

VISUAL 3D UNDERSTANDING OF MIXED TRAFFIC IN BUSY INTERSECTIONS

James Elder

Centre for Vision Research, York University

Research Objectives

3

CATTS

□ Core Objective

- Real-time 3D detection, classification, accurate geo-location and tracking of all road users
 - Cars, trucks, buses, pedestrians, bicycles,...
 - Diverse conditions: day/night, sun, cloud, rain, snow,...
- Derived Applications and Use Cases
 - Traffic counting and trajectory classification
 - Accurate speed measurement
 - Traffic anomaly and incident detection
 - Detection of near-misses
 - 3D visualization (digital intersection)
 - Automatic identification of and attention to vulnerable road users

Field Site: Highway 7 & Leslie

4

CATTS

Jun <u>2021</u>

Complete Hardware Layout

CATTS

SCHOOL OF ENGINEERING

UNIVERSIT

Sensors

CATTS

Axis Q1798 Camera (SOW 2)

Cepton Vista X LiDAR (SOW 1)

Intersection LiDAR

7

4-Camera Geometry for Intersection

- □ Cameras mounted at 10m height at 4 corners of intersection
- Oblique angle expected to yield better recognition rates
- Objects interior to intersection seen by 4 cameras
- Objects entering and exiting intersection seen by 2 cameras

Current Work

9

- Online camera calibration
- Object detection and segmentation
- Pipeline for trajectory classification
- Attending to vulnerable road users

Online Camera Calibration

10

CATTS

Dr. Yiming Qian J. Elder

Improving State-of-the-Art

CATTS

□ Images sorted by MAE independently for each algorithm and parameter.

2D Vehicle Detection

12 CATTS

CenterNet with Resnet50 Backbone trained on MS COCO

Duan et al. Centernet: Keypoint triplets for object detection. ICCV 2019.

Jun 2021

Keyi Liu

1

J. Elder

2D Vehicle Segmentation

2D Figure/Ground Completion

Improving State-of-the-Art

CATTS

- DTM-based method with sparse coding outperforms both Contour-based and Maskbased top performers
- □ All methods are trained for 12 epochs on MS COCO with ResNet-50 backbone

Representation	Method	Input Scale	Encoding Dim.	Active Dim.	Mask AP
Contour	ESE-Seg[1]	416	20	20	0.216
	PolarMask[2]	400	72	72	0.229
Mask	MEInst[3]	400	60	60	0.239
	Ours	400	128	57	0.249(+1.0%)
DTM	Ours	400	128	56	0.257(+1.8%)

[1] RuWenqiang Xu, Haiyang Wang, Fubo Qi, and Cewu Lu. Explicit shape encoding for real-time instance segmentation. In ICCV, 2019.

[2] Enze Xie, Peize Sun, Xiaogang Song, Wenhai Wang, Xuebo Liu, Ding Liang, Chun-hua Shen, and Ping Luo. PolarMask: Single shot instance segmentation with polar representation. In CVPR, 2020..

[3] Rufeng Zhang, Zhi Tian, Chunhua Shen, Mingyu You, and Youliang Yan. Mask Encoding for Single Shot Instance Segmentation. In CVPR, 2020.

Base Pipeline for Trajectory Counting

16

CATTS

 Implemented complete pipeline for trajectory classification of motor vehicles at intersection.

- Evaluated on small provisional dataset derived from field site.
- Results provided as extra deliverable for Y1

	Approaching from East	Approaching from West	Approaching from South	Approaching from North
Ground Truth	145	156	58	59
FRCNN	148	133	79	74
FRCNN error	+2.1%	-14.7%	+36.2%	+25.4%
SSD512	141	70	82	81
SSD512 error	-2.8%	-55.1%	+41.4%	+37.3%

Tracks from 4 Cameras

17 CATTS

Digital Intersection

18

- \checkmark 1. Accurate road shape
- \checkmark 2. Traffic islands
- $\sqrt{3}$. Textures: road markings
- √ 4. Grass

CATTS

- √ 5. Building massing
- √ 6. Traffic lights
 - 7. Trees
 - 8. Signs
 - 9. Bus stops
 - 10. Lamps
 - 11. Electricity poles

Dr. Pio Claudio

Attending to Vulnerable Road Users

Centre for

lision Research

19 CATTS

- Goal: Detailed detection and finegrained assessment of vulnerable road users over two crosswalks with a single camera system
- Example conditions of interest:
 - Wheelchair
 - Cane
 - Other mobility challenge
 - Elderly
 - Children
 - Stroller

ASSONDE

Distracted (e.g., texting)

VOR K

Attentive Sensor: Indoor Prototype

20 CATTS

- □ 1920 x 1080p
- 75 deg FOV
- Using MTCNN face detector (Zhang et al 2016)
- □ Attentive:
 - 1920 x 1200p
 - 8 deg FOV
 - Operates at 6 fixations/sec
 - Human saccadic rate: 2-3 fixations/sec

Attentive Sensing Extends Visual Range

21

CATTS

Pre-Attentive

Attentive

Attentive

Range: 27 metres

Attentive Sensor for Pedestrian Analytics: Design

22

Next Steps

23 CATTS

Jun 2021

□ Generalization to busy downtown intersection with dense pedestrian traffic.

