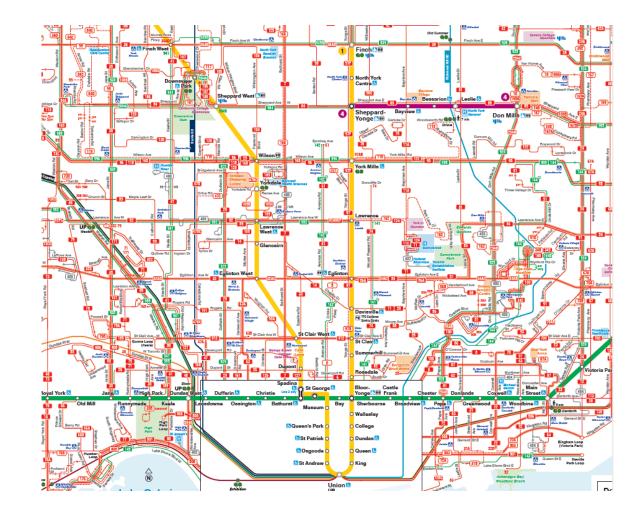
Improving Transit Connections via Transfer Optimization and On-Demand Services

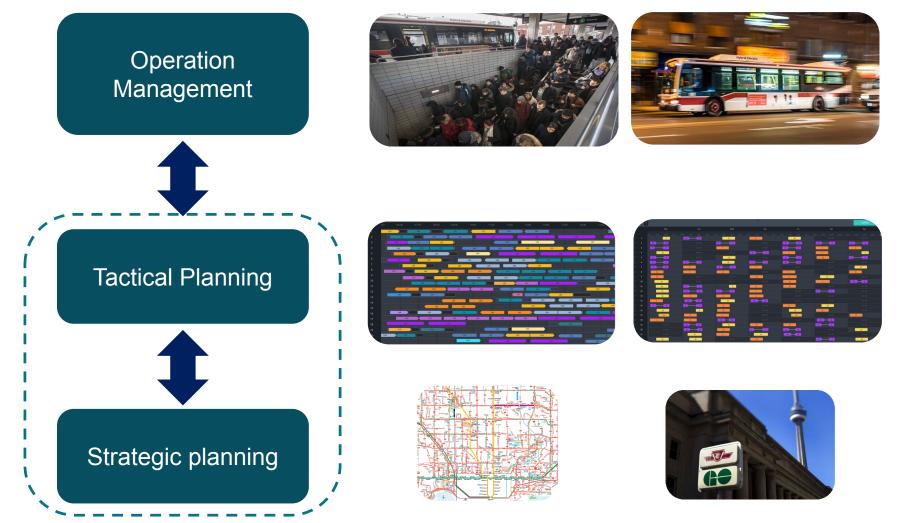
iCity –CATTS Symposium June, 3rd, 2020

Transfer Time Optimization in Transit Scheduling and Coordination in Operational Control

Zahra Ansarilari, PhD Candidate Amer Shalaby, Professor, Ph.D., P.Eng. Merve Bodur, Assistant Professor, Ph.D.


Outline

Rationale for transfer coordination and challenges


- > Transfer-optimized timetables: deterministic and stochastic approaches
- > Next step: real-time connection protection

Transfers: Strategic Element of Transit Networks

- Connectivity
- High number of daily transfers
- Disutility of transferring
- Transfer synchronization
 both at the planning and
 operation stages

Transfer Synchronization Steps

https://globalnews.ca/news/1776275/go-transit-and-ttc-to-make-fare-integration-announcement/, https://www.optibus.com/ https://www.theglobeandmail.com/canada/toronto/article-ttc-wants-to-spend-42-billion-to-improve-subway-buy-new-buses-and/

What Are the Main Challenges?

- Inherent stochasticity (unpredictable and predictable):
 - Recurrent and non-recurrent sources of variability
 - Essential need for proactive treatment of the stochastic characteristics of the system

Data:

- Historical and real-time: detailed demand data and operation data
- For planning, monitoring, control and evaluation
- Model's Complexity:
 - Hard to formulate details \rightarrow Long computational time

Previous and Ongoing Work

Deterministic Model

- Formulated new transfer synchronization process
- ✓ Considered transferring and through passengers separately in our model
- Considered capacity limitation for successful transfers
- ✓ Developed a new solution method to solve the model efficiently

Stochastic Model

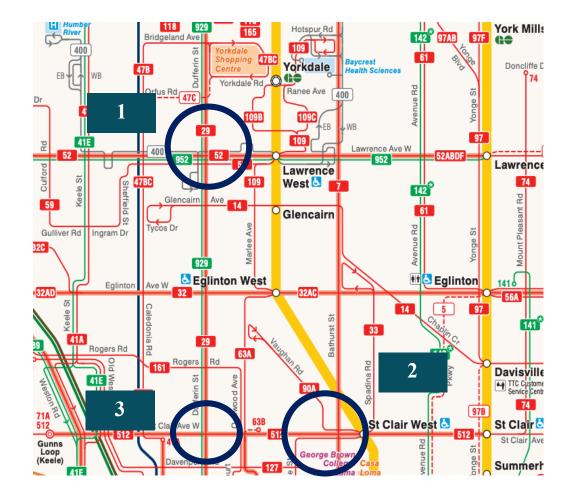
- ✓ Formulated stochastic transfer synchronization process: two-stage stochastic modeling
- Considering joint distributions of travel time, dwell time, and demand uncertainty
- Developing a solution method to solve the model efficiently

Brief Explanations about Our Model Formulations (Deterministic)

Objective

 $\min \sum_{n \in N_s} \sum_{l \in TP} \sum_{l' \in TP} \sum_{p \in P_l} \sum_{q \in P_{l'}} Twait^n_{lpl'q} td^n_{lpl'} c_{tw} +$ $\sum_{l \in L} \sum_{n \in N_l} \sum_{q \in P_{l'}^+} EST_{l'q}^n ivd_{l'q}^n c_{tw} +$ $\sum_{l \in L} \sum_{n \in N_l} \sum_{q \in P_{l'}^+} PTB_{l'q}^n td_{lpl'}^n c_{tw} +$ $\sum_{l \in L} \sum_{n \in N_l} \sum_{q \in P_{l'}^+} f l p_{l'q}^n c_{tw} +$ $\sum_{l\in L}\sum_{n\in N_l}\sum_{q\in P_{l'}^+}slp_{l'q}^nc_{tw}$

Transferring waiting time


Extra service time-I

Extra service time-II

Penalty of missing the first connecting

Penalty of missing the second connecting

A Case Study: Input

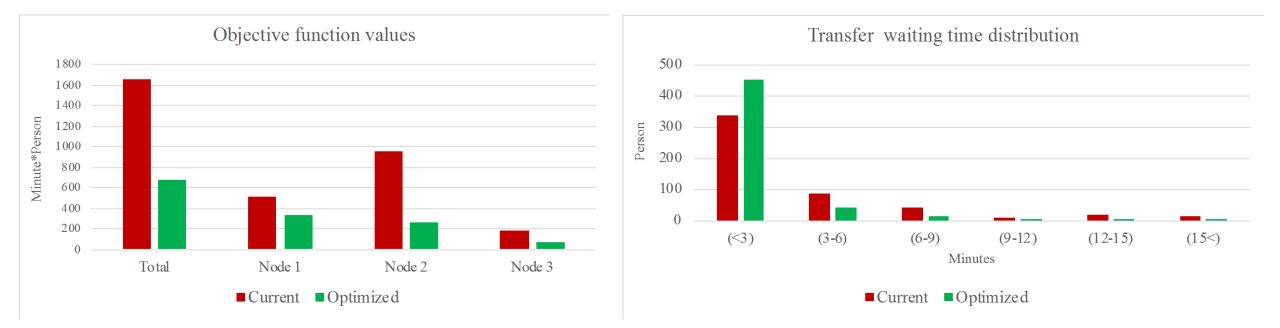
THE NETWORK FEATURES(Nexus):

- Transfer stops
 - Lines
- Lines' stop sequence
 - Lines' headways
- Transfer pair directions
- Travel time between the stops of each line

DEMAND AND TIME DATA(Nexus):

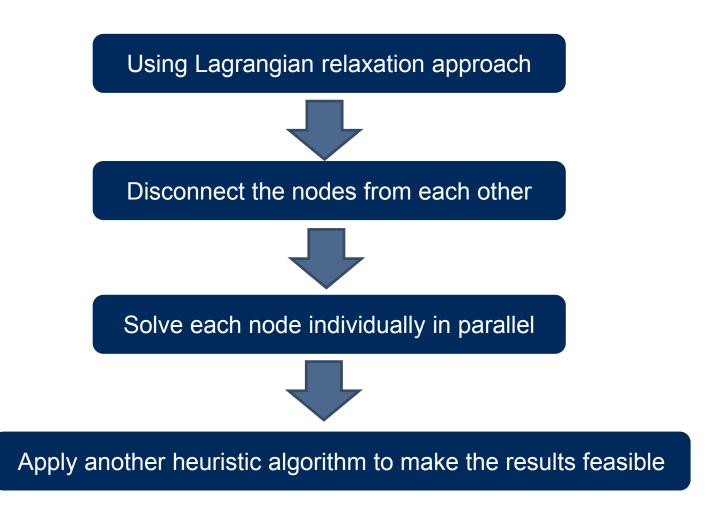
- Transferring passengers
- In-vehicle passengers
- Alighting passengers
- Boarding passengers
- Scheduled dwell time
- Walking time for transferring

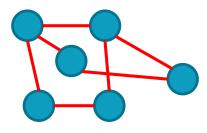
A Case Study: Synchronized timetables (Draft Results)

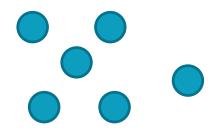

- Vehicle departure times from terminals
- Scheduled arrival and departure times of vehicles at transfer nodes

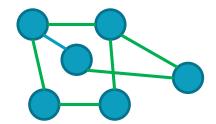
Optimized

Headway(m)	3	11	8	
Node 1	Line 1	Line 2	Line 3	
Arrival	8:00:00 AM			
Departure	8:00:30 AM			
Arrival	8:03:00 AM	8:03:30 AM		
Departure	8:03:30 AM	8:04:00 AM		
Arrival	8:06:00 AM		8:06:30 AM	
Departure	8:06:30 AM		8:07:00 AM	
Arrival	8:09:00 AM			
Departure	8:09:30 AM			1
Arrival	8:12:00 AM			
Departure	8:12:30 AM			
Arrival	8:15:00 AM	8:14:00 AM	8:14:30 AM	
Departure	8:15:30 AM	8:15:00 AM	8:15:30 AN	
Arrival	8:18:00 AM			-
Departure	8:18:30 AM			

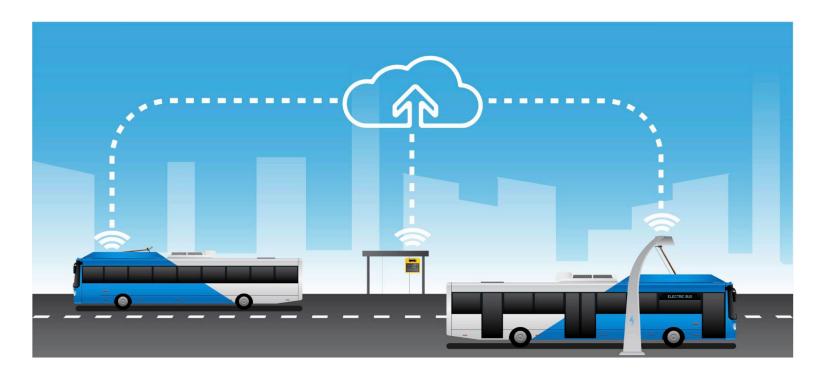

Headway(m)	3	11	8
Node 1	Line 1	Line 2	Line 3
Arrival	8:01:00 AM		
Departure	8:01:30 AM		
Arrival	8:03:00 AM		
Departure	8:04:00 AM		
Arrival	8:06:30 AM	8:05:30 AM	8:06:30 AM
Departure	8:07:00 AM	8:07:00 AM	8:07:00 AM
Arrival	8:09:30 AM		
Departure	8:10:30 AM		
Arrival	8:12:30 AM		
Departure	8:13:30 AM		
Arrival	8:15:00 AM	8:15:30 AM	8:15:30 AN
Departure	8:16:00 AM	8:17:00 AM	8:16:30 AN
Arrival	8:18:00 AM		
Departure	8:18:30 AM		


Evaluation: Optimization Results Compared to Current Condition



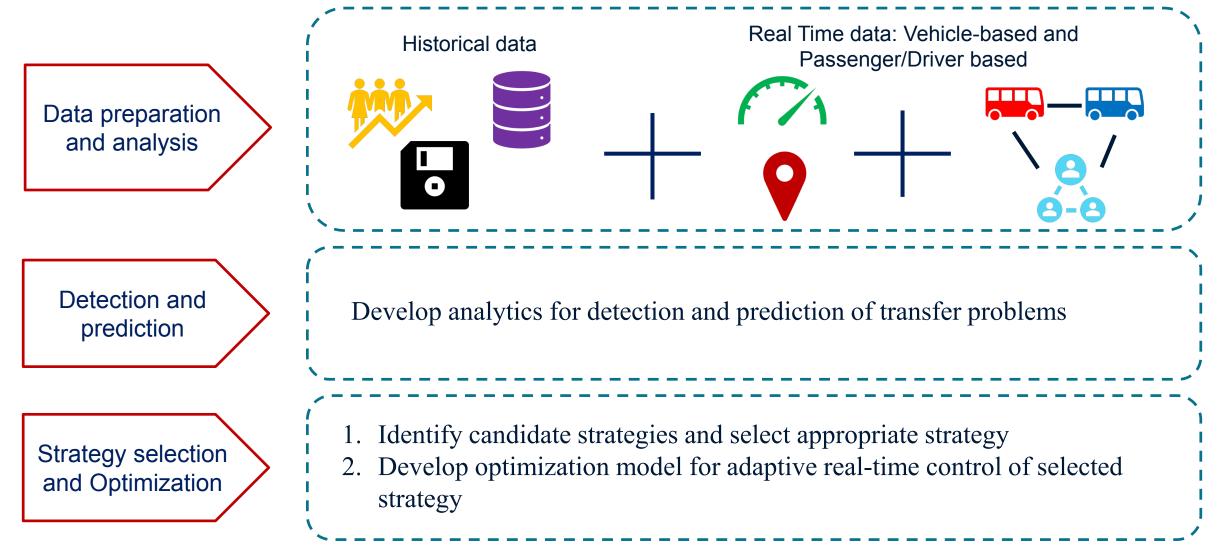

50% gap, takes around 30 minutes

Solution Method Overview


Transfer Synchronization Modelling Phases

Deterministic	 Input: historical demand and operation data (fixed) Model: mixed integer programming Output: fixed timetables
Stochastic	 Input: historical demand and operation data (distribution/scenarios) Model: stochastic two-stage mixed integer programming Output: combination of fixed and option-based timetables
Real-Time	 Input: historical and real-time demand and operation data Approach: reinforcement learning or deep learning Output: combination of fixed and adaptive/flexible timetables

Connected Buses and Passengers


- Bus 👄 Bus. (B2B)
- Bus Infrastructure (B2I)

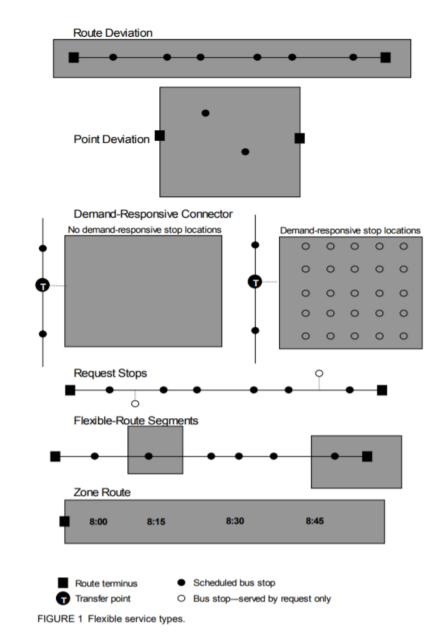
- Passenger ↔ Bus (P2B)
- Passenger \leftrightarrow Infrastructure (P2I)

https://www.wsp.com/en-SA/insights/connected-automated-vehicles-and-public-transportation

Our Proposed Approach

Demand Responsive Transit: Review of Research Literature and Practice

Alaa Itani, MASc. Amer Shalaby, Ph.D.,P.Eng



Outline

- Background and Research Objective
- State of Art and Practice: Summary
- Future Directions

What is Demand Responsive Transit?

Volinski (2019) defines general demand responsive transit (DRT) service as "the chameleon of the public transportation world. The service can take many forms in different environments and can even change its form in the middle of its duty cycle."

Volinski, Joel. 2019. Microtransit or General Public Demand-Response Transit Services: State of the Practice. Washington, D.C.: Transportation Research Board. https://doi.org/10.17226/25414.

Renewed Interest in DRT

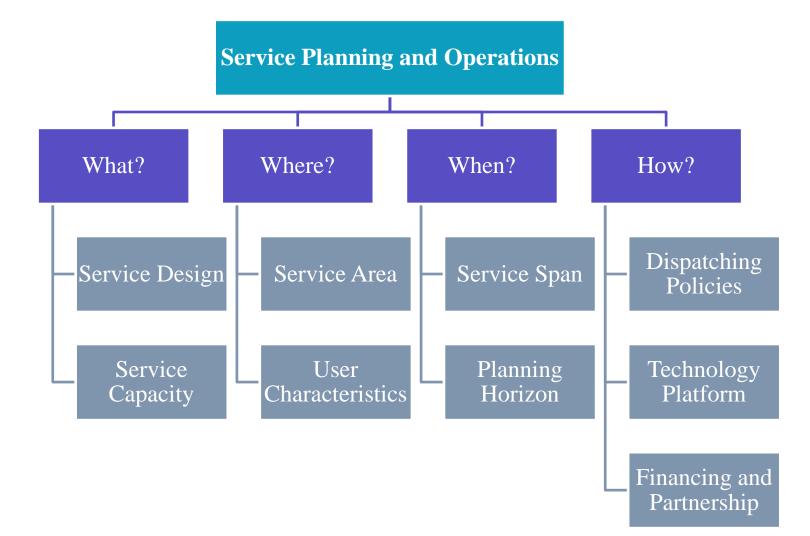
Appealing solution to different urban mobility problems as early as the 1970s

Resistance from public and inefficient routing led to the discontinuation of many services

Growing appreciation of flexibility, the acceptance of sharing rides, and technological advancements

Research Objective

Study the state of art and practice on service planning, management, and operation of DRT


Develop service guidelines and standards for DRT operation

Develop a modelling framework for planning and managing DRT operations

Real-World Examples

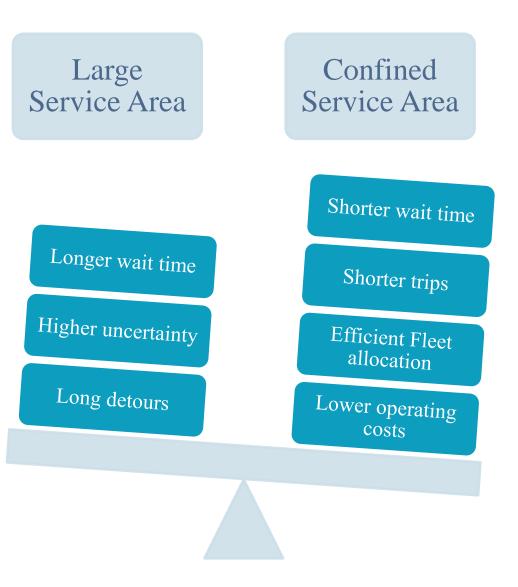
Scope of DRT Planning and Management

Flexible or Fixed Route?

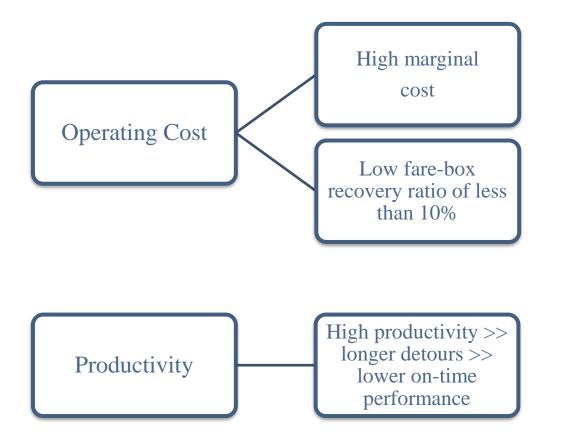
- ✓ Agencies operate DRT in low demand area
- ✓ Agencies operate in areas of high deficiency
- ✓ Most agencies contracted with technology company
- ✓ More than 50% of operators run DRConnector

A cost-effective solution in areas with lower population density and dispersed demand

Address issues of socio-economic and jurisdictional equity


Benefits from the availability of technology in ridesharing and optimization software

Provides an efficient solution for the first and last mile trips


Critical Density and Service Area

There exists a threshold beyond which DRT is less effective than fixed-route service

- Arlington County: Fixed to DRT when ridership
 < 10 passengers/hour/vehicle
- ✓ RTD (Denver): DRT to fixed route when ridership > 20 passengers/hour/vehicle
- ✓ Critical density is highly dependent on the service area

Performance Metrics

Calgary Transit

• Avg. Walk time to a virtual stop = 4mins

Arlington-VIA 36% reduction inVKT

ArrivaClick

• 50% mode shift from auto

FlexRide-RTD • Avg. \$21.84/trip

Dynamic Operations

Stochastic Models to estimate the fleet size

Vary by type of operation and objective

Real-time Vehicle Routing

Addresses stochasticity in demand and travel time, and incorporates operational constraints

Recent Developments in DRT

Operations using Autonomous vehicles *E.g. Endeavour in UK* Partnerships with TNCs Innisfil, Ontario partnership with UberPool

FlexDanmark, a technological platform

GTFS Flex Ongoing extension of the existing GTFS

Efficient service to move

lower ridership

The dynamic nature of DRT makes it hard to identify one agreed practice, but some practices are better than others

Most agencies rely on experience and personal judgement

Performance metrics should go beyond cost and ridership

No conventional set of service guidelines to help agencies in planning for DRT services

No rigorous planning tool that allows assessing different scenarios in hybrid transit network with fixed and demand-responsive transit

Next Steps

Service Guidelines/Standards

This includes developing a comprehensive and standardized set of performance measures

Demand responsive transit decision support toolkit

Integrated tool for planning on-demand transit with fixed-route transit, creating a unified framework for planning hybrid networks.

Thank you! Q&A

Zahra: zahra.ansarilari@mail.utoronto.ca

Alaa: <u>alaa.itani@mail.utoronto.ca</u>