Minimizing Freeway Corridor Delays While Balancing Mainline and On-Ramp Flows

Omar ElSamadisy

Outline

- Source of Congestion on Freeways & Solution
 - Numerical Example
- Implementing Regulator Approaches
 - Implementing Regulator Approaches on Literature Network
 - VSL
 - VSL Higher Demand Scenario
 - RM
 - RM with queue management
 - RM and VSL
 - Implementing Regulator Approach on Churchill On-Ramp Network
 - VSL
 - RM
 - RM with queue management
 - RM and VSL
- Summary of Results
- Conclusions
- Current Challenges/Next Steps
- References

Source of Freeway Congestion & Solution

• Issue:

- **Bottleneck**: a location where flow capacity upstream *is greater than* flow capacity downstream of the bottleneck location $(q_{cap}^{up}) > (q_{cap}^{down})$
- If $q_{in} > q_{cap}^{down} \rightarrow$ bottleneck is activated \rightarrow congestion is formed $\rightarrow q_{out} < q_{cap}^{down}$.
- Effects on Freeway:
 - Capacity drop (CD) at the congestion head
 - Blocking of off-ramps

<u>Solution:</u>

- Cut total demand (q_{ramp} + q_{mainstream}) to q_{cap}
 - Via Ramp Metering (RM) \rightarrow Control on-ramp flow
 - Issue: Ramp queues \rightarrow Congestion spilling back
 - Via Variable Speed Limit (VSL) \rightarrow Control mainstream flow
 - Issue: Cannot handle higher demand scenarios

How VSL Works

• Basic idea:

REFORALITOMATER

- To pace upstream traffic into downstream bottlenecks without triggering congestion by setting $q_c \cong q_{cap}$ to avoid the CD and establish maximum bottleneck throughput.
- Effects of VSL on traffic flow:
 - Decreasing the slope of flow density curve
 - Critical density is shifted to higher values
 - Lower flow capacity in fundamental diagram

Numerical Example

- Given a 3-lane freeway:
 - Total capacity = $6000 \frac{veh}{hr} (2000 \frac{veh}{hr} / lane)$
 - Mainstream demand $(q_{in (main)}) = 5500 \frac{veh}{hr}$
 - On-ramp demand $(q_{in (ramp)}) = 1500 \frac{veh}{hr}$
- Without Control:
 - Bottleneck is activated
 - Output flow (q_{out}) << Capacity (6000 $\frac{veh}{hr}$) due to capacity drop
 - Congestion is formed and its tail moves upstream blocking off-ramps

Numerical Example

- A. RM:
 - Avoid CD by cutting q_r to $500 \frac{veh}{hr}$
 - $q_{out} \cong Capacity \cong 6000 \frac{veh}{hr}$
- B. MTFC by VSL

ENTRE FOR ALITOMATED

- Avoid CD by cutting q_c to 4500 $\frac{veh}{hr}$
- $q_{out} \cong Capacity \cong 6000 \frac{veh}{hr}$
- C. Cooperation of RM and VSL
 - Designed so that $q_r + q_c \cong 6000 \frac{veh}{hr}$

Implementing Regulator Approach

• RM:

- Simple regulator controller Alinea is implemented
 - I-type structure to calculate ramp flow r at instant k

 $\mathbf{r}(k) = r(k-1) + K_I e_o(k)$

• VSL

• Simple regulator I-type structure to calculate VSL rate b at instant k

 $b(k) = b(k-1) + K_I e_o(k)$

- Cooperation of RM and VSL
 - Alinea RM is applied first till failing to achieve its target then VSL kicks in
- Both controllers (RM and VSL) are implemented using Aimsun Application Programming Interface (API)

(Eduardo R. Müller et al., 2016; Eduardo Rauh Müller et al., 2015)

Our Implementation

- Simple hypothetical network from literature:
 - The implemented controller is tested on the same network to replicate literature outcomes
 - 4.3 km long
 - 300 m application's area length
 - 200 m acceleration's area length
- Network with real geometry
 - The controller is then tested on a selected onramp from QEW
 - Winston Churchill onramp

(Eduardo R. Müller et al., 2016)

Applying VSL Only (Lit. Results)

Network Demand

3500 peak mainstream demand 1000 peak on ramp demand

CENTRE FOR AUTOMATED

ND TRANSFORMATIVE

⁽Eduardo R. Müller et al., 2016)

9

Base Case No-Control (Lit. Network)

Applying VSL Only (Lit. Network)

• Average delay is 68 sec/km (47.3% improvement)

Higher demand scenario (Lit. Network)

- Increasing mainstream peak demand from $3500 \frac{veh}{hr}$ to $4000 \frac{veh}{hr}$ and on ramp peak demand from $1000 \frac{veh}{hr}$ to $1400 \frac{veh}{hr}$ leads to:
 - Decrease in the performance of VSL from 47.3% improvements in delays to 3.53% improvements in delays
 - New base case scenario average delay: 163.15 sec/km
 - New controlled scenario average delay: 157.39 sec/km
- The higher the demand, the harder it is for VSL to function

Applying RM only (Lit. Network)

• Average delay is 71 sec/km (45% improvement)

RI

Applying RM with queue management (Lit. Network)

• Average delay is 86 sec/km (33% improvement)

Applying RM and VSL (Lit. Network)

• Average delay is 79 sec/km (39% improvement)

Base Case No-Control (Churchill Network)

Average delay = 67 sec/km

Network Demand

6000 peak mainstream demand 1250 peak on ramp demand

CENTRE FOR AUTOMATED

Applying VSL Only (Churchill Network)

• Average delay is 56 sec/km (16.4% improvement)

Applying RM only (Churchill Network)

• Average delay is 38 sec/km (43.2% improvement)

RI

Applying RM with queue management (Churchill Network)

Average delay is 54 sec/km (19.4% improvement)

Applying RM and VSL (Churchill Network)

• Average delay is 47 sec/km (30% improvement)

RI

IRE FOR ALITOMATED

ŪΤ

TRI

Control	Lit. Network Average Delays		Churchill Network Average Delays		
Base case	129	77	67	51	
		398		151	
VSL	68 (47.3%)	80	56 (16.4%)	66	
		22		13	
RM	71 (45%)	5	38 (43.2%)	8	
		404		280	
RM + Queue	86 (33.3%)	28	54 (19.4%)	27	
		351		240	
RM + Queue + VSL	79 (38.8%)	25	47 (30%)	22	
		326		233	

3500 mainstream demand 1000 on ramp demand

Suiiiiia	1 y 01 1 est	1115		\int	Any control is
Control	Lit. Network	Average Delays	Churchill Netwo	rk Average Delay	better than
Base case	129	77	67	51	none
		398		151	0
VSL	68 (47.3%)	80	56 (16.4%)	66 O	
		22		13	
RM	71 (45%)		38 (43.2%)		
		404		280	
RM + Queue	86 (33.3%)	28	54 (19.4%)	27	
		351		240	
RM + Queue + VSL	79 (38.8%)	25	47 (30%)	22	
		326		233	

3500 mainstream demand 1000 on ramp demand

Ū

TRI

	•			
Control	Lit. Network A	Average Delays	Churchill Netwo	rk Average Delays
Base case	129	77	67	51 VSI
		398		151
VSL	68 (47.3%)	80	56 (16.4%)	66
		22		13 O
RM	71 (45%)	5	38 (43.2%)	8
		404		280
	86 (33.3%)		54 (19.4%)	27
		351		240
	79 (38.8%)	25		22
		326		233

3500 mainstream demand 1000 on ramp demand

ŪΤ

TRI

Control	Lit. Network A	verage Delays	Churchill Network Average Delays	
Base case	129	77	67	51
		398		151
VSL	68 (47.3%)	80	56 (16.4%)	66
		22		13
	71 (45%)	5	38 (43.2%)	8
		404		280
	RM + Queue 86 (33.3%)		54 (19.4%)	27 The m
		351		240 lanes t
	79 (38.8%)	25		22
		326		233

3500 mainstream demand 1000 on ramp demand

Control	Lit. Network A	Verage Delays	Churchill Networ	rk Average Delays	
Base case	129	77	67	51	
		398		151	
	68 (47.3%)		56 (16.4%)	66 RIVI gives mainline	orioi den
		22		13	
RM	71 (45%)	5	38 (43.2%)	8	
		404		280 O	
RM + Queue	86 (33.3%)	28	54 (19.4%)	27	
		351		240	
	79 (38.8%)	25		22	
		326		233	

3500 mainstream demand 1000 on ramp demand

Control	Lit. Network A	verage Delays	Churchill Network Average Delays	
Base case	129	77	67	51
		398		151
	68 (47.3%)		56 (16.4%)	66
		22		13
RM	71 (45%)	5	38 (43.2%)	8
		404		280
RM + Queue	86 (33.3%)	28	54 (19.4%)	27 0
		351		240
RM + Queue + VSL	79 (38.8%)	25	47 (30%)	22
		326		233

3500 mainstream demand 1000 on ramp demand

UTTRI

CENTRE FOR AUTOMATED AND TRANSFORMATIVE TRANSPORTATION SYSTEMS

Control	Lit. Network Average Delays		Churchill Network Average Delays		
Base case	129	77	67	51	
		398		151	
	68 (47.3%)		56 (16.4%)		
		22		13	
	71 (45%)		38 (43.2%)		
		404		280	
	86 (33.3%)		54 (19.4%)	27	
		351		240	
RM + Queue + VSL	79 (38.8%)	25	47 (30%)	22 0	
		326		233	
	3500 mainstream demand 1000 on ramp demand		6000 mainstro 1250 on ramp	eam demand o demand	

Conclusions

- Either RM or VSL will reduce corridor delays
 - In higher demand scenarios VSL alone may not be enough
- Choosing the best approach (ie RM, VSL or both) depends on:
 - Agency priority (ex. Downtown Toronto at pm peak ramp flow can be more important than mainstream flow)
 - Freeway Vs Ramp flow proportional (ex. 401 delaying 4 lanes can increase total average delays)

Next Steps

- Implementing other VSL controllers that can suppress oscillations
- Solving some Aimsun API bugs
- Apply previously discussed controllers on full freeway
- Develop more advanced AI/RL controller for RM, VSL and cooperation between both

References

- Carlson, R C, Papamichail, I., Papageorgiou, M., & Messmer, A. (2009). Optimal mainstream traffic flow control of motorway networks. 2009 European Control Conference (ECC), 1758–1763. https://doi.org/10.23919/ECC.2009.7074657
- Carlson, Rodrigo C, Papamichail, I., & Papageorgiou, M. (2013). Comparison of local feedback controllers for the mainstream traffic flow on freeways using variable speed limits. Journal of Intelligent Transportation Systems, 17(4), 268–281.
- Iordanidou, G. R., Papamichail, I., Roncoli, C., & Papageorgiou, M. (2017). Feedback-Based Integrated Motorway Traffic Flow Control with Delay Balancing. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2319–2329. https://doi.org/10.1109/TITS.2016.2636302
- Müller, Eduardo R., Carlson, R. C., & Kraus, W. (2016). Cooperative Mainstream Traffic Flow Control on Freeways. IFAC-PapersOnLine, 49(32), 89–94. https://doi.org/10.1016/j.ifacol.2016.12.195
- Müller, Eduardo Rauh, Carlson, R. C., Kraus, W., & Papageorgiou, M. (2015). Microsimulation analysis of practical aspects of traffic control with variable speed limits. IEEE Transactions on Intelligent Transportation Systems, 16(1), 512–523. https://doi.org/10.1109/TITS.2014.2374167
- Sugiyamal, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S. I., & Yukawa, S. (2008). Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics, 10. <u>https://doi.org/10.1088/1367-2630/10/3/033001</u>

Thank you for listening!

Questions

