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Source of Freeway Congestion & Solution
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• Issue:

• Bottleneck: a location where flow capacity upstream 
𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 flow capacity downstream of the 
bottleneck location (𝑞𝑐𝑎𝑝

𝑢𝑝
) > 𝑞𝑐𝑎𝑝

𝑑𝑜𝑤𝑛

• If  𝑞𝑖𝑛 > 𝑞𝑐𝑎𝑝
𝑑𝑜𝑤𝑛

→ bottleneck is activated → congestion is 
formed → 𝑞𝑜𝑢𝑡 < 𝑞𝑐𝑎𝑝

𝑑𝑜𝑤𝑛.

• Effects on Freeway:
• Capacity drop (CD) at the congestion head

• Blocking of off-ramps

• Solution:

• Cut total demand (qramp + qmainstream) to qcap
• Via Ramp Metering (RM) → Control on-ramp flow

• Issue: Ramp queues → Congestion spilling back

• Via Variable Speed Limit (VSL) → Control mainstream flow

• Issue: Cannot handle higher demand scenarios

(Sugiyamal et al., 2008)

(R C Carlson et al., 2009)



How VSL Works
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• Basic idea:
• To pace upstream traffic into downstream bottlenecks 

without triggering congestion by setting qc ≅ qcap to 
avoid the CD and establish maximum bottleneck 
throughput.

• Effects of VSL on traffic flow:
• Decreasing the slope of flow density curve

• Critical density is shifted to higher values

• Lower flow capacity in fundamental diagram

qc

(Rodrigo C. Carlson et al., 2013)



Numerical Example
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• Given a 3-lane freeway:

• Total capacity = 6000 
𝑣𝑒ℎ

ℎ𝑟
(2000 

𝑣𝑒ℎ

ℎ𝑟
/lane)

• Mainstream demand (qin (main)) = 5500 
𝑣𝑒ℎ

ℎ𝑟

• On-ramp demand (qin (ramp)) = 1500 
𝑣𝑒ℎ

ℎ𝑟

• Without Control:
• Bottleneck is activated

• Output flow (qout) << Capacity (6000
𝑣𝑒ℎ

ℎ𝑟
) due to capacity drop

• Congestion is formed and its tail moves upstream blocking off-ramps

(R C Carlson et al., 2009)



Numerical Example
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• A. RM:

• Avoid CD by cutting qr to 500
𝑣𝑒ℎ

ℎ𝑟

• qout ≅ Capacity ≅ 6000 
𝑣𝑒ℎ

ℎ𝑟

• B. MTFC by VSL

• Avoid CD by cutting qc to 4500
𝑣𝑒ℎ

ℎ𝑟

• qout ≅ Capacity ≅ 6000 
𝑣𝑒ℎ

ℎ𝑟

• C. Cooperation of RM and VSL

• Designed so that qr + qc ≅ 6000 
𝑣𝑒ℎ

ℎ𝑟

(Iordanidou et al., 2017)



Implementing Regulator Approach
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• RM:
• Simple regulator controller Alinea is implemented

• I-type structure to calculate ramp flow r at instant k

r 𝑘 = 𝑟 𝑘 − 1 + 𝐾𝐼𝑒𝑜(𝑘)

• VSL
• Simple regulator I-type structure to calculate VSL rate b at instant k

𝑏 𝑘 = 𝑏 𝑘 − 1 + 𝐾𝐼𝑒𝑜(𝑘)

• Cooperation of RM and VSL
• Alinea RM is applied first till failing to achieve its target then VSL kicks in 

• Both controllers (RM and VSL) are implemented using Aimsun Application 
Programming Interface (API)

(Eduardo R. Müller et al., 2016; Eduardo Rauh Müller et al., 2015)



Our Implementation
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• Simple hypothetical network from literature:
• The implemented controller is tested on the same network to replicate literature outcomes

• 4.3 km long

• 300 m application’s area length

• 200 m acceleration’s area length

• Network with real geometry
• The controller is then tested on a selected onramp from QEW

• Winston Churchill onramp 
(Eduardo R. Müller et al., 2016)



Applying VSL Only (Lit. Results)
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Base case

Controlled

(Eduardo R. Müller et al., 2016)

Literature Output

3500 peak mainstream demand

1000 peak on ramp demand

Network Demand

Average delay 

143.7 sec/km

Average delay 

72.9 sec/km

49% improvement



Base Case No-Control (Lit. Network)
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• Average delay = 129 sec/km
FD for merging section Outflow from bottleneck

Max. outflow ≈ 4000 
𝑣𝑒ℎ

ℎ𝑟

Fell to ≈ 3700
𝑣𝑒ℎ

ℎ𝑟

Then fell further to ≈ 3000
𝑣𝑒ℎ

ℎ𝑟

Capacity ≈ 4000 
𝑣𝑒ℎ

ℎ𝑟

Critical density ≈ 22
𝑣𝑒ℎ

𝑘𝑚

3500 peak mainstream demand
1000 peak on ramp demand

Network Demand

(Eduardo R. Müller et al., 2016)



Applying VSL Only (Lit. Network)
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• Average delay is 68 sec/km (47.3% improvement) 

FD for merging section Outflow from bottleneckDensity at merging section



Higher demand scenario (Lit. Network)
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• Increasing mainstream peak demand from 3500 
𝑣𝑒ℎ

ℎ𝑟
to 4000 

𝑣𝑒ℎ

ℎ𝑟
and 

on ramp peak demand from 1000 
𝑣𝑒ℎ

ℎ𝑟
to 1400 

𝑣𝑒ℎ

ℎ𝑟
leads to:

• Decrease in the performance of VSL from 47.3% improvements in delays to 
3.53% improvements in delays
• New base case scenario average delay: 163.15 sec/km

• New controlled scenario average delay: 157.39 sec/km

• The higher the demand, the harder it is for VSL to function



Applying RM only (Lit. Network)
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• Average delay is 71 sec/km (45% improvement) 

FD for merging section Outflow from bottleneckDensity at merging section



Applying RM with queue management (Lit. Network)
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• Average delay is 86 sec/km (33% improvement)

FD for merging section Outflow from bottleneckDensity at merging section



Applying RM and VSL (Lit. Network)
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• Average delay is 79 sec/km (39% improvement)

FD for merging section Outflow from bottleneckDensity at merging section



Base Case No-Control (Churchill Network)
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• Average delay = 67 sec/km

Max. outflow ≈ 6200 
𝑣𝑒ℎ

ℎ𝑟

Fell to ≈ 7700
𝑣𝑒ℎ

ℎ𝑟

Capacity ≈ 6200 
𝑣𝑒ℎ

ℎ𝑟

Critical density ≈ 21
𝑣𝑒ℎ

𝑘𝑚

6000 peak mainstream demand
1250 peak on ramp demand

Network Demand

6000

1250



Applying VSL Only (Churchill Network)
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• Average delay is 56 sec/km (16.4% improvement)



Applying RM only (Churchill Network)
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• Average delay is 38 sec/km (43.2% improvement)



Applying RM with queue management (Churchill 
Network)
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▪ Average delay is 54 sec/km (19.4% improvement)



Applying RM and VSL (Churchill Network)
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• Average delay is 47 sec/km (30% improvement)



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand

Any control is 
better than 

none
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Control Lit. Network Average Delays Churchill Network Average Delays
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VSL gives priority to 
ramp demand



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand

The more the number of 
lanes the less effective is 

VSL



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand

RM gives priority to 
mainline demand



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand

Queue management 
deteriorated RM



Summary of results 
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Control Lit. Network Average Delays Churchill Network Average Delays

Base case 129 77 67 51

398 151

VSL 68 (47.3%) 80 56 (16.4%) 66

22 13

RM 71 (45%) 5 38 (43.2%) 8

404 280

RM + Queue 86 (33.3%) 28 54 (19.4%) 27

351 240

RM + Queue + VSL 79 (38.8%) 25 47 (30%) 22

326 233

3500 mainstream demand
1000 on ramp demand

6000 mainstream demand
1250 on ramp demand

Cooperation can balance 
benefits



Conclusions
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• Either RM or VSL will reduce corridor delays
• In higher demand scenarios VSL alone may not be enough

• Choosing the best approach (ie RM, VSL or both) depends on:
• Agency priority (ex. Downtown Toronto at pm peak ramp flow can be more 

important than mainstream flow)

• Freeway Vs Ramp flow proportional (ex. 401 delaying 4 lanes can increase 
total average delays)



Next Steps
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• Implementing other VSL controllers that can suppress oscillations

• Solving some Aimsun API bugs

• Apply previously discussed controllers on full freeway

• Develop more advanced AI/RL controller for RM, VSL and cooperation 
between both
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