Improved Transit Route Operations through Signal Priority and Bus Bridging Decision Support

Alaa Itani (alaa.itani@mail.utoronto.ca) Wenxun Hu (wenxun.hu@mail.utoronto.ca) Siva Srikukenthiran (siva.srikukenthiran@utoronto.ca) Amer Shalaby (amer@ecf.utoronto.ca)

Outline

Transit Research Program Overview Improved Transit Route Operations through Signal Priority Bus Bridging Decision Support

Past & Ongoing Research

- iCity: Urban Informatics for Sustainable Metropolitan Growth (IВМ, City of Toronto, ESRI) – Transit Management Projects
- Nexus: Connected Simulation Platform for Operational Management and Planning of Transit Networks (Arup)
- Joint Optimization of Route Design and Schedules for Fixed Route Transit Systems (Trapeze)
- Canadian Ridership Trends Analysis (CUTA)

Improved Transit Route Operations through Signal Priority

Wenxun Hu (wenxun.hu@mail.utoronto.ca)

Transit Signal Priority (TSP)

A set of operational improvements that use technology to reduce dwell time at traffic signals for transit vehicles

Methods include holding green lights longer or shortening red lights

TSP in Toronto

Motivation

Reliability and speed are performance indicators important for both transit agencies and passengers

Transit services are vulnerable to variability and delays, especially in busy networks

The conventional TSP only aims at reducing delays

No strategies can adaptively improve headway regularity and reduce signal delays simultaneously

Goals

Develop adaptive TSP for improved reliability (regular headways) and speed

Validate the proposed TSP algorithm in the micro-simulation environment using an intersection in Toronto as a case study

Goals

Method – Deep Learning

Case Study

- Finch Ave West & Kipling Ave
 - TSP installed
- Bus line: 36 Finch West
 - poor reliability

Case Study

- Base cases
 - No TSP
 - Existing TSP algorithms used in Toronto
 - Algorithm A and B
 - Simulation shows
 - no improvement in headway regularity
 - Time spent in POZ
 - » Algorithm A: 78 sec (45% shorter than No TSP)
 - » Algorithm B: 114 sec (19% shorter than No TSP)

Case Study

- Proposed adaptive TSP (still in training)
 - Reward
 - Maximize $r = w_1(|h_{in} h_{sc}| |h_{out} h_{sc}|) w_2 tt$
 - 1st term: headway improvement, absolute value of check-in headway deviation minus check-out deviation
 - 2nd term: time spent in the POZ (tt)
 - Ws: weights

Summary

	No TSP	TSP Algm. A	TSP Algm. B	Proposed TSP
Average headway improvement per bus	/	/	/	10s
Average time in POZ per bus	141s	78s	114s	~80s

- Algorithm A and B provide green extension to buses when the POZ is active at predetermined decision point(s) in regardless of the headway
- No headway/reliability improvement using TSP algorithm A or B
- The proposed TSP
 - improves headway
 - Time spent in POZ is comparable to algorithm A

Next Step

- Test the effectiveness of the proposed TSP algorithm in scenarios with near- and far-side bus stops
- Develop coordinated route-based TSP

Bus Bridging Decision Support

Alaa Itani (alaa.itani@mail.utoronto.ca)

Motivation

Major unexpected rail disruptions occur frequently

Often, a simplistic approach is followed for selecting shuttle buses

Can lead to extensive delays for passengers and buildup at stations

Result in degraded service and potential loss of loyal passengers

Bus Bridging Assessment Tool Main Goals

Develop a tool to help agencies evaluate potential bus bridging plans Provide measures of the impact on train and bus passengers

Provide measure of how well shuttle buses are used

Bus Bridging Assessment Tool

Overview of the Methodology

Demo of the Bus Bridging Assessment Tool

Subway Disruption between Kipling and Keele Station (Line 2)

NAME Demo Optimized		SELE	CT SAVED	NETWORK GTHA
Disruption Occurred	Pick Shuttle	Assign to Terminal		SIGNUP GTHA with HSR F2017
DATE 2015-01-29	AGENCY Brampton Transit -	Search Terminal #	0	SCENARIO Demo Scenario
START TIME 07:06 AM	Search Routes	Kipling - Towards Keele	0	
Expected Duration	Available Rout	es	2	Set Parameters
DURATION 55 mins -	Brampton Transit 1:Queen	n TTC 191:Highway 27 Rocket	1 🗘	5
Affected Stations	Brampton Transit 1:Queen	n TTC 111:East Mall	1 🗘	Demand Reduction: 0
FIRST Kipling	Brampton Transit 10:South Industria	1 TTC 76:Royal York South	1 🗘	
LAST Keele •	Brampton Transit 10:South Industria	al (TTC) 49:Bloor West	1 🗘	Allow Consecutive Buses:
	Brampton Transit 11:Steele	s 37:Islington	1 🗘	
	Brampton Transit 11:Steele	s 45:Kipling	2	CALCULATE
	Brampton Transit Express 115:Pearson Airport	ττc 46:Martin Grove	1	
	Brampton Transit	TTC 73:Royal York	1 *	

Demo of the Bus Bridging Assessment Tool

Subway Disruption between Kipling and Keele Station (Line 2)

Effectiveness Summary						
TOTAL DELAYS						NETWORK GTHA
2227.5 hours	98.3 hours For Bus Riders		x 🚍	MAP VIEW		SIGNUP GTHA with HSR F2017 -
DELAYS PER STATION						SCENARIO Demo Scenario
Station Name	No Riders Affected	RidersDelays (h)	Queue at End (p)	To Clear Queue (min)	Extra Wait	
Old Mill Station - Westbound Platform	59.8	7.73	13.31	14.91	4.44	
Keele Station - Westbound Platform	1,892.9	197.4	731.67	0	6.26	
Jane Station - Westbound Platform	136.9	16.67	36.22	13.31	3.78	SAVE MODIFY
Runnymede Station - Westbound Platform	103.2	11.06	30.59	9.54	3.6	
High Park Station - Westbound Platform	42.8	3.07	14.76	1.62	3.74	
High Park Station - Eastbound Platform	231.5	153.95	224.88	15.95	25.18	
Kipling Station - Eastbound Platform	1,851.6	403.65	1,318.03	0	13.08	
Jane Station - Eastbound Platform	507.2	294.64	485.93	11.25	24.64	
Old Mill Station - Eastbound Platform	261.7	151.82	256.17	10.03	25.27	
Royal York Station - Eastbound Platform	793.8	403.72	766.85	8.6	24.73	
Islington Station - Eastbound Platform	1,136.1	287.64	752.95	4.37	12.59	
Royal York Station - Westbound Platform	81.4	11.14	13.33	16.05	5.58	
Runnymede Station - Eastbound Platform	459.7	278.68	439.88	14.99	24.68	

Demo of the Bus Bridging Assessment Tool

Subway Disruption between Kipling and Keele Station (Line 2)

Beyond the Assessment Tool

1) Determine the maximum number of shuttle buses that could be deployed to serve a disrupted segment

2) Optimization (*Work in progress*)

- Minimize the inconvenience of transit users due to disruption
- Ensure passenger safety by minimizing passenger build-up at stations

Maximum Allowable Number of Shuttle Buses

The following procedure is taken from Chapter 6 (Bus Transit Capacity) of the Transit Capacity and Quality of Service Manual (TCQM).

Bus Bridging Optimization Tool Main Goal

Develop an algorithm that generates an efficient bus bridging plan

Minimize the impact on train and bus passengers

Maximize the utilization of shuttle buses

Genetic algorithms are optimization methods that imitate the same mechanisms as those found in nature say inheritance, mutation, selection and crossover.

Bus Bridging Optimization Tool

Objectives and Assumptions

Comparison of Outcomes

Current Practice vs. Optimal Plan

Total User Delay

Maximum Queue Length

Comparison of Outcomes (Cont.)

Current practice vs. Optimal Plan

15 mins, on average, is saved in deadhead time of each shuttle bus

Optimal plan shows a better utilization of shuttle buses along the disrupted segment

Benefits

Fast execution time, allowing for the evaluation of multiple plans rapidly

Enable the assessment and refinement of bus bridging policies and guidelines

Training tool for staff dealing with disruption management

Determine the most efficient bus bridging plan