Decoding pedestrian and automated vehicle interactions using immersive virtual reality and interpretable deep learning

Arash Kalatian, Bilal Farooq

LTrans

Overview

- Problem Statement: Pedestrians vs. Vehicles Interaction
- Methodology: Deep survival analysis
- Data Challenges: Virtual reality data
- Results and Discussions: Policy Implications
- Conclusions and future work

Problem Statement:

- AVs will change dynamics of streets in near future
- Impact of our interest:

Their interactions with pedestrians as the most vulnerable road users

• Recent instances of AV-pedestrian collisions:

Uber Test AV fatal crash in Arizona, 2018

Navya SAS AV bus accident in Vienna, 2019

Image: Navya SAS

Problem Statement:

National Traffic Safety Board:

"Uber did not have a formal safety plan in place at the time when one of its self-driving cars killed a woman ... **Its autonomous vehicles were not programmed to react to people who were jaywalking**, and the company had been involved in over three dozen crashes prior to that."

• Rule-obeying AVs that always stop for pedestrians:

Emphasis on investigating mid-block unsignalized crosswalks

• To be prepared for the changes, we require to:

Analyze pedestrian's behaviour while crossing in mixed traffic conditions, at mid-block unsignalized crosswalks

Pedestrians and Drivers Interaction:

- A. Pedestrian Intention:
- B. Pedestrian Trajectory:
 - Coordinates, speed, acceleration, etc.
- C. Vehicle reactions

Pedestrians and Drivers Interaction:

- A. Pedestrian Intention: •
 - Waiting time before crossing the street 0
- B. Pedestrian Trajectory:
 - Coordinates, speed, acceleration, etc.
- C. Vehicle reactions

This Study

Methodology

- Traditional Method to analyze time before an event: Linear Survival Models
- Survival Function:

$$S(t) = e^{-\int_0^t h(z)dz}$$

• Most common method: Cox Proportional Hazards (CPH):

$$h(t|Z) = h_0(t) \times e^{-i} \beta_i Z_i$$

• Partial Likelihood to be maximized:

Methodology

- **Problem** Linear Assumption of log-risk function:
 - Cannot capture nonlinearities in complex data
 - Novel data sources: more complex data
- Solution Replace linear log-risk function with a neural network

$$h(t|Z) = h_0(t) \times e^{g_w(Z)}$$

• Loss function Average negative logarithm of CPH's partial likelihood

$$L_w = -\frac{1}{N} \times \sum_{k \in instances} \left(g_w(Z_{nk}) - \log \sum_{j: T_j > T_k} e^{g_w(Z_{nj})} \right)$$

Data Challenges :

• Study involves pedestrian jaywalks:

Safety concerns

• Futuristic nature of study:

Not enough AVs are available on the roads.

• Controlled variables:

Observe pedestrian behaviour under different scenarios

Solution:

- Stated Preferences Surveys?
 - > Not Realistic
 - Users do not have prior experience

Data Challenges :

• Study involves pedestrian jaywalks:

Safety concerns

• Futuristic nature of study:

Not enough AVs are available on the roads.

• Controlled variables:

Observe pedestrian behaviour under different scenarios

Solution:

- Stated Preferences Surveys?
 - > Not Realistic
 - > Users do not have prior experience

VIRE: Controlled Immersive Virtual Reality experiments

VIRE:

Human-in-the-loop controlled immersive virtual reality experiments

- 3D scenarios created based on theoretical experiment designs.
- Traffic movement is represented using an agent based simulation.
- Interactive virtual environment

L**I** Trans

VIRE:

- Questionnaire:
 - sociodemographic information, walking habits, health conditions, previous VR experience
- VR:
 - Coordinates, head orientations

LTrans

VIRE: Controlled Variables

Scenarios defined by:

Factor	Variable	Levels			
Rules and	Speed limit (km/h)	30	4	0	50
regulations	Minimum allowed gap time (s)	1	1.	5	2
Street design	Lane width (m)	2.5	2.75		3
	Road type	1-way	2-way		2-way with median
Automated	No. of braking levels	1	2	2	3
vehicles	Traffic automation status	Fully human driven	Mixed	traffic	Fully automated
Demand	Arrival rate (veh/hr)	530	75	50	1100
Environmental	Time of day	Day		Night	
	Weather	Clear		Snowy	

Too many possible combinations? **D-Optimal Design**

L!Trans

VIRE: Design of Experiment

Too many possible combinations?

D-Optimal Design:

- Find the efficient combination of levels
- Covariances matrix of parameter estimates determine attribute level combinations
- Minimizing the variance = Maximizing the Fisher information matrix
- \circ ~ A D-optimal design for CPH was proposed for the first time
- Scenarios generated to maximize determinant of Fisher information matrix:

$$\mathbf{M}(\xi,\beta) = \sum_{j=1}^{m} \omega_j (1 - \exp(-c \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)))_j \begin{bmatrix} 1 & x_1 & x_2 & \cdots & x_k \\ x_1 & x_1^2 & x_1 x_2 & \cdots & x_1 x_k \\ \vdots & \ddots & \vdots \\ x_k & x_k x_1 & \cdots & x_k^2 \end{bmatrix}_j$$

L**!**Trans

Participants using VIRE:

Data Collection

180 participants, over 5 months

Ryerson University:

Mainly Student and young professionals

Markham City Public Library:

General Public

North York Civic Center and Toronto City Hall:

Mainly Professionals familiar with city issues

Maximum City Summer school

Two groups of 10 and 15 year old kids

Framework

17/27

Results

Wait time distribution:

Comparison of wait time:

Comparison of wait time:

Results

CPH results:

Variable	Coefficient	Hazard Ratio	p-value
Walk to Shopping	0.18	1.20	< 0.005
Main Mode: Car	-0.12	0.88	0.03
Age Over 50	-0.17	0.84	0.06
Traffic Density	-0.83	0.43	< 0.005
Previous VR Experience	0.14	1.15	< 0.005
Age: 30-39	0.32	1.38	< 0.005
Lane Width	-0.31	0.73	< 0.005
Road Type: Two-way with Median	0.22	1.24	< 0.005
No Cars in the Household	0.14	1.15	< 0.03
Gender: Female	-0.13	0.87	0.01

Performance Comparison

Model	Number of covariates	C-index: Validation Set	C-index: Test Set
Linear CPH	10	0.60	0.57
DCPH1	21	0.61	0.60
DCPH2	19	0.64	0.62

LTrans

Interpretability

- Performance increases with DCPH, but how each covariate contributes?
- Neural Networks are black boxes
- For practical implications, we need them *interpretable*
- SHAP: (SHapley Additive exPlanations)

(Lundberg and Lee,2019)

- Post-hoc model-agnostig interpretability method
- Inspired by Shapley Values: "How to fairly distribute the surplus to players?"
- Players: covariates, surplus: change in network output
- Considers the fact that the contribution of a feature depends on the values of other features

Interpretability

Longer wait times

Shorter wait times

LTrans

Discussion

- Participants are more conservative in the presence of AVs:
 - Nationwide educational training programs to familiarize pedestrians with new dynamics
 - VR can play an important role
 - Manufacturers should consider alternative ways to communicate with pedestrians
- Narrower lane widths, lower traffic densities, and better sight distances cause shorter wait times:
 - Wider sidewalks, narrower lane widths, enhanced lighting equipment
- Having frequent walking habits positively affects the crossing experience:
 - Promoting active modes and developing more pedestrian friendly infrastructure
- Extra attention to children and senior participants:
 - Training and educational programs

Conclusions:

- Before having AVs in urban areas, their impact from a pedestrian perspective should be investigated
- Advance data-driven models improve performance, using rich datasets available
- Virtual immersive reality based digital sandbox:
 - Controlled/safe environment
- Interpretable models are required for policy and decision making

Future Work:

- Pedestrian behaviour in group
- Applying the model to benchmark datasets
- Pedestrian trajectory prediction
- Developing a comprehensive framework consisting of pedestrian intention decisions and behaviours, as well as AV training

Thank you!

Preprint available at: <u>https://arxiv.org/pdf/2002.07325.pdf</u>

Feel free to contact me:

arash.kalatian@ryerson.ca Arashkalatian.com LiTrans.ca

