An Analysis of Greenhouse Gas Emissions Associated with Shared Automated Electric Vehicles

Marc Saleh, PhD candidate Marianne Hatzopoulou, Prof.

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING Transportation Research Institute

Updates on four studies exploring electrification and automation

- Electrification and air quality/health
- Impact of EV charging behaviour on GHG emissions from electricity production
- Energy and GHG implications of high mileage electric vehicles

Electrification and air quality/health

2016 traffic-related emission inventory in the GTHA

Base Case

Scenario 1 : cars and SUVs are 100% electric

Scenario 2 : transit buses are 100% electric

Scenario 3 : cleaner trucks (2008 technology standards)

Electrifying all private passenger vehicles would reduce GHG emissions by 70%

Scenario 1: cars and SUVs are 100% electric

313 premature deaths prevented

\$2.4 billion per year in social benefits

7.6 mega tonnes (68.5%) annual GHG reductions

\$9,850 social benefits per electric car deployed

ANNUAL SOCIAL BENEFITS WITH 100 PER CENT ELECTRIC CARS AND SUVS BY REGION (IN MILLIONS \$CDN)

Scenario 2: transit buses are 100% electric

143 premature deaths prevented

\$1.1 billion per year in social benefits

0.3 mega tonnes annual GHG reductions

Greatest benefits to residents in **City of Toronto**

ANNUAL SOCIAL BENEFITS WITH 100 PER CENT ELECTRIC PUBLIC TRANSIT BUSES BY REGION (IN MILLIONS \$CDN)

275 premature deaths prevented

\$2.1 billion per year in social benefits

0.06 mega tonnes annual GHG reductions

Greatest benefits where truck traffic is concentrated

\$308,000 social benefits per cleaner truck deployed

ANNUAL SOCIAL BENEFITS WITH 100 PER CENT CLEANER TRUCKS BY REGION (IN MILLIONS \$CDN)

Distribution of social benefits across the region

What Are the Social Benefits of Deploying Cleaner Vehicles?

CA\$9,850 / electric car or SUV CA\$308,000 / cleaner truck

Compare with social costs of new policies (e.g., subsidies of EV in Canada vs. Ontario) CA\$5,00 CA\$10,000 () 0

Impact of EV charging behaviour on GHG emissions from electricity production

Marginal GHG Emission Factors

MEF can be 2~4 times higher than AEF.

Marginal GHG Emission Factors

MEF by season and hour in 2017

Hour	AEF	Marginal Emission Factors (based on historical data in 2017) (kg CO2 eq/MWh)											
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
1	13	104	62	78	28	14	0	8	65	90	0	75	101
2	13	88	22	44	26	0	0	0	25	51	0	46	64
3	13	86	16	29	24	0	0	0	21	32	0	35	53
4	14	84	14	96	22	0	0	0	68	64	0	22	44
5	15	82	93	95	4	11	0	41	76	72	10	91	79
6	17	83	88	97	12	18	0	39	92	126	13	92	89
7	18	90	73	107	18	26	20	46	104	149	26	95	113
8	20	100	80	129	19	30	36	70	121	148	49	123	150
9	21	110	102	137	19	31	43	96	124	159	58	145	182
10	23	115	114	73	35	32	52	121	122	166	59	154	195
11	24	106	34	84	36	35	58	137	136	178	46	97	200
12	25	103	31	77	36	34	60	155	130	182	46	152	161
13	26	102	44	79	35	34	64	163	136	180	62	151	154
14	27	99	42	69	34	10	66	177	130	184	63	150	196
15	28	111	28	130	34	33	68	177	131	199	63	150	197
16	29	112	105	129	20	36	74	179	146	212	56	154	199
17	31	116	101	130	23	39	80	183	151	216	67	155	209
18	31	125	98	135	23	15	79	204	134	101	73	168	236
19	31	113	111	137	25	39	79	131	115	198	77	136	217
20	30	122	62	150	28	41	78	138	113	116	84	146	215
21	27	124	69	121	44	41	75	122	135	177	77	154	212
22	23	131	111	152	43	47	91	163	167	221	60	158	210
23	18	137	108	151	40	47	80	137	147	216	38	147	199
24	15	120	83	108	33	27	26	64	111	161	16	114	157
								Min =	0	Mean =	85	Max =	236

(b) Based on historical data in 2017

Impacts of charging scenarios

CENTRE FOR AUTOMATED AND TRANSFORMATIVE TRANSPORTATION SYSTEMS

ITTO

a) Daily Emissions & Emission Factor for EV Charging - 5% EV Penetration in the GTHA

EV Charging Optimization Based on Marginal Emission Factor

$$\begin{array}{l} \text{Objective}:\min Z = \frac{\sum_i \sum_j MEF_i \times x_{i,j}}{\delta \times (1-\gamma)}\\ MEF_i \text{ is calculated by Eq. (S1), and } G_i = D_i + \sum_{j=1}^V x_{i,j}\\ \text{Subject to:}\\ (\text{I}) \cdot ER_{i,j} \times x_{i,j} = 0, \forall i, j;\\ (\text{II}) \cdot \sum_{i=1}^t (ER_{i,j} - x_{i,j}) \leq BC, \forall j, t \in [1, 2, \cdots, T];\\ (\text{III}) \cdot \left|\sum_{i=1}^T (ER_{i,j} - x_{i,j})\right| \leq \tau, \forall j;\\ (\text{IV}) \cdot \sum_{j=1}^V x_{i,j} \leq S_i, \forall i; \end{array}$$

Where:

 $x_{i,j} = \{0, 1.6, 7, 50\}$ kW is the level of charging for vehicle *j* during time *i*. Three levels of charging rate plus zero (which means no charging activity) are available for each $x_{i,j}$, as discussed in the next paragraph;

 D_i is current electricity demand that exists in current network based on IESO dataset;

 G_i is network electricity load at time i, which is the sum of current demand D_i and additional charging demand;

 ΔG_i is the load changing rate at time *i*;

 $ER_{i,j}$ is energy consumption of vehicle *j* during time*i*;

 S_i is current spare capacity in the electricity network based on IESO dataset;

BC is the EV maximum available electrical energy;

 τ is minimal charging volume, which equals to the product of minimal charging rate and length of time interval *i*;

 δ is the charging efficiency rate (89.4% in this paper);

 γ is the transmission and distribution line loss rate (9% in this paper);

T is total number of time intervals in one day;

And \boldsymbol{V} is total number of vehicles involved.

EV Charging Optimization Based on Marginal Emission Factor

Charging demand in different scenarios

GHG Emissions of different charging scenarios

Energy and GHG implications of highmileage EVs

Study Methods

Three Scenarios

1. Base case: Existing non-automated household vehicles

2. Household level AV sharing: AVs shared between members of **same household**

3. Dissemination area level AV sharing: AVs shared between members of **same dissemination area**

Daily vehicle energy consumption

Wait time between trips

Hourly Optimized Charging schedule

Operational GHG emissions

Average Emission Reduction:

Base case: 64.1%

- Household level AV sharing: 59.6%
- Dissemination area level AV sharing: 52.3%

Lifecycle GHG emissions

Questions