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1. INTRODUCTION 

 

This technical report presents the work undertaken by the University of Toronto Transportation 

Research Institute (UTTRI) to model trip chaining of vehicles operating for Private Transportation 

Companies (PTCs) in support of the City of Toronto’s Vehicle for Hire Bylaw Review. 

 

The main purpose of this component of the project is to assess network impacts of PTC operations. 

The data provided to study these impacts consists of the entirety of trips reported by ridehailing 

service providers from the period of September 1, 2016 to December 31, 2018. Even though these 

data are comprehensive and extremely useful for analysis, they do not encompass the entirety of 

ridehailing vehicular movements. Ridehailing vehicles further occupy the network while being en-

route to pick-up passengers, as well as when idling or waiting to be paired with the next passenger. 

Hence, identifying and accounting for these additional vehicle “states” becomes a critical task 

towards a comprehensive assessment of PTC network impacts. 

 

To align this report´s terminology with its counterpart in the Vehicles-For-Hire Bylaw (City of 

Toronto, 2016), the mentioned vehicle “states” are defined by three periods. Namely: 

• Period 1 (idling): “total time a PTC driver had activated or was logged into a PTC Platform 

and available to receive or accept requests to provide passenger transportation service”. 

• Period 2 (en-route): “total time elapsing between the time a passenger request for 

transportation is accepted by a PTC driver and the arrival of the PTC driver at the 

passenger's pick up location”. 

• Period 3 (in-service): “total time elapsing between the time that a PTC driver picks up a 

passenger(s) until the time the passenger(s) has arrived at their destination(s)”. 

 

To quantify the amount of time spent and distance driven by ridehailing vehicles while being in 

Periods 2 and 3, Project Task 4.2 aims to identify vehicle trip chains, which would provide 

information related to the periods when vehicles are not transporting passengers. It must be noted 

that trip chaining is normally not an operational task explicitly performed by service providers, but 

it rather is the outcome of the dynamics of within-day service provision processes. A brief 

background on ridehailing operations is presented in Section 2 below to further develop this 

argument. 

 

As acknowledged in the Project Charter document, undertaking a trip chaining analysis (Task 4.2) 

involves a high degree of uncertainty and complexity, being contingent upon the availability of 

various data sets, particularly unique driver identifiers and full path "GPS breadcrumbs" of each 

PTC VFH trip – the latter categorized  by its different periods (1,2, or 3). Given the absence of 

these data, a prototype model has been developed, built upon existing data (observed demand for 

ridehailing trips) and an extensive conceptual understanding of ridehailing fundamental 

operational tasks. Furthermore, it must be acknowledged that the prototype model circumvents the 

lack of data by endogenizing ridehailing operational processes and vehicles (and its drivers) as 

agents. In this context, calibration and validation as envisioned in Task 4.3 become practically 

unfeasible since the prototype model can only provide approximate estimates. Nonetheless, a 

strategic modelling decision consisted of leaving out wait time variables in the dataset to be used 
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for assessment of the quality of the results product of the modelling efforts undertaken in this 

report, through comparison of simulated versus observed wait time distributions. 

 

The rest of the report is organized as follows. Section 2 provides background on ridehailing 

operations. Section 3 describes and analyzes key variables from a modelling perspective. Section 

4 documents the development of a prototype model for ridehailing service provision and 

operations. Section 5 presents and discusses model results. Section 6 concludes the report with 

discussion on the applicability and limitations of the model and the insights it can provide for the 

Vehicle for Hire Bylaw Review. 

 

2. BACKGROUND ON RIDEHAILING OPERATIONS  

 
As argued in Calderón and Miller (2019c), the most important operational task performed by 

ridehailing service providers is arguably to match user trip requests and vehicles. By definition, a 

ridehailing service can be considered as a platform that facilitates interactions between users and 

drivers; hence, matching becomes a core component of any ridehailing mobility service. For a 

detailed discussion on ridehailing mobility services, refer to Calderón and Miller (2019b). 

 

In theory, the matching operational task of ridehailing service providers could be cast as several 

variants of mathematical optimization problems within the broad class of vehicle routing problems 

(VRP). For instance, Doerner and Salazar-González (2014) define the conventional Dial-A-Ride-

Problem as a VRP with precedence and coupling constraints. It must be noted that these 

optimization problems fall within the scope of NP-Hard problems, hence these are rarely deployed 

by service providers for practical applications and real-life operations of ridehailing services 

(Syed, Irina, & Bogenberger, 2019). Furthermore, a critical challenge arises from the on-demand, 

responsive nature of ridehailing, which implies that demand for the whole day is not known to 

service providers and trip requests arrive dynamically throughout the day. Optimization then 

becomes a moving target, pushing the problem towards dynamic programming approaches, which 

computational complexity is identified to be O(n23n) when the problem is cast a single vehicle 

pick-up and delivery problem (Desrosiers, Dumas, Solomon, & Soumis, 1995). Note that the 

optimization problem so far is concerned with a single vehicle and single occupant, hence it 

becomes even more complex if considering multiple vehicles and shared ridehailing operations. 

 

As an alternative, explicitly modelling ridehailing fundamental service operational tasks and driver 

activity offers a pragmatic and efficient solution to the problem. This can be achieved by following 

the guidelines established in a conceptual framework for modelling mobility services under the 

agent-based modelling paradigm, proposed by Calderón and Miller (2019a). To begin with, a 

ridehailing mobility service involves three actors or agent classes: 

• Users that generate trip requests. Note that, an explicit representation of user agents is not 

necessary for the purpose of this study because trip requests are already observed in the 

data. 

• Vehicles (in this case human-driven) that can fulfill trip requests and make decisions about 

their activity in the system. 
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• A service provider that undertakes operational tasks to run the service and acts as a platform 

to facilitate and manage interactions between users and vehicles. 

At a minimum, modelling human-driven vehicle agents should capture their decisions of becoming 

active/inactive in the system throughout the day. These decisions are arguably dependant on the 

number of hours worked in a day, cumulative earnings collected, spatial distribution of demand at 

a given point in time, and the (dynamic) pricing level at a given point in time. More elaborate 

vehicle activity models can include decisions about where to locate/relocate to provide service, 

returning to activity or number of working shifts over a day, driver behaviour while waiting for 

the next customer (idling), etc. 

 

On the other hand, a service provider agent can be modelled by a given combination of sub-models 

of operational tasks such as: matching, rebalancing and pricing. In a nutshell, matching refers to 

the process of pairing user trip requests to available vehicles; rebalancing is concerned with 

maintaining an adequate spatial distribution of the fleet through strategic vehicle relocation; and 

pricing is typically related to dynamic pricing mechanisms such as surge pricing (Uber, 2019b) or 

prime time pricing (Lyft, 2018b) – albeit some services operate with fixed pricing schemes1. 

 

All things considered, this report documents the development of a prototype ridehailing operations 

model, centred around service provider and driver agents. It should be noted that there is a high 

degree of uncertainty about how ridehailing providers perform rebalancing tasks or if they even 

do so; moreover, data limitations imply that modelling rebalancing operations (and a pricing 

mechanism as well) are inevitably out of reach. Nonetheless, the results of this project suggest that 

modelling matching can provide a very reasonable approximation of ridehailing service provision. 

 

As a first step, the next section introduces descriptive statistics and focused analyses of key 

variables from the dataset provided for this study. 

 

3. KEY VARIABLES 
 

The data available consists of every trip reported by ridehailing service providers from the period 

of September 7, 2016 to December 31, 2018. This section explores these data as a first step towards 

constructing a model of PTC operations. This analysis focusses on the period from September 7, 

2016 to December 31, 2016 so that they can be directly linked to the Transportation Tomorrow 

Survey 2016 (DMG, 2016) and the GTAModel V4.1 (TMG, 2018). 

 

3.1. Trip Status 

 

The dataset includes trips that were initially requested by users but were then cancelled either by 

users or drivers, as shown in Figure 1. Driver rejection rates are low (5.4%), which are in line with 

desired operational levels that aim for lower than 10%, usually enforced through driver reward 

systems (Lyft, 2018a; Uber, 2019a). Conversely, the rate of passenger rejection reaches 17.4%, 

which is quite high. The reasons for this phenomenon are unknown, and further analyses about 

                                                 
1 Facedrive (https://www.facedrive.com/); Instaryde (https://www.instaryde.com/). 
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trip rejection will be conducted in future work, exploring spatiotemporal features and zone-specific 

average sociodemographic characteristics. 

 
Figure 1: Classification of trips by their status 

The remainder of this report considers completed trips only. 

 

3.2. Type of Service Provided and Number of Passengers 

 

Ridehailing service providers offer several service variants to users, yet 96% of all trips correspond 

to UberX (non-shared rides) and Uberpool, as shown in Figure 2. For model development, all Uber 

X trips were considered, along with a subset of Uberpool trips consisting only of the first reported 

Uberpool trip, which is treated as if it was a regular trip starting from its specified origin to its 

destination. The rationale for this decision is due to the added modelling complexity imposed by 

shared services, which becomes impractical given the current data limitations. 

 
Figure 2: Classification of trips by type of service provided 

The distribution of number of passengers per trip is shown in Figure 3, which clearly indicates a 

predominance of single-occupancy trips. Aside from this, an interesting finding suggests that this 
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distribution is, in principle, inconsistent with the percentage of trips reported as Uberpool. Namely, 

while 16.1% of trips are reported to be pooled (shared), only 5.3% of trips have more than one 

passenger. The only feasible explanation that could be formulated is that users might have 

requested an Uberpool trip, yet no other user joined the trip over the course of it. 

 

 
Figure 3: Distribution of number of passengers per trip 

Note that the dataset includes records with up to 16 passengers, while records with more than 6 

passengers represent only 0.04% of total trips. Thus, these records were excluded from the 

distribution in Figure 3. 

 

3.3. Trip Request Times 

 

As established in Report 2 of the overall project report series, temporal patterns of trip start times 

are markedly different among weekdays and weekends, hence, the models developed in this report 

are tested both for weekdays and weekend days. 

 

A second important consideration regarding trip temporal patterns is related to temporal 

granularity. Following the rationale proposed in Calderón and Miller (2019a), the most important 

operational task performed by ridehailing service providers is matching users and vehicles, hence, 

the selection of time intervals to perform matching is a critical operational and modelling decision. 

Specifically, longer time steps provide more trip requests to match and hence the opportunity to 

be more efficient in vehicle allocation, however at the cost of imposing longer wait times for users. 

On the other hand, shorter time steps provide fewer trip requests that allow for faster computation 

and short wait times, yet at the expense of efficiency because trade-offs in matching are much 

more limited. Figure 4 depicts the temporal granularity of trip requests by different time step sizes.  

In this figure it can be seen that temporal patterns tend to become uniform as time step size 

decreases.  

 

Considering the patterns shown in Figure 4, a time step of 1 minute was initially chosen for testing, 

deeming it as a value likely to be used by a service provider that aims to attain a balance among 

efficiency and service quality. A 1-minute time step is also adopted in similar research efforts on 
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modelling on-demand services (Alonso-mora et al., 2017; Liu, Bansal, Daziano, & Samaranayake, 

2018). Real-life operations, however, are usually not aligned with theoretical research 

experiments, as evidenced in this study, since a 5-minute time interval produces model results that 

reflect observed data more closely. This is discussed in more detail in Section 5, while the 

Appendix documents time interval testing in full detail. 

 

 

Figure 4: Temporal distribution of trips by different levels of granularity 

3.4. Driver Wait Time 

 

This variable represents the time drivers waited to be matched with a passenger. Figure 5a shows 

that driver wait times are predominantly zero minutes (87.91% of the records), whereas the 

maximum wait time is 60 minutes. Unfortunately, temporal disaggregation to the minute is too 

crude to sufficiently understand whether driver wait times are taking place in the range of seconds 

or are actually zero – which would imply practically instantaneous matching with trip requests. 

 

Figure 5: a) Density function of driver wait times [left]; b) Density function of driver wait times greater than zero [right] 

To better visualize this variable, Figure 5b only depicts wait times that are greater than zero. Note 

that these wait times are highly likely to take place in oversupply conditions, while vehicles are 

idling or cruising and waiting to be allocated trip requests. 
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3.5. Elapsed Time 

 

This variable represents user wait times, defined as the time elapsed since users request a trip and 

a vehicle picks them up. Figure 6a shows the distribution of user wait times, which ranges from 0 

to 200 minutes, whereas Figure 6b shows the distribution of wait times less than 25 minutes 

(99.86% of the total records). 

 

Figure 6: a) Density function of user wait times [left]; b) Density function of user wait times less than 25 minutes [right]. 

Elapsed time is arguably the most powerful variable of the dataset since it is representative of both 

service operations and service quality. Despite the appeal to use wait times as an endogenous 

variable, a strategic modelling decision consists on keeping it as an external control variable, while 

relying on the model to generate wait times endogenously. After deploying the model, a first-order 

assessment can be performed by comparing simulated and observed wait time distributions. 

 

3.6. Request acceptance 

 

Request acceptance refers to the time it took for the service provider to accept user requests, which 

distribution indicates that request acceptance times are extremely short, as shown in Figure 7a. 

Even though the maximum value observed is 4 minutes, 97.41% of total records are under 0.5 

minutes, as depicted in Figure 7b. Furthermore, given that this variable is recorded as fraction of 

minutes, it could be evidenced that even after filtering, request acceptance times are considerably 

low, with 73% of all trips were accepted instantaneously (exactly zero values). 

 

The distribution of this variable provides a very valuable insight, since it suggests that service 

providers accept requests before even finding a match. The supporting argument of this claim is 

that driver wait times are orders of magnitude longer than request acceptance times. 

 

3.7. Ride duration 

 

This variable represents in-vehicle travel time for users, or equivalently, in-service time for drivers. 

Figure 8a shows the unfiltered distribution of ride durations, whereas Figure 8b shows 99.97% of 

the records, corresponding to ride durations less than 100 minutes. 
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Figure 7: a) Density function of request acceptance times [left]; b) Density function of request acceptance times less than 0.5 

minutes [right] 

Figure 8: a) Density function of ride duration [left]; b) Density function of ride duration less than 100 minutes [right] 

3.8. Spatial variables 

 

Trip locations for both origins and destinations are provided in several formats, the most relevant 

considered for the models developed here being centreline intersection IDs and municipality IDs. 

The limitation of centreline intersection IDs is that these only cover the City of Toronto, but not 

the other municipalities in the region; hence, municipality IDs are used for trips that fall outside 

of the boundary of the City of Toronto. Naturally, centreline intersection IDs offer a highly 

granular mapping since these are very densely distributed over the City of Toronto. In contrast, 

municipalities are geometric area entities, hence offering a much coarser mapping. 

 

It must be emphasized that mapping the observed ridehailing trips in the dataset to a spatial zoning 

system is an essential task to enable modelling. This is critical not only for spatial visualization of 

modelling results, but more importantly because vehicle movements (and travel times, by 

extension) in Periods 1 and 2 are not observed in the data. To fill this data gap, equilibrium 

congested travel times by relevant time periods are obtained from the GTAModel. 

 

A considerable amount of time was invested into reconciling and linking the mentioned two types 

of spatial location attributes in the dataset, and the different spatial reference systems, including 

the one used in the GTAModel. Further details about this task are described below. 
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To begin with, the dataset contains trips “outside” of the boundary of the GTAModel, with 

origins/destinations in very distant municipalities (e.g. Kingston). Zones outside of this boundary 

correspond to the green-coloured zones in Figure 9, whereas zones within the GTAModel 

boundary are represented by both the blue and red-coloured zones. Moreover, trips outside of the 

GTAModel boundary cannot be modelled since travel times from/to them are clearly not available. 

 

The next important differentiation is between “internal” (red) and “external” (blue) zones in the 

GTAModel, where the latter are aggregated into larger zones than regular municipality zones. 

 

 
Figure 9: Various spatial references utilized in the study. 

Having established all spatial sources, the different mapping combinations that arise are: 

• Trip origins/destinations within the City of Toronto boundaries always correspond to 

internal zones in the GTAModel: trips mapped to zones through centreline IDs. 

• Trip origins/destinations outside the City of Toronto boundaries, but still within internal 

zones in the GTAModel: trips mapped to zones through municipality IDs. 

• Trip origins/destinations outside the City of Toronto boundaries, within external zones in 

the GTAModel: trips mapped to aggregated zones through municipality IDs. It should be 

noted that trips with either origins or destinations corresponding to these external zones are 

being filtered out due to current issues in the GTAModel; however, there were never more 

than 20 records filtered out for any of the days modelled in this report. 

• Trip origins/destinations outside the City of Toronto boundaries, and outside the 

boundaries of the GTAModel: not possible to map. 
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After the mapping process is performed, every origin/destination of a mapped trip is coded as a 

particular GTAModel zone. As mentioned, this will allow for OD travel time allocation when 

endogenously generating en-route trips. However, given the macroscopic, zone-based nature of 

the network assignment component of the GTAModel (EMME2), intrazonal travel times are not 

generated. To overcome this limitation, intrazonal travel times are calculated based on geometric 

features of each zone, as follows: 

���� =
������6 �
�����	�����

 

Where the numerator approximates a representative distance considering the area of zone i, and 

the average speed considered for the calculation is 40 Km/h. 

 

4. RIDEHAILING SERVICE PROVISION PROTOTYPE MODEL 
 

Fundamental characteristics of ridehailing mobility services consists of the relationship and 

interdependency among demand for the service (trip requests), supply of the service (vehicles and 

its drivers), and an (often dynamic) pricing mechanism that drives the system and brings all pieces 

together. Given the unavailability of data regarding vehicles (and their drivers) and fares paid by 

users that would allow for a full-blown operational model, a prototype model has been developed 

for this project. The model’s main premise derives from the fact that observed demand provides 

the minimum number of vehicles active in the system at any given time. Hence, the first step taken 

is to instantiate vehicles in the system at “time zero”, to match observed demand at the same time. 

Afterwards, vehicles are generated whenever the active fleet size is lower than observed demand 

at any given point in time. An implication of this approach is that reactions of drivers to price 

levels cannot be accounted for, hence, undersupply conditions do not occur, and oversupply 

conditions will be largely underestimated, limited only to a second-order outcome of vehicles 

remaining in activity after serving trip requests. 

 

A second key component of the model consists modelling driver activity, which accounts for driver 

decisions of becoming active/inactive in the system. By assembling this modelling structure, the 

system can keep track of vehicle agents throughout the day and ultimately generate service 

performance metrics and vehicle-level metrics such as trip chains. 

 

Another key feature of the model is that it is time-step driven, since it steps through time by discrete 

time intervals. As established in Section 3.3, a time step of 1 minute was deemed as an adequate 

initial value. For the interested reader, a discussion on the adequacy of time-step based temporal 

modelling, as well as an overall modelling framework for mobility services, can be found in recent 

and on-going research conducted by the authors (Calderón & Miller, 2019b, 2019c, 2019a). 

 

Random days are selected to be run through the model because behavioural and procedural features 

of within-day ridehailing operations do not vary from day to day. Fridays and weekends are only 

                                                 
2 EMME is a commercial software specialized in network assignment. For further information: 

https://www.inrosoftware.com/en/products/emme/ 
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different in their temporal distribution of demand, yet not in how the service operates. Further, it 

is important to consider that, from an activity perspective, a day starts at 4am in the morning and 

finishes at 4am in the next day. Both users and drivers follow these “normal” activity patterns. 

This consideration is particularly important for a logically consistent generation of trip chains, 

since at 3 am in the morning a driver is likely finishing their day rather than starting a work shift. 

 

Note that, as opposed to more descriptive types of analysis, the computational cost of running the 

prototype model developed in this study is considerably higher, with processing times for 

modelling a given single day being in the range of 5-15 minutes (predominantly dependent on the 

length of the time interval) in an Intel Core i5 8th generation laptop computer. In this sense, random 

days were selected from the dataset to model their respective within-day operations. While running 

the model for the whole set of observed days (850) is conceivable, it is deemed as unnecessary for 

the scope and purpose of this report. 

 

The prototype model is documented next in terms of its required data structures and its high-level 

components and structure. 

 

4.1. Data Structures 

 

The data structures used in this model are based on the ones proposed in Calderón and Miller 

(2019a), which are list-based in order to exploit the agent-oriented nature of the model. Namely: 

• A trip list (t-list), which contains the full set of trip requests from a given day. Deriving 

from it, a demand partition (t-listd) is retrieved by the model every time interval and made 

available to the service provider. This enforces the restriction that demand for the whole 

day is not known to providers.  

• A fleet list (f-list), which contains the total number of vehicles available for operations 

(absolute fleet size). 

• A vehicle list (v-list), which consists of a “snapshot” of the f-list at a time interval, hence 

it contains the vehicles that are available to the service provider at a given point in time. 

This list is essential for handling operational within-day dynamics. 

These list-based data structures effectively allow to have trip requests and vehicles as the 

fundamental units of analysis in the system, and more importantly, allow to keep track of vehicles 

throughout the day. 

 

4.2. High-Level Model Structure and Components 

 

A high-level representation of the model structure is depicted in the high-level flow diagram shown 

in Figure 10. The algorithmic steps are adapted from Calderón and Miller (2019a), and describe 

key processes that drive the model, each one of them are described in further detail next. 

 

The first step consists of retrieving from t-list all trips whose request times fall within the current 

time interval and storing them in t-listd. In terms of information flows, this subset of trip requests 

is made available to the service provider, and thus, subject for processing within the time interval. 
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Figure 10: High-level flow diagram of model structure 

The second step consists of querying f-list for vehicles that finished servicing before the start of 

the current time interval and updating their state to “Idle”. Note that the location of vehicles that 

finished servicing a trip becomes the destination of the user trip, implying that the model assumes 

that drivers stay at user destination after servicing a trip and while waiting for the next trip. 

 

The third step is the first element of modelling driver activity and is concerned with driver 

decisions to leave the system (stop working). To achieve this, a probabilistic modelling technique 

is utilized in the following manner: 

• Given the lack of driver activity data, relatively ad-hoc assumptions are adopted based on 

the scarce evidence found about driver activity. Namely, drivers working patterns are 

sparse and an average driver works 15 hours a week (The Star, 2018). Hence, a normal 

Get trip requests corresponding to 
current time interval (t-listd)

Update vehicles in fleet list that have 
finished servicing trips

Driver activity: model vehicles that decide 
to leave the system

Driver activity: generate vehicles to match 
observed demand

Get idle vehicles from f-list and 
store them in v-list

Assemble Vehicle-Trip travel time 
matrix

Perform matching algorithm and update 
vehicle attributes in v-list

Update f-list and t-list with 
outcomes of current iteration

Store results and advance clock by 
one time interval
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probability density function (PDF) is assumed to represent the probability of a driver 

working a certain number of hours in a given shift, as shown in Figure 11. This pdf is 

assumed to have a mean of 3 hours and a standard deviation of 1 hour, following the logic 

that a driver might work 5 days per week and thus 3 hours per day on average. 

 

Figure 11: Distribution of number of driving hours 

• To generate a probability of leaving the system, the corresponding cumulative density 

function (CDF) is utilized, since it represents the probability of a driver leaving the system 

having worked up to a given number of hours. As depicted in Figure 12, this value becomes 

the probability of success of a Bernoulli trial that ultimately yields a 1/0 binary outcome. 

 

 
Figure 12: Generation of “active/inactive” value from normal cumulative density function 

• This probabilistic model is applied to every active driver in the system, and the state of all 

drivers that decided to leave the system is updated to “Inactive”. 

The next step in the algorithm is also related with driver activity, as it enforces the model constraint 

that at any given time, there must be at least as many drivers as observed trips. Hence, eligible 

drivers (state = “Inactive”) are selected from the f-list to become active. Currently, for drivers that 
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enter the system for the first time, the model instantiates them in random locations throughout the 

region, but this location generation process can be refined to account for driver residential locations 

or demand spatiotemporal patterns. 

 

Note that there is a possibility of activating drivers that just became inactive in the previous step, 

thus, to control for this, drivers that have previously been active in the system must wait a user-

defined period before re-entering the system. In addition to this, it is desirable from a behavioural 

perspective to account for multiple working shifts for drivers as this is the case in real life 

conditions. This “return to activity” period is currently set to 5 hours, but it could conceivably be 

also modelled probabilistically for each vehicle agent. The latter option was not implemented to 

avoid introducing further uncertainty in the model given the lack of data that provides a ground 

truth on driver activity. 

 

Having modelled relevant driver activity processes, a subset of all Idle vehicles in the f-list is 

retrieved and stored in the v-list, which completes the required information for the service provider 

to perform operational tasks. 

 

For a given time interval, all the combinations of location of vehicles available for matching (v-

list) and the origins of trip requests (t-listd) are assembled into a Vehicle-Trip Matrix (VTM), in 

which: rows represent the location of vehicles, columns represent the origin of trips, and cells 

represent the corresponding time-of-day-dependent travel times obtained from the GTAModel. 

This matrix is a core instrument of the model since it provides necessary information to perform 

matching. Furthermore, it must be noted that the travel times stored in this matrix represent both 

simulated en-route times for vehicles and wait times for users. 

 

The matching algorithm is then deployed until all trip requests are served. Thanks to modular 

algorithmic design, any desired matching algorithm can be implemented in the model, such as 

purely random matching, greedy, centralized greedy, Hungarian, etc. For a very good discussion 

on matching algorithms, the reader is referred to Hanna, Albert, Chen, and Stone (2016). After 

testing and experimentation (see the Appendix), the current implementation consists of a greedy 

matching algorithm. This is aligned with the statement made by Hanna et.al. that ridehailing 

service providers such as Uber deploy simple First-Come-Fist-Serve, nearest-vehicle matching 

strategies to cope with the real-time dynamics of the service. A brief description of the 

implemented greedy matching algorithm is provided below. 

• Trip requests of a given time interval (t-listd) are not time-ordered, but instead are 

randomly stored by default (following the also non-time-ordered characteristic of the raw 

data). Thus, going through t-listd in order can actually be considered as random. 

• Each iteration of the algorithm allocates one vehicle to a trip. 

• A subset vector from VTM is retrieved, which contains travel time values from the location 

of all available vehicles to the origin of the trip being processed. 

• The minimum travel time from the filtered VTM is found, and its corresponding vehicle 

and trip request are matched. 
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• The travel time values corresponding to the matched vehicle (row) and trip request 

(column) in the original VTM are set to infinity to rule them out from subsequent iterations. 

• Update relevant attributes in v-list and t-listd. 

• Repeat process until all trips are served. 

The final steps consist of updating the f-list with the outcomes recorded in v-list, storing relevant 

results for post-process visualization and analysis, and increasing clock time by one unit (the size 

of the time interval) to continue advancing through the day. 

 

5. MODEL RESULTS AND DISCUSSION 
 

Given the agent-oriented nature of the model, a wide variety of system-level and agent-level 

metrics can be generated and kept tracked. Before diving into results, it is worth highlighting that 

the core components towards which the model is sensitive, and thus the ones that provide a 

modelling leverage, are the matching algorithm, the time interval length, and the vehicle 

generation processes – the latter especially location-wise. This was clearly seen throughout model 

development as well as in sensitivity tests, which are not included in the main body of this report 

but can be found in the Appendix. The results presented below consist of the best combination of 

the abovementioned core components, as assessed against observed wait time distributions. The 

outputs that are currently generated by the model are presented next for Thursday, April 30, 2017, 

which was chosen on the grounds that is the day with the highest demand for ridehailing trips 

observed in the dataset containing detailed minute-by-minute trip records.3 Alternative days 

(including Fridays) were also tested, as reported in the Appendix. 

 

General model metrics are presented in Table 1 below, followed by graphical representations of 

system-wide and agent-level metrics. 

Table 1: Model outputs for Thursday 30/03/2017 

Metric Value Unit 

Total number of trips to be served 86018 Trips 

Absolute fleet size deployed to provide service 10064 Vehicles 

Maximum en-route time (user wait time) observed in the simulation 1.15 Hours 

Average number of idling vehicles (over 5-minute intervals) 5.62 Veh/5min 

Percentage of time there were 0 vehicles idling in the system 82.99 Percent 

Total time that the fleet is active, yet not in-service (Periods 1 & 2) 5149.5 Hours 

Percentage of time that fleet is active, yet not in-service (Periods 1 & 2), with 

respect to overall active time 

18.79 Percent 

Total VKT when the fleet is en-route (Period 2) 302296 Kilometers 

Percentage of VKT when fleet is en-route (Period 2), with respect to overall VKT 29.01 Percent 

Average simulated wait time (true observed value=4.98 minutes) 6.01 Minutes 

Trip connections that would be unfeasible with respect to observed data 14 Percent 

Model runtime 5 Minutes 

                                                 
3 After April 30, 2017, trip records were only stored aggregated to one-hour time intervals, thereby significantly 

reducing the temporal granularity of any analysis based on these data. 
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An important consideration to bear in mind is that the amount of idling is inevitably underestimated 

because of the nature of the model itself. Supply (vehicles) is “catching up” with demand (trip 

requests) over the day, hence oversupply conditions (and idling by extension) arise in a very 

limited manner, mostly triggered by rapid demand drops after demand surges (refer to Figures 13 

and 18 below). 

 

The most relevant results for the purposes of this study then consist of the total time spent and 

Vehicle Kilometers Travelled (VKT) by vehicles in the network without a passenger (Periods 1 

and 2). Results indicate that for this particular day, en-route and idling together amounted to a total 

of 5149.5 hours (23% of overall fleet active time) and 302296 kilometers (37.95% of overall fleet 

VKT). Note that, with respect to distance, cruising behaviour of drivers while idling is not being 

modelled but rather vehicles are assumed to remain at their last passenger drop-off. Consequently, 

distance estimates while idling are not considered in the total VKT estimates and thus not reflected 

in the percentage calculated. 

 

In terms of assessing model performance, the average simulated wait time is very close to the 

average observed wait time. Further, when comparing the distribution of these variables (refer to 

Figure 19), the model is performing quite successfully in replicating observed data. Room for 

improvement certainly exists though, particularly considering the thick tail in the distribution of 

simulated times. The most likely explanation that has been hypothesized for this result is related 

with the vehicle generation process of the model, which currently randomly chooses zones within 

the study area as the initial vehicle locations for instantiated vehicles. It is quite possible that this 

is unrealistic, specially considering the variety of factors that can influence these processes. A new 

data source regarding driver residential locations has been recently provided by the City of Toronto 

to the study team, which can allow for testing alternative location allocation approaches within 

vehicle generation, but this analysis has not yet been undertaken at the time of this report’s 

preparation. 

The model also outputs some control variables such as the absolute fleet size deployed to provide 

service, which is below the reported 39118 registered drivers by March 2017 and implies that 

around 25% of registered drivers worked on the modelled day.  

It is also worth mentioning that other new data sources regarding aggregate fares and number of 

active drivers in a day have been recently made available to the authors, which will enable further 

testing and model development. Again, however, incorporation of this new information into the 

analysis has not been undertaken. 

 

In terms of graphical outputs, temporal patterns of demand (#trips), supply (# available vehicles), 

and idling vehicles throughout the day can be clearly observed in Figure 13. Moreover, the 

secondary vertical axis of the plot refers to the number of dormant vehicles in the system, which 

are vehicles that have never entered the system throughout the day. Note that the total fleet size is 

a user-defined parameter in the model that is only used for reference, yet the model is agnostic to 

fleet size, only throwing an exception when fleet size is not enough to satisfy observed demand. 
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Figure 13: Temporal distribution of main system metrics for Thursday, 30/03/2017. 

Figure 14 depicts the temporal variation of the total time spent en-route by the whole fleet, at any 

given 5-minute interval within the day. As expected, this figure has a shape that is consistent with 

demand temporal patterns. Further, Figure 15 presents en-route times as a per-vehicle average, 

meaning that at any given 5-minute interval within the day, the total fleet en-route time is divided 

by the total number of vehicles matched to trips. Interestingly, the temporal patterns in Figure 15 

are roughly inverted with respect to Figure 14, which reflects on the fact that at early and late hours 

of the day, there are fewer vehicles in the system and trips are more spread out spatially, resulting 

in longer en-route times from the perspective of the vehicle agents.  

 

 
Figure 14: Temporal distribution of fleet total en-route time for Thursday, 30/03/2017. 
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Figure 15: Temporal distribution of average en-route time per vehicle for Thursday, 30/03/2017. 

The amount of VKT by the whole active fleet, by time of day, is shown in Figure 16. As expected, 

it is clearly mirroring the en-route distribution shown in Figure 14, since both reflect vehicles that 

are en-route, yet each figure plots a different metric. Likewise, Figure 17 depicts the average VKT 

covered by individual vehicles, and its patterns also mirror Figure 15. 

 

 
Figure 16: Temporal distribution of total fleet VKT for Thursday, 30/03/2017 
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Figure 17: Temporal distribution of average VKT per vehicle for Thursday, 30/03/2017. 

As mentioned earlier, idle times are only slightly captured by the model due to its data limitations, 

hence the low values found in Figure 18 presumably provide a very low estimate on this 

phenomenon. 

 

 
Figure 18: Temporal distribution of total fleet idle time for Thursday, 30/03/2017. 

Figure 19 shows a comparison of simulated and observed wait times, which consist of the main 

control check of the model. An analysis on the influencing factors and possible explanations of the 

slight differences observed has already been discussed above. 
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Figure 19: Comparison among distributions of simulated and observed wait times for Thursday, 30/03/2017. 

Additionally, by recording the trip requests that each vehicle is assigned to over the course of the 

day, trip chains can be generated and thus also the number of trips per vehicle, as shown in Figure 

20. What also stands out is that the distribution of number of trips per vehicle has a thin, long tail, 

indicating that a very small subset of vehicles serves up to 28 trips in a day. This could also be an 

implication of location allocation in the vehicle generation process. In any event, 28 trips in a day 

is not a mathematical or logical impossibility: it could happen for a driver working 8 hours that 

has constantly been servicing short trips (likely within the CBD); this translates into servicing one 

trip every 15 minutes, with 2 minutes in-between consecutive trips. 

 

Figure 20: Number of trips per vehicle for Thursday, 30/03/2017. 
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The final output of the model consists of trip chains of every vehicle that entered the system. This 

is an input that was originally requested by the City Staff to compare against the fleet size 

minimization approaches tested by them under this project, but it also useful as a comparative 

output since it allows for comparison between the endogenously generated trip chains of the model 

and observed pick-up and drop-off variables. As per Table 1, 14% of subsequent trip connections 

would be unfeasible when compared to observed data, meaning that the observed drop-off time of 

a trip is later than the observed pick-up time of the next trip in the chain. 

 

In any event, the percentage of infeasible connections is a completely expected one since a 

considerably large portion of service operations – along with drivers – are endogenously modelled 

due to lack of observed data. In particular, the actual matching mechanism performed by the 

service provider is not known to modellers due to proprietary rights, hence the outcomes of 

matching translate into path-dependant vehicle locations, which are also then linked to user origins 

by en-route times obtained from an external source (GTAModel). Given these circumstances, an 

inflated 14% is an acceptable and encouraging outcome, especially considering that average 

simulated wait times are relatively close to observed wait times and their distributions are very 

similar in range and shape. To illustrate the outputs generated at the trip chain level, Table 2 

presents an example of a trip chain of a randomly chosen vehicle within this simulation. 

 
Table 2: Example of a vehicle trip chain for Thursday, 30/03/2017. 

Trip Chain for Vehicle#: 510 

Trip 

# 

PTCID Observed 

Request 

time [hrs] 

Observed 

Pick-up 

time [hrs] 

Observed 

Drop-off 

time [hrs] 

1 32538DE31D564CCA93906CB239EBD0A6 20.1150 20.4064 20.6258 

2 8759FBF230DB4086A5E130CFF8596872 20.4047 20.4517 21.1519 

3 F6894B5F15514DCB8A43168B57016FF7 21.3258 21.3706 21.4083 

4 32354316E07B4368BC50626757A1684F 21.4461 21.4778 21.5894 

5 87AAC7E8A0DF407DB734DDEE34CD04A1 21.6303 21.7269 21.7950 

6 3893B30A40244AD4B1CD8DF6DAF9D284 21.6919 21.7856 22.0767 

7 ADC2DEFA3FF84054A8EFC3F4A2ABC289 22.0575 22.0989 22.3322 

8 5C44953CE2D84F66AB5A88B8C64D9D0A 22.3347 22.4139 22.5489 

9 DF43E18079CD4E1A9EC5CB16362D5DF7 22.5553 22.6275 22.9156 

10 6D4156AED607499CA5A1F908E81412EB 22.8622 22.9239 23.1289 

 

Instances of infeasible connections can be observed in Table 2 when comparing the observed drop-

off times of trip 1 and 5 with the observed pickup time of trips 2 and 6, respectively. Evidently, 

however, full sequential consistency exists between modelled pickup and drop-off times. 

 

Model results were highly consistent when testing different days and demand patterns, which 

suggests that the model is stable and robust with respect to its different exogenous inputs. Relevant 

tests against day-to-day variations are also documented in the Appendix. 
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6. CONCLUSIONS AND REMARKS FOR THE VFH BY-LAW REVIEW 

 

The results presented in this report demonstrate that, when confronted with the lack of observed 

operational data regarding driver activity and pricing, a solid conceptualization of the operations 

of a ridehailing mobility service applied to observed demand proved to be successful in replicating 

wait time distributions. The potential and capabilities of the prototype model developed in this 

study are promising and could be further enhanced with additional sources of operational data. 

Results, albeit encouraging, should be handled with caution and should not be used to make 

definitive claims. Nevertheless, broader and more generic conclusions can be asserted with a 

higher degree of confidence, such as the percentage of time (out of total active time) that vehicles 

spend en-route and idling (Periods 1 and 2) is around 19%, and the percentage of VKT that can be 

attributed to vehicles en-route (Period 2) is around 29%. 

 

The results mentioned provide an “educated guess” and a proxy estimation of potential network 

impacts of ridehailing services. As mentioned, data limitations constrained the model scope to only 

be able to enforce the realization of observed demand, via generation of vehicles. This implies that 

oversupply conditions are largely overlooked, hence estimates of idling are very low by 

construction. By adding at least one more fundamental component – either driver information or 

fares paid by time of day, oversupply conditions could be estimated in a much better capacity. 

More generally, further data provision can significantly improve the accuracy and applicability of 

the modelling efforts presented here. 

 

In terms of robustness, the model proved able to produce stable and consistent results for different 

random days, both weekdays and weekend days. Furthermore, the sensitivity tests (see Appendix) 

with respect to variations in time interval size, matching algorithms, and vehicle 

generation/instantiation corroborated the authors’ hypotheses on them being key leverage 

variables with respect to ridehailing service operations. 

 

The recommendation that can be offered for the Vehicle for Hire Bylaw Review project is to 

consider the results shown here as an approximate estimate of ridehailing operations. Hopefully, 

the results shown in this report can motivate and expedite the data provision possibilities initially 

contemplated under the project, which would allow the authors to considerably relax some of the 

assumptions made, resulting in much stronger analyses that could well be considered for definitive 

evidence-based decision making. 
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APPENDIX: SENSITIVITY TESTS 
 

Initially, a 1-minute time interval and centralized greedy algorithm were adopted, the latter consists 

of the following steps: 

• Each iteration of the algorithm allocates a vehicle to a trip. 

• An initial travel time threshold is defined. 

• A subset of the Vehicle-Trip Matrix (VTM, as per Section 4.2) is found, formed by all 

travel time values below the current threshold. If no values found, then the threshold is 

increased progressively. 

• The minimum travel time from the filtered VTM is found, and its corresponding vehicle 

and trip request are matched. 

• The values in VTM of the corresponding matched row and column are set to infinity to 

rule them out from consideration in subsequent iterations. 

• Update relevant attributes in v-list and t-listd. 

• Repeat process until all trips are served. 

As Table A1 shows, a centralized greedy outperforms a greedy algorithm in practically all fronts, 

except for the percentage of trip connections of vehicle trip chains that would be infeasible when 

compared against observed data. This exception is not one to overlook, since, theoretically, it is 

expected for a centralized greedy implementation to be superior; however, this does not mean that 

service providers rely on this approach in real life. In fact, this argument becomes stronger when 

comparing Figure A15 and Figure A16. 

Table A3: Comparison of main model metrics under different matching algorithms: 1-min time interval. 

Metric C-Greedy Greedy Unit 

Total number of trips to be served 86018 86018 Trips 

Absolute fleet size deployed to provide service 9801 10023 Vehicles 

Maximum en-route time (user wait time) observed in the 

simulation 

1.33 1.08 Hours 

Average number of idling vehicles  

(over 5-minute intervals) 

5.18 4.918 Veh/5min 

Percentage of time there were 0 vehicles idling in the system 64.35 65.462 Percent 

Total time that the fleet is active, yet not in-service (Periods 1 

& 2) 

6615.7 7438.9 Hours 

Percentage of time that fleet is active, yet not in-service 

(Periods 1 & 2), with respect to overall active time 

22.92 25.05 Percent 

Total VKT when the fleet is en-route (Period 2) 403923 450702 Kilometers 

Percentage of VKT when fleet is en-route (Period 2), 

with respect to overall VKT 

38.75 43.24 Percent 

Average simulated wait time  

(true observed value=4.98 minutes) 

5.028 5.61 Minutes 

Trip connections that would be unfeasible with respect to 

observed data 

18 15 Percent 

Model runtime 15 10 Minutes 
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All figures presented below correspond to the default testing day of Thursday, March 30, 2017. 

 
Figure A21: Temporal distribution of main system metrics for c-greedy algorithm. 

 
Figure A22: Temporal distribution of main system metrics for greedy algorithm. 



UTTRI VfH Bylaw Review – Analysis of Network Impacts: PTC Trip 

Chaining  
   

 

28 

 

 
Figure A23: Temporal distribution of fleet total en-route time for c-greedy. 

.5  
Figure A24: Temporal distribution of fleet total en-route time for greedy. 

 
Figure A25: Temporal distribution of average en-route time per vehicle for c-greedy. 
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Figure A26: Temporal distribution of average en-route time per vehicle for greedy. 

 
Figure A27: Temporal distribution of total fleet VKT for c-greedy. 

 
Figure A28: Temporal distribution of total fleet VKT for greedy. 
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5  
Figure A29: Temporal distribution of average VKT per vehicle for c-greedy. 

 
Figure A30: Temporal distribution of average VKT per vehicle for greedy. 

 
Figure A31: Temporal distribution of total fleet idle time for c-greedy. 
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Figure A32: Temporal distribution of total fleet idle time for greedy. 

 
Figure A33: Number of trips per vehicle for c-greedy. 

 
Figure A34: Number of trips per vehicle for greedy. 
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Figure A35: Comparison among distributions of simulated and observed wait times for c-greedy. 

 
Figure A36: Comparison among distributions of simulated and observed wait times for greedy. 

The improvement in terms of replicating observed wait times when deploying a conventional 

greedy algorithm is remarkable, as Figure A16 shows. However, this implementation of the model 

(greedy+1-min time intervals) is systematically generating shorter wait times than reality 

(simulated distribution is more skewed to the right). Moreover, the “tail” of the simulated 

distribution is wider. 

Given the complex nature of the model and the fact that matching and time interval are mutually 

dependant model components, different time intervals must be tested to assess their effects. Hence, 

to continue with the analysis, the same matching algorithms are compared, but now with a 5-

minute time step. Table A2 summarizes model metrics for this new comparison. 
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Table A4: Comparison of main model metrics under different matching algorithms: 5-min time interval. 

Metric C-Greedy Greedy Unit 

Total number of trips to be served 86018 86018 Trips 

Absolute fleet size deployed to provide service 9919 10064 Vehicles 

Maximum en-route time (user wait time) observed in the 

simulation 

1.68 1.15 Hours 

Average number of idling vehicles  

(over 5-minute intervals) 

5.49 5.62 Veh/5min 

Percentage of time there were 0 vehicles idling in the system 84.03 82.99 Percent 

Total time that the fleet is active, yet not in-service (Periods 1 

& 2) 

4452.4 5149.5 Hours 

Percentage of time that fleet is active, yet not in-service 

(Periods 1 & 2), with respect to overall active time 

16.98 18.79 Percent 

Total VKT when the fleet is en-route (Period 2) 272211 302296 Kilometers 

Percentage of VKT when fleet is en-route (Period 2), 

with respect to overall VKT 

26.12 29.01 Percent 

Average simulated wait time  

(true observed value=4.98 minutes) 

5.59 6.01 Minutes 

Trip connections that would be unfeasible with respect to 

observed data 

16 14 Percent 

Model runtime 8 5 Minutes 

A remarkable difference between the metrics of Table A1 and Table A2 consists of a large 

improvement in metrics related with vehicles in Periods 1 and 2. Albeit not necessarily claiming 

that a 5-minute time interval is reflecting real-life operations, it certainly improves service provider 

efficiency. This is quite a predictable outcome since having more trip requests to match provides 

service operators with the opportunity to be more efficient.  

The figures presented next are reduced to wait time distributions because the different time 

aggregation impose a scaling effect that renders plots incomparable in terms of value magnitudes. 

Overall patterns are stable though, with the exception of idling, as shown in Figures A17 and A18. 

 
Figure A37: Temporal distribution of total fleet idle time for c-greedy and 5-min interval. 
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Figure A38: Temporal distribution of main system metrics for greedy algorithm with 5-min intervals. 

 
Figure A39: Comparison among distributions of simulated and observed wait times for c-greedy with 5-min intervals. 

 
Figure A40: Comparison among distributions of simulated and observed wait times for greedy with 5-min intervals. 
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Based on Figures A19 and A20, the effect of time step size has been found to be a dominating 

factor with more influence than the matching algorithm. At this stage, the preferred model setting 

is a greedy matching coupled with a 5-minute time step. Its only disadvantage is still the thick tail 

of the distribution; however, it is possible that this is due to the current implementation of vehicle 

generation processes. As argued in Section 2, there are several factors that arguably influence the 

location within the service coverage in which drivers decide to start/re-start activity. This is on-

going research and it can be enhanced considerably by the availability of additional data sources. 

 

To be comprehensive in testing the model, and by recognizing that time interval is a critical 

component, the next testing efforts were directed towards different time interval sizes, as 

summarized in Table A3. Only a regular greedy matching is considered now, following the 

findings reported so far. 

 
Table A5: Comparison of main model metrics under different time intervals. 

Metric Greedy 

30 sec 

Greedy 

1 min 

Greedy 

5 min 

Unit 

Total number of trips to be served 86018 86018 86018 Trips 

Absolute fleet size deployed to provide service 10220 10032 10023 Vehicles 

Maximum en-route time (user wait time) observed in 

the simulation 

1.28 1.22 1.27 Hours 

Average number of idling vehicles  

(over 5-minute intervals) 

4.88 4.87 5.03 Veh/time 

interval 

Percentage of time there were 0 vehicles idling in the 

system 

55.66 66.16 82.64 Percent 

Total time that the fleet is active, yet not in-service 

(Periods 1 & 2) 

8760.8 7481.0 5168.1 Hours 

Percentage of time that fleet is active, yet not in-service 

(Periods 1 & 2), with respect to overall active time 

28.25 24.77 18.85 Percent 

Total VKT when the fleet is en-route (Period 2) 538970 453609 302296 Kilometers 

Percentage of VKT when fleet is en-route (Period 2), 

with respect to overall VKT 

43.22 39.06 29.01 Percent 

Average simulated wait time  

(true observed value=4.98 minutes) 

6.28 5.64 6.03 Minutes 

Trip connections that would be unfeasible with respect 

to observed data 

14 15 14 Percent 

Model runtime 9 6.8 5.2 Minutes 

 

It is useful to consider the results from Table A3 from a service provider efficiency perspective. 

In general, the longer the time interval, the more time a service provider can aggregate demand, 

and ultimately, the more efficient its operations can be. This can be observed in the 5-minute 

metrics where there is comparatively: higher percentage of time with 0 vehicles idling; less amount 

of time vehicles spent in Periods 1 and 2; and less VKTs while vehicles are in Period 2. 

 

From a user perspective, the conclusions are very different. To begin with, longer time intervals 

imply that wait times would be (by model construction) half of the length of the time interval on 
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average – assuming requests are uniformly distributed over the interval for the sake of argument. 

Accordingly, larger wait times are observed when comparing 1-minute to 5-minute time intervals, 

which reflect the argument above in that despite a more efficient provider, large time interval 

implies that matching results can be communicated to users only after the 5-minute period anyway. 

 

In the case of shorter time intervals, a less efficient service operator (more myopic) is also 

detrimental to user wait times. The reason being that with too short time intervals, there are fewer 

agents in both vehicle and driver “pools”, hence not much alternative matching possibilities exist 

to get the most of matching trade-offs. This in turn translates into users getting lower-quality 

options and hence subject to be longer in wait times, as shown in Table A3. 

 

Wait time distribution plots are presented next in Figures A21 and 22. By comparing these against 

Figure A20, it can be argued that the latter is the one that replicates observed patterns more closely. 

 
Figure A41: Comparison among distributions of simulated and observed wait times for greedy with 1-min intervals. 

.7  
Figure A42: Comparison among distributions of simulated and observed wait times for greedy with 0.5-min intervals. 
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As mentioned in Section 6 of this report, it should be noted that the tests carried forward for the 

model were only concerned with testing variations in the combination of different modelling 

components, as opposed to a calibration exercise. In this sense, the model results reported here are 

“raw” and have not been calibrated to any extent. 

 

SENSITIVITY TO DIFFERENT DAYS 

 

So far in the report, outputs and results have been shown only for Thursday March 30, 2017. 

Hence, the last tests consist of running the model for other days randomly chosen from the dataset. 

Note that a Tuesday, December 13, 2016 was also included for testing, following the findings and 

suggestions documented in Report 2 of the overall report series. All these days are run with the 

combination of greedy matching and 5-minute time interval, general metrics are shown on Table 

A4, and only temporal patterns and wait time distributions are shown. 

Table A6: Comparison of main model metrics across different days. 

Metric Tues. Wed. Fri. Unit 

Total number of trips to be served 64042 55106 81375 Trips 

Absolute fleet size deployed to provide service 8206 7533 10095 Vehicles 

Maximum en-route time (user wait time) observed in 

the simulation 

1.15 1.08 1.18 Hours 

Average number of idling vehicles  

(over 5-minute intervals) 

5.49 3.6 1.63 Veh/time 

interval 

Percentage of time there were 0 vehicles idling in the 

system 

80.9 81.25 90.63 Percent 

Total time that the fleet is active, yet not in-service 

(Periods 1 & 2) 

4163.5 3908 4960.3 Hours 

Percentage of time that fleet is active, yet not in-service 

(Periods 1 & 2), with respect to overall active time 

19.31 19.55 17.56 Percent 

Total VKT when the fleet is en-route (Period 2) 243989 234340 299200 Kilometers 

Percentage of VKT when fleet is en-route (Period 2), 

with respect to overall VKT 

30.47 31.21 28.01 Percent 

Average simulated wait time 6.28 6.67 4.43 Minutes 

Trip connections that would be unfeasible with respect 

to observed data 

16 15 18 Percent 

Model runtime 4.2 3.7 5.2 Minutes 

 

As Figures A23-28 clearly show, the model performs quite well for different days as well. Despite 

a somewhat lower accuracy in replicating observed wait time distributions, good performance can 

also be claimed for Fridays, whose demand patterns are clearly very different than other days. In 

sum, the prototype model has shown high resilience to withstand day-of-week variations. 
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Figure A43: Temporal distribution of main system metrics for Wednesday 19/10/2016. 

 
Figure A44: Comparison among distributions of simulated and observed wait times Wednesday 19/10/2016. 

 
Figure A45: Temporal distribution of main system metrics for Friday 07/10/2016. 
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Figure A46: Comparison among distributions of simulated and observed wait times Friday 07/10/2016. 

 
Figure A47: Temporal distribution of main system metrics for Tuesday 13/12/2016. 

 
Figure A48: Comparison among distributions of simulated and observed wait times Tuesday 13/12/2016. 
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