data
 • Tracks data provenance

• **Claim:** A linked data repository can satisfy these requirements
Linked Data Repositories

Linked data repositories store datasets using semantic web technologies

• Data is captured using a standard language (RDF)
• A shared vocabulary, defined with an ontology, may be used to provide semantics for the data
• Things (vocabulary terms and instances) are identified uniquely, using Uniform Resource Identifiers (URIs)
 • This creates the ability to link within and between datasets
 • Linked data can be queried using the terms defined in the ontology
Linked Data Repositories
Traditional vs Linked Data Repositories

<table>
<thead>
<tr>
<th>Feature</th>
<th>Traditional Repository</th>
<th>Linked Data Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support different formats and schema with preprocessing</td>
<td></td>
<td>With preprocessing; some direct translation possible</td>
</tr>
<tr>
<td>Clear interpretation of data semantics</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Easily extensible</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Capture the relationships between data sometimes*</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Track provenance has sometimes</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Reason about provenance</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Easy access to data</td>
<td>Sometimes*</td>
<td>✓</td>
</tr>
<tr>
<td>Data validation (QA)</td>
<td>Sometimes*</td>
<td>✓</td>
</tr>
<tr>
<td>Perform reasoning with the data</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

If a central DB with a well-defined schema is used to store the data
Solution for Challenge #2

• Use ontologies to represent the semantics of the data
 • The proposed TPSO standard may be leveraged to facilitate correct integration and reuse of data.

• Use a linked data repository and the ontologies to store transportation planning data
 • Ongoing work (Year 5)
 • GUDR: the Global Urban Data Repository is designed to serve as a linked data repository for all urban data
GUDR: Global Urban Data Repository

“A linked data repository in which all urban data can be deposited, searched and retrieved.”
GUDR Stack

Key Characteristics:
1. Meta-Data
2. Vocabularies/Ontologies
Meta-Data

- Each RDF triples has meta-data attached to it.
- The process of depositing automatically attaches meta-data.
Vocabularies/Ontologies

• The repository includes vocabularies/ontologies.

• Depositors choose which to use.
Next Steps

• Standardization of TPSO with ISO/JTC 1 WG 11 Smart Cities an ongoing effort
• Continue development and implementation of GUDR
 • Ongoing development and research, e.g. data validity
• Leverage the TPSO and GUDR to provide a linked data repository for transportation planning data
Questions?