Representing Pedestrian Tours in Contemporary Travel Forecasting Models

Ming (Xiaomeng Xu)¹ Dr. Jeff Casello²

Presentation for iCity-ORF: 4th Annual Research Day ¹School of Planning, ²School of Planning and Department of Civil Engineering

University of Waterloo

Toronto, Canada 31 May 2019

- 1. Structure of Concepts and Background
- 2. Evolution of Travel Forecasting Models
- 3. Pedestrian Tours: Typology, Complexity, and Costs
- 4. Characteristics Influencing Walking Decisions
- 5. Primary Obstacles to Improve Pedestrian Models
- 6. Future Work

Structure of Concepts

Some Facts: Mode of Transportation to Work

Province	Walked (%) 2006	Walked (%) 2016			
Canada	6.4	5.5			
N.L.	7.7	4.9			
P.E.I.	6.6	5.4			
N.S.	8.2	6.3			
N.B.	6.6	4.6			
Que.	6.6	Lowest			
Ont.	5.6	5.3			
Man.	7.4	5.6			
Sask.	Lowest	5.6			
Alta.	5.9	4.5			
B.C.	6.9	6.8			

SOURCE: Ontario Census 2016; Statistics Canada 2006

KW R	egion	2006 (%)	2016 (%)	
Car, Truck or Van (Driver)		78.7	81.0	
Car, Truck or Van (Passenger)		9.3	6.7	
Public Transit		4.6	5.9	
Walked	Decreasing	5.1	4.4	
Bicycle		1.6	1.1	
Other		0.8	0.8	

SOURCE: Statistics Canada 2006, 2016

SOURCE: Region of Waterloo Census 2016, Place of work and commuting to work

Behavioral Representation in Models

Household Travel:

- Decision-making: long-term; mid-term; short-term
- Generate different types of activities
- Share resources and experiences
- Budget: Money/Time/Resources/Chauffer

Evolution of Travel Forecasting Models

Typology and Complexity of Pedestrian Tours

- Typology (Purpose & Access Mode)
 - Recreational and Utilitarian (Mokhtarian & Salomon, 2001)
 - Unimodal and Multimodal (access modes)

Complexity (Distribution of destinations, # of activities) (Ho & Mulley, 2013)

	Single Purpose	Multiple Purposes
Single Destination	\checkmark	\checkmark
Multiple Destinations	NA	\checkmark

WATERLOOPUBLICTRANSPORTATION INITIATIVE

Advancing Transit Solutions through Research

Costs of Individual Tours (Total)

Choose pedestrian tour's utility > auto tour's utility Social Impacts: Case 2> Case 1

HH Characteristics Influencing Walking Decisions

Recreational Walking		Utilitarian Walking			
Factors	Influence	Factors	Influence		
HH Composition: Presence of children	+	Car Ownership : 0 # of drivers > vehicles	+ +		
Age : 65+	+	Age: 65+ < 30	- +		
Gender: men	-	Gender	=		
Income: <\$30k	+	Income: >\$30k	-		
Education: higher	+	Education: higher	+		

Locational Attributes Influencing Walking

Strategic level

Tactical Level

		Factors	Influence
		Higher densities, compact, and a mix of uses	+
	Utilitarian	Proximity to non-residential destinations/transit	+
		Land use diversity+Density of destinations+Quality and proximity to natural+	+
		Density of destinations	+
	Recreational Quality and proximity to natural facilities such as parks		+
	RouteShorter distance between destinationsRouteSidewalk (more important in commercial areas)RouteVisually interesting and attractive landscaping and building features (Aesthetic)	+	
		Sidewalk (more important in commercial areas)	+
		Visually interesting and attractive landscaping and building features (Aesthetic)	+
		High traffic volume/noise/poor lighting	-

(Saelens & Handy, 2010; Cervero & Kockelman, 1997)

Locational Attributes Influence Walking

- Residential and work area attributes:
 - High utility destination area (support MPSD), but different desirable functions
 - Within energy expenditure
 - Accessibility to destinations
 - Diversity and density of land uses
 - Safe neighborhood
 - Within time budget
 - Comfort and pleasure design

Primary Obstacles to Improve Pedestrian Models

- A lack of empirical data (Singleton et al., 2018;)
- Inappropriate travel survey design/methods (Harding, et al., 2018)
- Inappropriate zonal structure (Iacono, 2010; Clifton, 2016)
- Failure to consider pedestrian tours in satisfying activities
- Failure to develop appropriate cost representation for pedestrians

TAZs	PAZs	Tour Segments /Trips	Mode	Time	Zone	Location	Activity
			Transit	7:09	221	Home	
		L		7:13	312	Location 1	A ativity 1
		9	Trancit	7:17	312	Location 1	Activity I
		2	Tansit	7:35	342	Location 2	Activity o
		0	Walk	1:56	342	Location 2	Activity 2
		3	vv alk	1:59	432	Location 3	Activity o
Legend Personger to work Est bus statio Bus to work Weak to work Weak to work		Α	Walk	2:07	432	Location 3	Activity 3
Work busited Work busited Work busited Work busited But binne Passenger to home		4	vv alk	2:10	342	Location 2	Activity o
0 000 1000 3 000 15.000 72000		-	Trancit	7:12	342	Location 2	neuvity 2
		5	Tansit	7:33	221	Home	

Missing short walking trips in models WATERLOOPUBLICTRANSPORTATIONINITIATIVE Advancing Transit Solutions through Research

Data Collection Methods: Travel Survey

WatTrack

incorporated into the study.

Δ

WatTrack

Press the red button to start recording your travel. Press the

grey button to stop recording your travel. A minimum of 24

non-consecutive hours are required for your travel data to be

Last Sync: Feb 1, 2017 2:00:19 AM

0

Future Work

- Appropriate zonal structure
- Novel data collection methods (smartphone-based passive data collection)
- Tactical level pedestrian behavior and route choice
- Segment level pedestrian environment measurement

WATERLOOPUBLICTRANSPORTATIONINITIATIVE Advancing Transit Solutions through Research

Segment 3

Segment 4

Future Work: Key Elements in Activity-based Model

Ming (Xiaomeng Xu) <u>xiaomeng.xu@uwaterloo.ca</u>; 226 978 8186

Professor Jeff Casello, Ph.D., P.E. jcasello@uwaterloo.ca; 519 888 4567 ext. 37538

Waterloo Public Transportation Initiative <u>https://uwaterloo.ca/waterloo-public-transportation-initiative/</u>

References

Adams, E. J., Esliger, D. W., Taylor, I. M., & Sherar, L. B. (2017). Individual, employment and psychosocial factors influencing walking to work: Implications for intervention design. *PloS one, 12*(2), e0171374.

Agrawal, A. W., & Schimek, P. (2007). Extent and correlates of walking in the USA. Transportation Research Part D: Transport and Environment, 12(8), 548-563.

Alfonzo, M. A. (2005). To walk or not to walk? The hierarchy of walking needs. Environment and behavior, 37(6), 808-836.

- Barnes, G., & Davis, G. (1999). Understanding urban travel demand: Problems, solutions and the role of forecasting. University of Minnesota, Center for Transportation Studies, 2.
- Ben-Akivai, M., Bowman, J. L. (1998). Integration of an activity-based model system and a residential location model. Urban Stud 35(7):1131-1153

Ben-Akivai, M., Bowman, J. L., & Gopinath, D. (1996). Travel demand model system for the information era. Transportation, 23(3), 241-266.

- Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. *Transportation Research Part D: Transport and Environment, 2*(3), 199-219.
- Clifton, K. J., Singleton, P. A., Muhs, C. D., & Schneider, R. J. (2016). Representing pedestrian activity in travel demand models: Framework and application. *Journal of transport geography, 52*, 111-122
- Harding, C., Nasterska, M., Dianat, L., & Miller, E. J. (2018). Effect of land use and survey design on trip underreporting in Montreal and Toronto's regional surveys. *European Journal of Transport and Infrastructure Research*, 18(1).
- Hoogendoorn, S. P., & Bovy, P. H. (2002). Normative pedestrian behaviour theory and modelling. In Transportation and Traffic Theory in the 21st Century: Proceedings of the 15th International Symposium on Transportation and Traffic Theory, Adelaide, Australia, 16-18 July 2002 (pp. 219-245). Emerald Group Publishing Limited.
- Hoogendoorn, S. P., & Bovy, P. H. (2005). Pedestrian route-choice and activity scheduling theory and models. *Transportation Research Part B: Methodological, 38*(2), 169-190.
- Ho, C., & Mulley, C. (2013). Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice. *Transportation Research Part A: Policy and Practice*, 49, 206-219.
- Iacono, M., Krizek, K. J., & El-Geneidy, A. (2010). Measuring non-motorized accessibility: issues, alternatives, and execution. *Journal of Transport Geography*, 18(1), 133-140.
- Lenntorp, B. (1976). Paths in space-time environments: A time-geographic study of movement possibilities of individuals. Lund Studies in Geography Series B Human Geography, (44).
- Maslow, A. H. (1954). Motivation and personality. New York, NY: Harper & Brothers.
- Mokhtarian, P. L., & Salomon, I. (2001). How derived is the demand for travel? Some conceptual and measurement considerations. *Transportation research part A: Policy and practice*, 35(8), 695-719

References

Saelens, B. E., & Handy, S. L. (2008). Built environment correlates of walking: a review. Medicine and science in sports and exercise, 40(7 Suppl), S550.

Singleton, P. A. (2013). A theory of travel decision-making with applications for modeling active travel demand. doi:10.15760/etd.1493

- Singleton, P. A., Totten, J. C., Orrego-Oñate, J. P., Schneider, R. J., & Clifton, K. J. (2018). Making strides: state of the practice of pedestrian forecasting in regional travel models. Transportation research record, 2672(35), 58-68. Timmermans, H. (Ed.). (2009). *Pedestrian behavior: models, data collection and applications*. Emerald Group Publishing Limited.
- Sugiyama, T., Neuhaus, M., Cole, R., Giles-Corti, B., & Owen, N. (2012). Destination and route attributes associated with adults' walking: a review. *Medicine and science in sports and exercise*, 44(7), 1275-1286.

Tilt, J. H. (2010). Walking trips to parks: exploring demographic, environmental factors, and preferences for adults with children in the household. *Preventive medicine*, *50*, S69-S73.