Advancing the climate benefits of electric vehicles to reduce greenhouse gas emissions

Ran Tu (Postdoctoral fellow), and Marianne Hatzopoulou (Associate Professor)
Transformative Transportation ’20, iCity-CATTS Research Day
June 3, 2020

TRAQ
The Transportation & Air Quality Research Group
Transportation: a major source of greenhouse gas (GHG) emissions

- **Transportation**: 2nd largest source of national total Greenhouse Gas (GHG) emissions; largest of Nitrogen Oxides (NOx) emissions

- Toronto emission inventory in 2017 shows:
A climate emergency has been declared in 2019

- TransformTO: Toronto’s ambitious climate action strategy (2017)
- Automobile-related goals:
 - 45% low-carbon vehicles by 2030;
 - 100% low-carbon vehicles by 2050.
However, electric vehicle is not “zero-emissions”...
Emissions from electric vehicles

• Vehicle life-cycle emissions
In this presentation:

• Reduction of GHG emissions in the following electric vehicle scenarios:

1) Electric vehicles

2) Electricity supply mix

3) Connected autonomous vehicles

4) Different charging schedules
Study domain and data source

- Greater Toronto and Hamilton Area (GTHA)
- Demand data: Transportation Tomorrow Survey (TTS) data
- Travel distance and time: GTAModel
1. Electric vehicles with different penetration rates

Methodology

• Road link-based emission factors (gram/km) and energy consumption factors (kJ/km) are applied;

• **Fuel cycle GHG emissions** in 2011 and 2017 are calculated for conventional gasoline vehicles and electric vehicles;

• **25%, 50%, 75%, 100%** EV penetration rates are implemented;

• Emission uncertainties from **vehicle on-road operation, electricity generation, and gasoline supply** are considered with the Monte-Carlo random process.
Sources of uncertainties

• Vehicle operation: variation of microscopic driving operations;

• Gasoline supply: monthly difference of supply share and emission intensity of different supply sources;

• Electricity generation: monthly difference of electricity generation mix.
Fuel-cycle emission comparison

From a probabilistic perspective, having more EVs does not ensure the emission reduction;

Besides having more EVs, keeping a good traffic condition and a cleaner energy source can enhance the climate benefit of EVs.
2. Electric vehicles and connected autonomous vehicles

Scenario settings

<table>
<thead>
<tr>
<th>Three levels of demand</th>
<th>Three levels of CAV penetration rate</th>
<th>All EV</th>
<th>2016 Ontario energy mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low demand</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium demand</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High demand</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAV algorithm: minimize total travel time
Total GHG emissions from the generation

- The GHG reduction can be enhanced by integrating AVs with EVs when traffic is congested;
- CAV application should be integrated with EV technology carefully to maximize the climate benefit.
3. Electric vehicles and electricity supply mix

Energy sources of vehicles

Light duty vehicles

- Gasoline or electricity

Mix 1: 2016 Ontario electricity generation mix
Mix 2: 100% natural gas
Mix 3: Hydro and natural gas
Mix 4: Wind and solar
Total GHG emissions

• **EVs do not necessarily reduce emissions (Mix 2 EV vs. gasoline conventional vehicles)**

• **Clean energy sources of the electricity generation enhance the climate benefit of EVs**
4. Electric vehicles and different charging schedules

Introducing marginal emission factors

Average emission factor:

$$\sum Share_{energy\ source\ i} \times Emission\ intensity_{energy\ source\ i}$$

However, only some specific generators (usually they are dispatchable) respond to the near-term increase of the electricity demand.

The marginal emission factor (MEF): capture the marginal change of the generator and the corresponding change on the emission intensity.
Marginal emission factor model

(a). \[MEF_i = (\beta_0^+ + \beta_1^+ \times G_i + \beta_2^+ \times \Delta G_i) \times D_{month}, \] if \(\Delta G_i \geq 0; \)

(b). \[MEF_i = (\beta_0^- + \beta_1^- \times G_i + \beta_2^- \times \Delta G_i) \times D_{month}, \] if \(\Delta G_i < 0; \)

Where:

\(G_i \) is network electricity load at time \(i; \)
\(\Delta G_i \) is the change of electricity demand;
\(D_{month} \) is the dummy variable indicating the specific month;
\(\beta_0, \beta_1, \beta_2, \) and \(\beta_3 \) are constant coefficients in the MEF model;

This set of MEF formula is for August 2017.

MEF is related to:

- year, month;
- electricity demand at the current hour;
- Marginal change of the electricity demand

The MEF varies in different hours of a day

\(\rightarrow \) EV charging schedules can influence the total emissions
Optimizing EV charging schedule

• Objective: minimize GHG emissions from the generation

Objective: \(\min Z = \frac{\Sigma_i \text{MFE}_i \times \Sigma_j x_{i,j}}{\delta \times (1-\gamma)} \)

S.t.
(I). Vehicle cannot be charged during driving;
(II). Total energy consumption cannot exceed total charged energy plus battery capacity;
(III). At the end of the day, total energy consumed should be approximately same as total energy charged;
(IV). Total charging demand of the network cannot exceed the generation spare capacity.

\(x_{i,j} \): charging levels (0, level1, level2, level3) of vehicle \(j \) in timeslot \(i \).
Scenario settings

• 5% random samples out of all drivers in the TTS data

• Scenarios:
 • Optimized plan: minimizing GHG emissions as the objective;
 • Home charging: only charge at home;
 • Out-of-home charging: cannot charge at home;
 • After-trip charging: charging is available after each trip;
 • After 3am charging: charging is available after 3am.
Scenario comparison

Total emissions from the generation
Scenario comparison

Total emissions from the generation

<table>
<thead>
<tr>
<th></th>
<th>Optimized</th>
<th>Home</th>
<th>Out of home</th>
<th>After trip</th>
<th>After 3am</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG emissions (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charging schedules

An optimized charging schedule with a proper charging level management can maximize the GHG reduction from EVs.

After-3am

Optimized

After-trip

Hour of a day

Charging schedules

Total emissions from the generation

June 3, 2020

Transformative Transportation '20, iCity-CATTS Research Day
Distribution of charging durations

Level 1

Home location is the most popular option

Level 2 and Level 3 charging events follow the similar distribution, but different numbers of event.
The availability of charging facilities ensures the possibility of the optimized charging schedule;

Optimized plan and after-3am plan request the most public charging ports;

Level 1 is the highest requested public charging level;

Conflicts exist between the climate benefit of EVs and the investment cost of the infrastructure.
A closing remark
The share of EVs is far from the goal

- TransformTO:
 - 45% low-carbon vehicles by 2030;
 - 100% low-carbon vehicles by 2050.
The share of EVs is far from the goal

• TransformTO:
 • 45% low-carbon vehicles by 2030;
 • 100% low-carbon vehicles by 2050.

• Currently (in 2019):

 Technological improvements, incentives are needed to increase the EV share.

Figure 4: Current share of personal vehicles in Toronto that are EVs.
Pathway to enhance the climate benefit of electric vehicles

• A better traffic condition with less congestion saves electrical energy;
• A cleaner electricity generation mix reduces emission intensity per kWh of electrical energy;
• With the same energy consumption, a proper EV charging plan can reduce marginal emissions;
• An appropriate allocation of charging facilities is the prerequisite of the optimized EV charging plan.
Thank you!

Ran Tu, Marianne Hatzopoulou
Department of Civil and Mineral Engineering
University of Toronto
June 3, 2020