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Our Main Question:
-- Vehicle Automation and Connectivity impact on Traffic

Can Smart Vehicles Lead to Dumb Traffic?
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Freeway Control and Management with VACs
-- Vehicle Automation and Connectivity Related

v" Freeways largest road assets in large cities > Smart cars can lead to dump traffic

v' Performance and capacity limited by human driving (~2000 vphpl) and exacerbate congestion

v Always congested in rush hours worldwide, capacity further drops by 10- > New intelligent control methods that
20%during peaks, doubling time spent in congestion exploit VACs: Open area of research

v" Freeway physical expansion is often highly constrained by tight space and budget > Recent Al and Deep Learning

advances are very promising
v" Driving automation and VACs emerging rapidly and can potentially cut down

delays be half or more without road expansion if properly exploited. » Advances in v2i communication
(DSRC, 5G), Smart Edge and Cloud
v" Need innovative methods to control traffic while exploiting pervasive connectivity Computing, together with Al, offer
and automation, without expanding the road itself opportunity for 215t Century traffic
management
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Freeway Control and Management with VACs
-- Vehicle Automation and Connectivity Related

How - Possible Approaches

v" Adaptive Cruise Control (ACC): headway and acceleration

optimisation
v Dynamic Speed Adaptation (DSA), combined with Ramp Control T - ndSSkassl Contal atany F“
\ ’ ir Pir Tsrgi Vi, @i
v' Multi-agent control of headway and speed, via infrastructure-2- : vehicles .,

e —

vehicle commands =5 e |

Potential Achievements

v Potential for more than 50% reduction in delays time spent in congestion -'“"IM

v" Significant enhancement in safety and reduction in accidents

(%

v" 1. Quantify impact of automation on freeway performance

v' 2. Develop control systems (headway, speed, and ramp Control)

o
K2 UNIVERSITY OF TORONTO

’m FACULTY or APPLIED SCIENCE « ENGINEERING

Transportation Research Institute




The Impact of Adaptive Cruise Control on Traffic Operation

Lina Elmorshedy June 3, 2020
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Outline: What are the research questions?

d Step (1): Quantification

= Q1: What is the impact of desired headways of ACC-equipped vehicles on freeway
performance (speeds, delay and throughput)?

= Q2: What is the impact of reaction time of ACC-equipped vehicles on freeway
performance?

= A deeper look into results:
* Q3: How does the headway distribution look like and how it relates to throughput?
* Q4: Do target headways materialize?
—On uninterrupted freeway (no bottlenecks, on-ramps, etc.)
—On a realistic urban freeway with bottlenecks and ramps.
* Q5: If target headways don’t materialize, is there still an impact on performance?

* Q6: What is the impact of traffic demand and prevailing congestion levels on the
materialized headways?

» Conclusions and insights
O Next step: Exploitation (Dynamic headway control)
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Step (1): Dynamic Network Modeling with Automation (Quantification)

. .  State-of-art of the VACS implications on the network
Literature review performance.
Buildine th d network » Aimsun Microscopic Simulator.
Hriding the road networ  Calibration using TTS 2016 data.

.  ACC models coded and embedded in Aimsun under various
Modelling of ACC systems penetration rates.

. . * Analysis and quantification of the effects of the modelled
ACC Quantification ACC systems on the network performance.
. . * Conclusions and recommendations of the use of VACS.
Conclusions/Recommendations
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Q1: What is the impact of desired headways of
ACC-equipped vehicles on freeway performance?
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Step (1): Quantification

Assumptions:

= Gipps model for manually-driven vehicles (Aimsun default).

IDM model for ACC equipped vehicles.

Smaller reaction times for ACC equipped vehicles than that for manually-driven
vehicles. (0.6 sec reaction time)

= Three headway scenarios considered: 0.8s, 2.0s and a range between 0.8-2.0s.

= Performance metrics: average delay, average speed, average throughput.
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QEW subnetwork

= Subnetwork of the GTA model: Extracted from
a bigger Aimsun simulation model covering
most of the GTA. /( itk

= Extending for about 45 km. D e e N . M
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Performance Results: Impact of desired headways
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Q2: What is the impact of reaction time of ACC-
equipped vehicles on freeway performance?
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Step (1): Quantification

Assumptions

Gipps model for manually-driven vehicles (Aimsun default).

IDM model for ACC equipped vehicles.

Reaction times of ACC equipped vehicles equal to reaction times of manually-driven
vehicles. (1.2 sec reaction time)

— Effect of reaction time increase/decrease.
— Isolate impact of headway without impact of reaction time.

Three headway scenarios considered: 0.8s, 2.0s and a range between 0.8-2.0s.

e
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Performance Results: Impact of reaction time

Delay Difference (%)
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Speed Profiles — 0.8s Headway
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_Smaller Reaction times (0.6s)
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Speed Profiles — 0.8-2.0s Headway

06:15:00

06:30:00

06:45:00

07:00:00

07:15:00

07:30:00

07:45:00

08:00:00

08:15:00

08:30:00

08:45:00 B c
ase Lase
09:15:00

09:30:00

09:45:00

10:00:00

Smaller Reaction times (0.6s)

Simulated

06:15:00
06:30:00

06:45:00

07:00:00

07:15:00

07:30:00

07:45:00

08:00:00

08:15:00

0 0 H 08:30:00
(V) o Improvemen oa5:00
09:00:00

09:15:00

09:30:00

09:45:00

10:00:00

06:15:00
06:30:00
06:45:00
07:00:00
07:15:00
07:30:00
07:45:00
08:00:00

50% 13% improvement B

06:45:00

07:30:00

o 08:15:00

0 08:30:00

° 17% improvement
0 09:00:00
09:45:00

06:15:00
06:30:00
06:45:00
07:00:00
07:15:00
07:30:00
07:45:00
08:00:00
08:15:00

100% 26% improvement

EE UNIVERSITY OF TORONTO

2" 4 FACULTY ofF APPLIED SCIENCE &« ENGINEERING

Transportation Research Institute

Higher Reaction Times (1.2s)
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Speed Profiles — 2.0s Headway
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Observations and Insights (1)

= Shorter headways lead to better performance.
— For both reaction times scenarios considered.
— Extent of improvement quantified as previously shown.

= Smaller reaction times lead to better performance.
— Better prevailing traffic conditions - better speed profiles observed.
— Performance improvement as penetration rate increases.

= Higher reaction times:
— 0.8s and range headway:
 Delay and Speed - improvement with penetration rate increase.
« Throughput - decrease as penetration rate increase (gets better at 100%) = investigated next.
— 2s headway:
» Performance deterioration as penetration rate increase (gets better at 100%).
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A deeper look into results

Q3: How does the headway distribution look like
and how it relates to throughput?
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Q3: How does the headway distribution look like and how it relates to throughput?
Headway distribution — 0.6s reaction time — 100% penetration
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Q3: How does the headway distribution look like and how it relates to throughput?
Headway distribution — 1.2s reaction time — 100% penetration
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A deeper look into results

Q4: Why don’t target headways materialize?
Under what conditions?

Q5: If target headways don’t fully materialize,
do they still impact performance?
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Simple Link

= Single-lane 5km stretch.
= No on-ramps or off-ramps
» For testing purposes.
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Simple Link Headway distribution
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Full Congested Freeway
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Q4: Why don’t target headways materialize? Q5: Impact on performance?
Headway distribution — 0.6s reaction time — 100% penetration

Headway Distribution 0.8 s - 0.6s reaction time Headway Distribution [0.8-2.0] - 0.6s reaction time Headway Distribution 2.0 s - 0.6s reaction time
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Observations and Insights (2)

= For small (0.6 sec) and high reaction time (1.2 sec) scenarios:
— Throughput results are inline with the headway distribution results.

= On a simple link: target headways materialize.

= On full congested freeways:

— Longer target headways don’t materialize because of congestion + many back-to-back
bottlenecks + on-ramps and off-ramps.

— To be investigated next.
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Full Uncongested Freeway
(Light Demand)

Q6: Impact of demand and prevailing congestion
conditions.
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Q6: Impact of demand and prevailing congestion conditions
Headway Distribution- 25% Demand — 0.6s reaction time — 100% penetration

Headways for QEW with 25 % Demand Headways for QEW with 25 % Demand Whole QEW - 25 % Demand
100% IDM - 0.8 sec 100% IDM - 0.8-2.0 sec 100% IDM - 2.0 sec - 0.6s RT
5
? 4.93 5 4.92 4.81
45 45 45
4 a 4
35 35 3.5
3 3 3
25 25 25
2 2 ?
15 15 15
1.24 1.25
1 1 1
Speed Vs Headway Speed Vs Headway Speed Vs Headway
100% IDM - 0.8s- 25% Demand QEW 100% IDM - 0.8-2.0s- 25% Demand QEW 100% IDM - 2.0 sec - 25% Demand QEW - 0.6s RT
10 10
9 lg 9 ° :
8 8 8
_ ! - 7 . 7
zs 2 5 zs
3 T3 -
2 2 ™ 2
) 1 ) o die aso Blug
0
0 70 75 80 85 90 95 100 0
70 75 80 85 90 95 100 70 75 80 85 20 95 100
Speed (km/hr) Speed (km/hr) Speed (km/hr)

%‘ FACULTY ofF APPLIED SCIENCE &« ENGINEERING

Transportation Research Institute



Q6: Impact of demand and prevailing congestion conditions
Headway Distribution- 50% Demand — 0.6s reaction time — 100% penetration
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Observations and Insights (3)

= On full uncongested freeways:
— Better chance to achieve long target headways.
— Short target headways do not materialize (cars not in car-following mode).

= Regardless of the materialized headway:
— Shorter headways lead to better performance.
— Longer headways lead to worse performance.
— Shorter reaction times lead to better performance.

 The extent of performance improvement/deterioration depends on prevailing traffic
conditions (demand)
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Summary: What has been addressed?

v Impact of desired headways of ACC-equipped vehicles.

v Impact of reaction times of ACC-equipped vehicles.

v' Headway and throughput results are inline with each other.
v’ Headway distribution on a test link (simple link).

v’ Headway distribution on a congested freeway.

v’ Headway distribution on an uncongested freeway.
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Next Steps: ACC Exploitation

* Implement base case control (ACC exploitation).
* On small stretch. oy

Y e —

* On whole QEW network. H

Tiw‘n

Control and Exploitation of ACC

0, 0 O 4 (vehii)

' :  List limitations, insights and recommendations based on results.
Conclusions/Recommendations * Benchmark for control strategy incorporating AI/DRL.

INN VO LR O 1 (B U AV . ACC/Headway/longitudinal control.

Conceptualizing DRL approach * Identify recommended methodologies and system architecture.
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