EVALUATING COMPLETE STREETS WITH A 3D STATED PREFERENCE SURVEY

A COLLABORATION BETWEEN UNIVERSITY OF TORONTO TRANSPORTATION RESEARCH INSTITUTE (UTTRI),

ESRI CANADA, OCAD UNIVERSITY & WATERFRONT TORONTO

DENA KASRAIAN, SNEHA ADHIKARI, BO WANG, MATTHEW ROORDA

MOTIVATION

Evidence-based design tools are needed to assess the **trade-offs** required between the many possible uses of roadway space.

Most empirical evidence for street design focuses on functionality of streets for automobile and transit throughput.

Design guidelines for complete streets are **rarely based on empirical evidence** of their relationship to behaviour or **user experience**.

SPECIAL GUEST

Barbara Gray

Jeff Risom

Geography & Planning UNIVERSITY OF TORONTO

City of Toronto

Jennifer Keesmaat

Current Bousfields Distinguished Visitor in Planning & Former Chief Planner

UNIVERSITY OF TORONTO **DI TORONTO**

What is new normal for Toronto's streets that is evidence based and experience focused?

Gehl -----

FEBRUARY 22, 2018

DEVELOPING A COMPREHENSIVE EVIDENCE-BASED FOR EVALUATING COMPLETE STREETS

Well established empirically based methods for assessing traffic and transit level of service

Few methods exist for empirically evaluate the walkability of a street and the user experience TRANSPORT REVIEWS, 2018 VOL. 38, NO. 1, 73–95 https://doi.org/10.1080/01441647.2017.1299815

Measuring the completeness of complete streets

Nancy Hui^a, Shoshanna Saxe^a, Matthew Roorda^a, Paul Hess^b and Eric J. Miller^{a,c}

^aDepartment of Civil Engineering, University of Toronto, Toronto, ON, Canada; ^bDepartment of Geography and Planning, University of Toronto, Toronto, ON, Canada; ^cUniversity of Toronto Transportation Research Institute (UTTRI), Toronto, ON, Canada

ABSTRACT

A tool for measuring the "completeness" of a complete street has applications in developing policy, prioritising areas for infrastructure investment for a network, and solving the right-ofway allocation problem for individual streets. A literature review was conducted on the state-of-art in the assessment complete street designs. Complete streets assessment requires a contextsensitive approach, thus context-sensitive standards of "completeness" must first be established by combining a street classification system with sets of priorities and target performance levels for the different types of streets. Performance standards should address a street's fulfilment of the movement. environmental, and place functions, and be flexible enough to account for the many ways that these functions of a street can be fulfilled. Most frameworks reviewed are unsuitable for evaluating complete streets because, with few exceptions, they guide street design by specifying the design elements for inclusion on the street. Secondly, the performance of a street can be assessed according to transportation, environmental, and place criteria, and compared to the target performance levels specified by the street's classification. As there are many different impacts to consider on a street, additional work is required to define the priorities and performance objectives for different types of streets.

ARTICLE HISTORY

Received 11 July 2016 Accepted 21 February 2017

KEYWORDS

Complete streets; contextsensitive design; transportation; place; environment

DEVELOPING AN EVIDENCE BASE FOR WALKABILITY FOR COMPLETE STREETS PLANNING

Partially adopted from Rose & Bliemer (2009)

METHOD

Scope: Attributes at the **street segment level**, for the purpose of **recreational** walking

Web-based survey: rate an existing street (revealed preference) + re-rate systematically manipulated options (stated preference).

Visualization: ESRI's CityEngine + Unity

Locations: A number of streets at Toronto waterfront & down town

side walk + curb lane + through lanes & transit + curb lane + side walk ☑

Adjacent buildings and land uses

QUESTIONS

Are pedestrians willing to trade sidewalk width for trees/outdoor dining?

What design features are likely to make broader streets with more lanes more favourable for pedestrians?

Which are preferred by the pedestrians for the curb-side use: on street parking, one or two-way bicycle lanes or transit?

METHOD

Formalized stated preference design

Visualized 3D Animated environment

Statistical analysis of using mixed logit model with panel effects

Attribute levels

Attributes

Experimental design

Scenario	through lane	curb lane	sidewalk	tlane_width	clane_width	sidewalk_width	street_width
King street							
I	transit+car+car+transit	none	medium edge+wide clearway	13	0	9,6	22,6
2	car+car	cycle path+on street parking	medium edge+normal clearway	6	9,4	6,4	21,8
3	car+car	cycle path_one way	narrow edge+normal clearway+outdoor dining	6	4,6	11,2	21,8
4	transit+transit	cycle path one way	medium edge+wide clearway	7	4,6	9,6	21,2
5	car+car	cycle path_two way	outdoor dining+normal clearway	6	3,8	9,6	19,4
6	car+car+car+car	none	medium edge+normal clearway	12	0	6,4	18,4
7	transit+transit	cycle path two way	medium edge+normal clearway	7	3,8	6,4	17,2
8	transit+transit	none	outdoor dining+normal clearway	7	0	9,6	16,6
9	car+car	none	narrow edge+wide clearway	6	0	8	14
Queens Qu	ay between Lower Jarvis	& Lower Sherbourne					
I	car+transit+transit+car	on street parking+cycle path	medium edge+normal clearway	13	9,4	6,4	28,8
2	car+transit+transit+car	cycle path_one way	outdoor dining+normal clearway	13	4,6	9,6	27,2
3	car+car+car+car	cycle path_two way	narrow edge+normal clearway+outdoor dining	12	3,8	11,2	27
4	car+transit+transit+car	cycle path two way	medium edge+wide clearway	13	3,8	9,6	26,4
5	car+car	on street parking+cycle path	medium edge+wide clearway	6	9,4	9,6	25
6	transit+car+car+transit	cycle path_two way	narrow edge+wide clearway	13	3,8	8	24,8
Queens Qu	ay between Yonge & Fre	eeland					
1	car+transit+transit+car	cycle path_two way	medium edge+wide clearway	13	3,8	9,6	26,4
2	car+car	on street parking+cycle path	medium edge+wide clearway	6	9,4	9,6	25
3	transit+car+car+transit	cycle path_two way	narrow edge+wide clearway	13	3,8	8	24,8
4	car+car+car+car	cycle path_one way	narrow edge+wide clearway	12	4,6	8	24,6
5	car+transit+transit+car	none	narrow edge+normal clearway+outdoor dining	13	0	11,2	24,2
6	transit+car+car+transit	cycle path_one way	medium edge+normal clearway	13	4,6	6,4	24
illiers Stre	et Don to Cherry						
I	transit+car+car+transit	on street parking+cycle path	narrow edge+normal clearway+outdoor dining	13	9,4	11,2	33,6
2	transit+car+car+transit	cycle path+on street parking	outdoor dining+normal clearway	13	9,4	9,6	32
3	car+car+car+car	on street parking+cycle path	outdoor dining+normal clearway	12	9,4	9,6	31
4	car+car+car+car	cycle path+on street parking	medium edge+wide clearway	12	9,4	9,6	31
5	car+transit+transit+car	cycle path+on street parking	narrow edge+wide clearway	13	9,4	8	30,4
6	car+transit+transit+car	on street parking+cycle path	medium edge+normal clearway	13	9,4	6,4	28,8

Experimental design: orthogonal design

DEMONSTRATION OF THE WALKABLE STREET 3D SURVEY

SAMPLE

• Pre-test on approx. 100 students, staff & planning contacts

 600 Torontonians (representative sample by age, gender& residence location in Toronto)

Table 6: Census profile vs survey profile based on age and gender

Age group	2016 cens	sus profile	Survey profile		
	% male	% female	% male	% female	
20-29 years	49	51	47	53	
30-39 years	48	52	44	56	
40-49 years	48	52	45	55	
50-64 years	48	52	48	52	
65 years and over	43	57	42	58	

Table 7: Census profile vs survey profile based on geography

Place of residence	2016 census profile (%)	Survey profile (%)
East York & Old Toronto	37	40
Etobicoke	15	13
North York	25	25
Scarborough	23	22

Figure 8: Survey respondent's cycling frequency

METHOD

600 respondents with 9 choice tasks (3 choices per task) \rightarrow 5400 cases

Starting with univariate simple logit models \rightarrow determine significant variables

Multivariate models \rightarrow determine highest performance

MODEL RESULTS

Table 4: MMNL panel model results from survey data

Explanatory variables	Name	Coefficient (β)	t-test
car + transit + transit + car	СТ	0.431	7.55
Standard deviation (car + transit +	STDEV	0.808	11.86
transit + car)			
transit + transit	TRAN	0.170	2.21
transit + car + car + transit	TC	0.451	9.84
two-way cycle path	TWOCYC	0.243	5.47
one-way cycle path	ONECYC	0.190	3.45
one-way cycle path + on street	СР	-0.325	-5.66
parking			
trees + 3.2m pedestrian walkway	TREE-WSW	0.305	7.11
curbside outdoor dining and trees + 1.6m pedestrian walkway	SW-CURB	0.185	4.20
3.2m pedestrian walkway	SWONLY	- 0.254	-4.97
Final log likelihood	-5702.58		
AIC	11423.16		

THROUGH LANE PREFERENCES

- With transit > only car
- Cars in the middle lane > transit in the middle lane

CURB LANE PREFERENCES

- Two-way cycle path > One-way cycle path
- Cycle path only > cycle path with on-street parking

SIDEWALK PREFERENCES

- Trees + wide (3.2 m) walkway
- Narrow sidewalk + trees & outdoor dining > Wide sidewalk

CONTINUING RESEARCH

Relation of preferences to socio-demographics and travel habits

'Dashboard' platform to visualize and assess various street designs→Policy-support - commercializable product

• • •		ທ າ ປ ຈ		🔊 comp	olete streets scoring			Q- Search Sheet	•	
Home	Insert	Page Layout Formulas Data	Review View						🛓 Share 🔨	
Paste	X Cut └ Copy ▼ ≪ Format	Calibri (Body) I A A B I U I I A A		➡ Wrap Text	General ▼ \$ ▼ %)	Conditional Format Formatting as Table Styles	Insert Delete Format	∑ AutoSum ▼	Sort & Filter	
L5	1 × ~	fx							*	

Hi, this spread sheet is a tool for measuring the "completeness" of a complete street. This tool can be utilized to develop policy, prioritize areas for infrastructure investment for a network, and solve the right-of way allocation problem for individual streets.

Simply follow the listed steps to obtain a comprehensive evaluation of a specific street segment:

Open the tab named "Input," and provide characteristics of a roadway for evaluation. Note that all input cells are shaded in orange colour and their values can be adjusted by either sliders or dropdown lists. In the "Roadway Specifications" box, set the width of different parts of a symmetric roadway using sliders below each value. Assign the materials types (permeable or impermeable) using dropdown lists.

3 In the "Roadway Information" box, provide more detailed information of the roadway by selecting "True" or "False" from each drop-down list.

Three "Parameters" boxes need inputs to collect miscellaneous design, auto and transit flow information. The inputs can be selected using sliders or dropdown lists.

Under the "Geometric Constraints Check" table, check that the violations check cells (shaded in darker grey) are all "FALSE."

5

6

The performance of the given roadway is evaluated, and the results are summarized in two charts located on top of the input boxes:

6a: Bar charts This bar chart shows and compares the LOS and target scores for each category. An additional bar also indicates the performance in percentage. 6b: Gauges The LOS scores are shown on gauges. Green/red areas are determined by the target scores, and when a needle falls into the green area it means that LOS score meets the targets. The overall performance (in percentage) is also displayed for each category and the overall rating below each gauge.

AC

AD

AE

AF

89%

Instruction

input

Design

Results

Classifications

bicycle

pedestrian

transit

goods

auto

Env

Place

+

INPUTS (OUR ENGINEERING APPROACH)

Auto Traffic Flow Parameters			
Posted Speed Limit (km/h)	56	•	Þ
Average operating speed (km/h	29.17		
Average annual daily traffic volume *	10000	•	
Peak Hour Factor *	0.92		
Peak Factor *	0.08		
Directional Factor *	0.55		
		. 18	
Percentage heavy vehicles	5%		
On-street parking occupancy	0%		

OUTPUTS

Environment

NEXT STEP

• Working with Ontario College of Art and Design and ESRI to bring the evidence base into a graphical design environment

THANK YOU! QUESTIONS?

