iCity Park – Game Based Parking Choice Data Collection

Bo Wang, Mehdi Nourinejad, Matt Roorda University of Toronto

iCity Park

- 1. Parking policy significance
- Parking policies have great impacts on drivers' parking choice, and even travelling behaviours
- 2. ITS parking technology impact analysis
- ITS applications for parking:
- Parking Guidance and Information (PGI) system
 - Parking Policies

Policy Impacts

Parking reservation system

iCity Park – Survey types

Revealed preference (RP) and stated preference (SP) survey

- 1. RP survey: collect data about drivers' parking spot choices made in real life
 - Complex to define choice set
 - Difficult to obtain attribute values of all available parking alternatives
- 2. SP survey: collect data about drivers' parking spot choices in different hypothetical scenarios with designed alternatives and attributes
 - Defined choice set, alternatives and attributes
 - Some concerns about validity

iCity Park Methodology1. Survey designThe SP survey is designed as a parking game, iCity ParkThe application includes three sections:

- Survey introduction
- Game instruction and game scenarios
- Socioeconomic question survey

iCity Park Methodology

- 1. Survey design game settings
- Road network:

5x5 grid network, block length = 300m

Initial location:
 one of four intersections, four blocks from the destination

Destination location:a corner of the central block

iCity Park Methodology
1. Survey design – game settings
Parking spot distribution (per block face):
Eight legal spots (green)
Two illegal spots (red)

• Vehicle driving speed: 25 km/hr

• Walking speed: 1 m/sec

iCity Park Methodology 1. Survey design – Conventional parking scenarios

- Can view parking spots near vehicle location
- Players direct the vehicle in the network to cruise for parking
- Under moderate time and cost pressure
- Simulates conventional parking behaviour

iCity Park Methodology1. Survey designAssisted parking scenarios

- Can view all parking spots in the network
- Players zoom into the map and select available parking spots
- Simulates parking behaviour with intelligent parking systems

				\$515 \$530 \$54	15
:00 ⁰⁸	5 4 mr 5 4 mr	5 4 mm	\$40 \$40	公公 5 5 5 4 m 5 4 m	5 4 m
rive to destination by 1:15	\$ 4 nu	5 4 /hr	\$ 4 m	\$ 4 m	\$ 4 m
for 30 mins	5 4 m	5 4 rhr	S 4 m	5 4 /hr	5 4 m
e Reward: \$5	5 4 /hr 5 4 /hr 5 4 /hr	5 4 m² 5 4 m² 5 4 m²	\$ 4 mr \$ 4 mr \$ 4 mr	\$ 4 mbr \$ 4 mbr	\$ 4 /hr \$ 4 /hr \$ 4 /hr
	5 4 m	\$ 4 m	\$ 4 m	S 4 /hr	S 4 m
	\$ 4 /hr \$ 4 /hr	\$ 4 mr \$10mr	\$10/hr \$ 4 /hr	5 4 /br	54 /hr 54 /hr
	S 4 m	\$10/hr	🗙 💶	S 4 /hr	\$ 4 m
	\$ 4 m	\$10/hr	\$10m	S 4 m	\$ 4 m
	5 4 /hr 5 4 /hr	\$ 4 mr \$10mr	\$10/hr \$ 4 /hr	54 mr 54 mr	54 mr 54 mr
	\$ 4 m	5 4 /hr	s 4 m	S 4 /hr	\$ 4 m
	5 4 m	\$ 4 /hr	\$ 4 m	S 4 /hr	s 4 nr
	54 mr 54 mr	\$ 4 mm \$ 4 mm	\$ 4 m \$ 4 m	54 rbr 54 rbr	\$ 4 mr \$ 4 mr
	5 4 m	S 4 /hr	5 4 m	S 4 /hr	5 4 nu
	-				

Round

Park

On Time

iCity Park Methodology

1. Survey design – questionnaire and database

Survey was done on 68 students, staff and faculty, in our lab. Many scenarios each.

Socioeconomic information

• Age, gender, occupation status, education level, travel mode, parking frequency, etc.

The database records game setting and all decisions made by respondents

- Scenario settings (all parking spot location coordinates, attributes)
- Player decisions (driving routes, viewed spots, selected spots, parking cost, ontime performance, scores)

iCity Park Methodology

2. Discrete choice model

Used to evaluate the influential factors for parking choices

- Model structures
 - Multinomial logit (MNL) model
 - Nested logit (NL) model
 - Mixed logit (MXL) model

iCity Park Findings - Parking Strategies

Parking Spot Attributes	Preference	Relative Sensitivity		
		Conventional parking	Assisted Parking	
Parking Location	Close to destinations	Lower	Higher	
Parking Type	Legal parking alternatives	Lower	Higher	
Legal Parking Rate	Low parking rate	Lower	Higher	
Illegal Parking Hourly Citation Probability	Low citation probability	Lower	Higher	

iCity Park Findings - Parking Strategies

Respondents with different demographic attributes have different parking choice behaviours only in assisted parking.

- Older respondents are less sensitive to legal parking cost and less likely to park illegally
- Female drivers are less likely to park illegally

iCity Park Conclusions

- 1. Conclusions on iCity Park as a data collection tool for on-street parking
- Gamified SP approach helps to assess the most important factors in parking choice and expose respondents to a controlled experiment
- It is useful for testing parking preferences, effects of parking assistance, and search strategies
- Rich data set, but some concerns over how representative of real life.

iCity Park Conclusions

- 2. Conclusions on the parking choice modelling
- Mixed logit model gave the best fit.
- Results show a parking information and reservation system can improve driver's efficiency, reduce their cost and reduce illegal parking.

Questions?