Rediscovering the lost art of travel forecasting

Rick.Donnelly@wsp.com | WSP | 3 December 2021

Preliminaries

- 1. Safety first
- 2. Standard disclaimers
- 3. Questions via chat

You do what?

"I create and simulate artificial societies from snapshots of realworld populations to study how policies and investments might effect social activity and travel behavior and its aggregate impacts upon the transport system and built environment in a safe, controlled laboratory setting."

Motivations

20th century

Transit demand and revenue Major highway investments Long-range regional planning

21 st century

All of last century, plus: Community connectivity Links to economic and trade models Commercial vehicle travel and impacts Links to emissions models Energy impacts Travel demand management Safety impacts Modal redundancy studies Network resilience measures Economic impact analyses Congestion management Pricing studies Managed lane studies Cost-benefit analyses Financial and social welfare metrics Equity analyses Active transport analyses Health impacts Fuel price increase impacts Bottleneck analyses Traffic engineering studies Autonomous vehicles Shared mobility services Pandemic travel shifts Changes in telecommuting

. . .

(3) Non-mandatory tour f (2) Mandatory tour frequen (1) Tour purpose —	requei icy —	ncy -				
Person type	×	×	¥	X	X	a. Constants not shown
Worker occupation				Х		b. Several different specifications
Person age group	х	х			х	of different accessibility
Gender	Х	Х	Х		х	definitions used within each model.
Household size	х		х			
Household composition					х	
Children not at home			х			
Number of pre-school children				х		
Household income group	Х	х	х	х	х	
Dwelling type	Х		х			
Usual workplace type	Х					
Auto sufficiency w.r.t. workers	Х		х		х	
Accessibility ^b (number of variants used)	(2)	(2)	(4)	(2)	(1)	
Distance to work/school		Х				
Travel time to work/school		Х				
Presence of mandatory tours			Х			
Number of tours by purpose					х	
Total household tours					Х	

		Esco Discretionary	orting tour	tour				
		Variable		V	V	V	V	
Im	npedance	Mode choice logsums	Х	х		Х	Х	a. Logit modellers assert these
va	ariables	Linear distance ^a	Х	х	х			terms should be considered a composite term rather than
		Squared distance ^a	х		х		х	collinear variables
		Natural log of distance ^a	Х		х	Х	х	b. Used to denote habitual discretionary tours (e.g.,
Pe	erson and	Age group	Х	х			х	grocery shopping)
hc	ousehold	Gender	Х				х	
a	attributes	Work status (full/part-time)	х	х				
		Income category					х	
То	bur	Tour purpose					Х	
at	tributes	Tour mode					х	
		Direction (to/from anchor)					х	
		Number of stop on tour					х	
Si	ze terms	Retail employment	Х	х		Х	Х	
		Service employment	Х	х	х	Х	х	
		Government employment	Х			Х	х	
		Military employment				Х	х	
		Hotel employment			х			
		Households		Х	Х	Х	х	
		School enrolments					х	
		University/college enrolments					х	

Architectures and artifacts

Modeling systems

Macroeconomic Population synthesis **Resident travel** Visitor model(s) Commercial vehicles Network assignment Evaluation

Sketch planning models Trip-based models Activity-based models Data-driven models Probabilistic models Generative models Machine learning System dynamic models Random numbers Group consensus

Markets	Traditional metrics	Emerging metrics
Households and persons Residents making local trips Residents making long-distance trips Visitors Firms and economic sectors Commodities by mode of travel Imports and exports Long-distance trucks Urban trucks	Aggregate network statistics (VKT, VHT,) Travel times and reliability Per-capita change in VKT, non-auto travel, Wide economic benefits Degree and extent of congestion Public transport and pricing revenues Environmental impacts Network level of service Cost-benefit analyses	Empty kilometres of travel (CVs) Aggregate accessibility measures Consumer surplus or user benefits Network reliability and resilience Social welfare statistics Pricing revenues and equity Risk and uncertainty analyses

Topologies	Agents	Agent properties	Objects
Global	Persons	Preferences	Buildings
State	Households	Budgets	Facilities
Places (polygons)	Vehicles	Choices	Vehicles
Places (points)	Roadways	Activities	Signals
Agents	Intersections	Tours	Sensors
Objects	Mobility service providers	Trips	Roadways
	Public transport operators Jurisdictions Firms	Routes	Junctions (intersections) Transit lines
	Buildings Gateways		

Household records

householdID	size	region	vehicles	income
 1001	3	Parry Sound	2	102118
1002	1	Parry Sound	0	68115
1003	2	Parry Sound	1	71032

... (for each household in the synthetic population)

Person records

•	householdID	personID	status	driver_lic	age	gender	home_loc	work_loc	sch_loc
_	1001	1	ft_service	Y	32	м	501	1803	NA
	1001	2	pt_proftech	Y	34	F	501	2962	NA
	1001	3	child	N	6	F	501	NA	503

... (for each person in synthetic population)

From long-term choice models

Person activity-travel records

household	dID personID	tourID	activity	duration	origin	destination	purpose	mode	dep_time	travel_time
1001	1	1	home	8.23	501	1803	HW	а	8.23	.41
1001	1	1	work	9.10	1803	501	wн	а	17.74	.59
1001	1	1	home	6.26						

... (for each person and activity in synthetic population)

From person records Tour Mode for mandatory generation choice activities and activity model(s) location model for non-mandatory

Generated using

population synthesizer

Tour scheduler

(or temporal

allocation)

Pre-assignment

Results aggregated for traffic assignment

10

Davidson diagram

Insights:

- B. Flyvbjerg et al. (2003), *Megaprojects and risk: An anatomy of ambition*, Cambridge University Press
- My experience to date

Changes in vehicle fleet

Telecommuting trends over time

Historical telecommuting data from Levinson et al. (2013)

What could go wrong?

Internal

- Creeping complexity and complicatedness
- Overfit models
- Increasing computational burdens
- Noise vs signal
- Parameter storm
- Outdated assumptions
- Inaccurate forecasts
- Lack of resources

External

- Uncertainty
- High risk ← single future
- Issues evolve faster than models
- Accelerating social, behavior, and technological changes
- Ransomware infections
- Loss of confidence
- Irrelevance to policymaking
- Lack of timeliness

Davidson diagram

Change how I use them

Reduce cost and expand models

From H. Wu (2021), Theory of ensemble forecasting – with applications to transport modeling, Unpublished PhD thesis, The University of Sydney

Source: https://eulertech.wordpress.com/2017/10/03/machine-learning-algorithms-in-one-map/

AI context

Waves of the AI revolution?

- Internet Al
- Business Al
- Perception Al
- Autonomous Al

These four waves all feed off of different kinds of data...

Deep learning requires:

- Massive amounts of relevant data
- Strong algorithms
- Narrow domain
- Concrete goal

"If you're short any one of these, things fall apart."

Impactful AI requires:

- Abundant data
- Tenacious entrepreneurs
- Well-trained AI scientists
- Supportive policy environment
- "...the center of gravity shifts from a handful of elite researchers to an army of tinkerers..."

Optimization Complex math Deep interactions Rule-based processes

Personal Creative Compassionate Imaginative

Source: Kai-Fu Lee, Al Superpowers: China, Silicon Valley, and the New World Order (2018).

ML in a nutshell

Quick intercity mode choice example

Category	Attribute	NHTS	TSRC
Extents	Vaara inaludad	2002	2012.14
Extents	Tears included	2002	2012-14
	Total usable observations	45,118	167,481
Variables	Mode (of travel)	1	1
	Age group	\checkmark	1
	Gender	1	1
	Education	1	1
	Employment status	1	1
	Occupation	1	
	Household income	1	1
	Travel party size	1	1
	Trip purpose	1	1
	Nights away	1	1
	Distance (one-way)	1	1
	Year	1	1
	Percent personally paid	1	1
	Annual frequency	1	

Perfect case study in imbalanced data

	NH	TS	TSRC			
Mode	Records	Percent	Records	Percent		
Air	3,347	7.4	7,994	4.8		
Auto	40,333	89.3	150,456	89.8		
Bus	993	2.1	3,513	2.1		
Other	77	0.2	3,427	2.0		
Rail	392	0.9	1,268	0.8		
Ship	36	0.1	823	0.5		
Total	45,118	100.0	167,481	100.0		

Table 5.5: Number of observations by intercity mode of travel

Starting position

Percent incorrect predictions

Mode	Logit model	Random guess
Air	15.1	95.6
Auto	4.2	10.3
Bus	69.7	98.2
Other		97.9
Rail	51.8	99.2
Ship	100.0	99.8

Console	Termin	al × Jo	bs ×				
~/Library	/Mobile	Document	s/com~	apple~Cl	oudDocs	/ohpleas	se/ 🗇
> combin + prob	ed\$gues = obse	s <- sam rved_sha	ple(ob res\$sh	served_s are)	shares\$	mode, n	row(combined), r
> result L)	<- xta	bs(~mode	+ gue	ss, data	a = com	bined,	na.action = na.p
> noquot	e(resul	t)					
g	uess						
mode	Air	Auto	Bus	0ther	Rail	Ship	
Air	383	7209	155	161	49	37	
Auto	7282	134980	3141	3057	1212	784	
Bus	164	3150	81	74	27	17	
0ther	181	3061	78	70	28	9	
Rail	69	1132	26	25	10	6	
Ship	53	732	20	12	3	3	
> noquot	e(paste	("Random	guess	accurac	cy = ",	accura	cy(result)))
[1] Rand	om gues	s accura	cy =	0.81			
<pre>> modal_</pre>	accurac	y(combin	ed, co	mbined\$g	juess)		
mode	Correct	Incorre	ct pct	Incorrec	t		
1 Air	383	76	11	95	2		
2 Auto	134980	154	76	10	3		
3 Bus	81	34	32	97	.7		
4 Other	70	33	57	98	0		
5 Rail	10	12	58	99	2		
6 Ship >	3	8	20	99	.6		

Simple decision tree

Bus

0.10

1%

Maybe neural net

27

Results

(a) Full dataset

Percent incorrect predictions									
Mode	Logit model	Random guess	Decision tree	Bagged tree	Neural net (h=24)	SEDO bagged tree	SEDO + random		
Air	15.1	95.6	41.7	29.2	10.1	9.5	9.5		
Auto	4.2	10.3	0.5	1.4	7.4	0.8	0.8		
Bus	79.7	98.2	100.0	91.1	24.8	26.9	21.8		
Other		97.9	100.0	94.9	77.5	36.5	29.3		
Rail	81.8	99.2	100.0	93.4	40.0	77.4	37.9		
Ship	100.0	99.8	100.0	96.8	63.3	64.4	60.3		

(c) Ranking

Approach	max(pct incorrect)	
SEDO + random	60.3	
O/U neural net (h=24)	73.3	
SEDO bagged tree	74.5	
Neural net (h=24)	77.5	
O/U bagged tree	87.6	
Bagged tree	96.8	
Random guess	99.8	
Logit model	100.0	
Decision tree	100.0	
O/U decision tree	100.0	

(b) Best over/under sampling outcome

Percent incorrect predictions

Mode	Decision tree	Bagged tree	Neural net (h=24)	
Air	8.3	6.9	7.0	
Auto	5.2	2.5	3.6	
Bus	100.0	51.9	22.3	
Other	100.0	74.9	47.1	
Rail	100.0	87.6	39.6	
Ship	100.0	80.7	73.3	

Successive elimination of dominant outcomes (SEDO)

Training strategy

SEDO (3 levels)

My view

How can we build evidence-based planning models that overcome:

ML limitations

- Data limitations (quality, quantity, stationarity, ...)
- Data silos
- Stochastic
- Lack of interpretability
- P-hacking
- Al solutionism
- Ethical concerns

Human limitations

- Biases and prejudices
- Agendas
- Replication mindset
- Mistakes
- Misinterpreting results
- Linear thinking
- Difficulty comprehending multidimensional interactions

Scenario thinking example

Contagions	Future of work	Automation + AI	Autonomous vehicles	Military presence
 Return to 2019 Rolling sheltering and isolation Relative calm between cyclical pandemics Rolling pandemics the new normal A universal vaccine or cure emerges 	 Return to 2019 Increased telework and hybrid office- remote work Sustained shift towards remote work 	 AI winter Second Machine Age scenario with higher unemploy- ment Automation trends plateau AI dominance 	 Bureaucratic and regulatory inertia AVs remain niche products Widespread adoption of AVs Level 5 automation dominates travel 	 Remain at current levels Digital warfare focus reduces traditional forces Stronger Pacific presence to deter Chinese expansion Drones replace human warriors

Questions?

Highly recommended

- H. Wu (2021), Theory of ensemble forecasting with applications to transport modeling, Unpublished PhD thesis, The University of Sydney. https://ses.library.usyd.edu.au/handle/2123/26252
- W. Li & K. M. Kockelman (2021), "How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE", *Growth and Change*, in press. https://doi.org/10.1111/grow.12587
- D. Kahneman, O. Sibony & C.R. Sunstein (2021), *Noise: A Flaw in Human Judgment*, Little Brown Spark, London.
- "Machine learning" online Coursera course by Andrew Ng. https://www.coursera.org/learn/machine-learning
- A. Ben-Zvi (2020), Scenarios for the COVID-19 future. https://breakwaterstrategy.com/scenarios-for-the-covid-19-future/