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Congestion pricing is one of the widely contemplated methods to manage traffic conges-
tion. The purpose of congestion pricing is to manage traffic demand generation and supply
allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute
traffic demand more evenly over time and space. This study presents a framework for
large-scale variable congestion pricing policy determination and evaluation. The proposed
framework integrates departure time choice and route choice models within a regional
dynamic traffic assignment (DTA) simulation environment. The framework addresses the
impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice
dimensions including departure time and route choices (demand side). The framework is
applied to a simulation-based case study of tolling a major freeway in Toronto while cap-
turing the regional effects across the Greater Toronto Area (GTA). The models are devel-
oped and calibrated using regional household travel survey data that reflect the
heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic
counts from the Ontario Ministry of Transportation and the City of Toronto. The case study
examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more
benefits are attained from variable pricing, that mirrors temporal congestion patterns, due
to departure time rescheduling as opposed to predominantly re-routing only in the case of
flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are
observed across the regional network in response to tolling a significant, yet relatively
short, expressway serving Downtown Toronto, and (3) flat tolling causes major and coun-
terproductive rerouting patterns during peak hours, which was observed to block access to
the tolled facility itself.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction and background

As traffic congestion levels soar to unprecedented levels in dense urban areas, and governments are challenged to meet
the demand for transportation and mobility; congestion pricing is becoming one of the widely contemplated methods to
combat congestion (Washbrook et al., 2006).
toronto.
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The ‘‘tragedy of the commons” concept has been established longer than a century ago as mentioned by Hardin (1968). A
famous example is when herders are given free access to open grassland for their cows to graze, cows tend to overgraze and
deplete their source of sustenance to the detriment of everyone. The parallel to the tragedy of the commons in traffic could
not be more direct. While transportation authority and society at large would like to ‘‘optimize” travel and minimize overall
cost of travel, travelers act very differently. Travelers act independently and rationally, based on their self-interest, i.e., min-
imizing their direct cost while not paying attention to the societal cost and the detriment to others. Consequently, the pur-
pose of congestion pricing is to manage traffic demand generation and supply allocation to ensure a more rational use of
roadway networks. This is accomplished by charging fees for the use of certain roads in order to reduce traffic demand or
distribute it more evenly over time (away from the peak period) and space (away from overly congested facilities).

Numerous studies have investigated the potential of congestion pricing schemes in reducing the vehicular demand sub-
ject to travel and behavioral characteristics. While fully enumerating all congestion pricing studies is beyond the scope of
this paper, the following section briefly reviews what is highly relevant to our scope:

In a study conducted by Washbrook et al. (2006) at University Drive (Burnaby, British Columbia), single-occupant vehicle
(SOV) commuters completed a discrete choice experiment in which they chose between driving alone, carpooling or taking a
hypothetical express bus service when choices varied in terms of time and cost attributes. The results of this study indicate
that a potential increase in drive alone costs brings greater reductions in SOV demand than an increase in SOV travel time or
improvements in the times and costs of alternatives (i.e., carpooling and bus express service). Another study conducted by
Duranton and Turner (2011) at the University of Toronto assessed the potential of congestion pricing against capacity expan-
sions and extensions to public transit as policies to combat traffic congestion. The study concludes that vehicle kilometers
traveled (VKT) is quite responsive to price as opposed to transit or capacity expansions. Moreover, Sasic and Habib (2013)
showed that the recommended strategy to lighten peak period demand while maintaining transit mode share in the Greater
Toronto and Hamilton Area (GTHA) requires imposing a toll (around $1) for all auto trips in addition to a 30% flat peak transit
fare hike. Furthermore, their results suggest that such a pricing policy would have a larger effect on shifting travel demand
over time than any other policies not including a road toll.

Tolling studies in the literature range from applying a flat or simple pricing structure, e.g., Lightstone (2011) and Sasic
and Habib (2013), on a small or sometimes hypothetical network, e.g., Gragera and Sauri (2012) and Guo and Yang (2012),
to a network-wide pricing scheme, e.g., Verhoef (2002) and Morgul and Ozbay (2010). Finkleman et al. (2011) studied the
acceptability and impacts of HOT lanes in the GTA through a stated preference survey of more than 250 drivers, under var-
ious trip conditions and for various traveler characteristics. Other efforts, e.g., Nikolic et al. (2015), studied dynamic tolling
of HOV lanes on specific corridors in a micro-simulation environment; in which the network-effect and routing options
affected by tolling were not considered. Mahmassani et al. (2005), Lu et al. (2006, 2008), Lu and Mahmassani (2008),
and Lu and Mahmassani (2011) developed a multi-criterion route and departure time user equilibrium model for use with
dynamic traffic assignment applications to networks with variable toll pricing. The model considers heterogeneous users
with different values of time, values of (early or late) schedule delay, and preferred arrival time (PAT) in their choice of
departure times and paths characterized by travel time, out-of-pocket cost, and schedule delay cost. Furthermore, the

model was applied to an actual relatively small network (180 nodes, 445 links, and 13 zones) through a simulation-
based algorithm. The authors, however, acknowledge that their algorithm suffers from computational limitations in a large
network setting.

All these studies contribute considerably to the state-of-the-art and state-of-the-practice in congestion pricing; neverthe-
less, the literature has some or a combination of the following limitations:

– scarce case studies on large-scale realistic regional networks/models (as opposed to hypothetical small networks);
– hypothetical tolling scenarios that lack methodological/practical basis; and
– disregard of travelers’ individual responses to pricing (e.g., choice of departure time, choice of mode, and choice of route).
Additionally, the limited number of studies that considered some of those responses ignored the drivers’ personal and
socioeconomic attributes affecting the decision made in response to pricing, perhaps due to lack of large scale travel
surveys.

In light of the aforementioned gaps, this study is motivated to develop a robust framework for the methodological deriva-
tion and evaluation of variable congestion pricing policies to manage peak period travel demand, while explicitly capturing
departure time and route choices in a large-scale dynamic traffic simulation environment. The study, through rich travel sur-
vey data available in the Greater Toronto Area (GTA), considers the drivers’ heterogeneity in their values of (early or late)
schedule delay and desired arrival times. Moreover, drivers’ personal and socio-economic attributes – affecting the choice
of departure times – are taken into account besides the trip-related travel time, out-of-pocket cost, and schedule delay cost.
The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto.
The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimen-
sions including departure time and route choices (demand side). Mode choice responses to tolling are beyond the focus of
this study and will be considered in future work. The framework is applied to a simulation-based case study of tolling a
major freeway in Toronto (the Gardiner Expressway) while capturing the regional effects across the GTA, in Ontario, Canada.
The case study examined two tolling scenarios: flat and variable tolling.
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2. Modeling framework

This section presents a framework for evaluation of variable congestion pricing policies as a method of spatial and tem-
poral traffic management. The proposed framework integrates departure time choice and route choice within a large-scale
dynamic traffic simulation environment.

The framework is based on four key pillars: (1) the bottleneck model for dynamic congestion pricing which is the theo-
retical basis of the variable tolling structure adapted in this study; (2) an econometric (behavioral) model of departure time
choice that is built and calibrated using regional house-hold travel survey data which capture the heterogeneity of travelers’
personal and socioeconomic attributes; (3) a dynamic traffic assignment simulation platform that is used to assess the
impact of various pricing options on routing and congestion patterns; and (4) finally, the integration and implementation
of the above into a single framework that incorporates variable tolling while looping between the departure time choice
layer and the DTA layer until departure time choices and route choices reach equilibrium, and the impact of tolling on system
performance is assessed. The above key pillars of the approach are described next.
2.1. Theoretical basis: the bottleneck model for dynamic congestion pricing

Dynamic models consider that congestion peaks over time then subsides. Therefore, there is a congestion delay compo-
nent that peaks with congestion that the travelers experience. Dynamic models assume that travelers have a desired arrival
time; deviations from which imply early or late schedule delays. Travelers who must arrive on time during the peak periods
encounter the longest delay; i.e., there is a trade-off between avoiding congestion delay and arriving too early or too late.

The basic Bottleneck Model is the most widely used conceptual model of dynamic congestion pricing (Small and Verhoef,
2007). It involves a single ‘‘bottleneck” and assumes that travelers are homogeneous and have the same desired arrival time,
t⁄. Moreover, the model assumes that for arrival rates of vehicles not exceeding the bottleneck capacity and in absence of a
queue, the bottleneck’s outflow is equal to its inflow and as a result no congestion (delay) occurs. When a queue exists,
vehicles exit the queue at a constant rate, which is the same as the bottleneck capacity Vk. Fig. 1a illustrates the
un-priced equilibrium condition of this model (i.e., equilibrium in the absence of tolling) and Fig. 1b shows the two compo-
nents of the total cost c(t) in the un-priced equilibrium condition, namely, travel delay cost cT(t) and schedule delay cost cs(t)
(early and late arrival costs). As noticed in the figure, the schedule delay cost is assumed to be a piecewise linear function in
this model. The summation of the two costs (i.e., the total cost) is constant in the un-priced equilibrium, as illustrated in the
figure.
a) Dynamic Queueing Equilibrium 

b) Average Cost Components and Optimal
 Tolls by Queue-Exit Time 
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Fig. 1. Equilibrium in the basic bottleneck model (Small and Verhoef, 2007).
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Note that the total number of travelers that enters the system ultimately exits the system after being queued for a while.
The optimal toll in this case attempts to ‘‘flatten” the peak in order to spread the demand evenly over the same time period.
In this case, the price is set such that the inflow equals road capacity, which in turn equals the outflow. The optimal tolled-
equilibrium exhibits the same pattern of exits from the bottleneck as the un-priced equilibrium, but it has a different pattern
of entries. Pricing affects the pattern of entries with a triangular toll schedule, with two linear segments, that replicates the
pattern of travel delay costs in the un-priced equilibrium. This toll is shown in Fig. 1b as s(t). It results in the same pattern of
schedule-delay cost as in the un-priced equilibrium, but it produces zero travel delay cost (i.e., no travel delays exist in the
optimal case). Instead of queueing-delay, travelers trade off the amount of toll to be paid versus schedule delay such that a
traveler who arrives right on time t⁄ pays the highest toll. The resulting tolled-equilibrium queue-entry pattern therefore
satisfies an entry rate equal to the capacity Vk, i.e., queue entry rate equals the queue exit rate in Fig. 1a.

The toll structure introduced in the current study is motivated by the above theoretical bottleneck pricing theory; where
key benefits arise from rescheduling of departure times from the trip origin (temporal distribution). The optimum toll s(t) in
the BottleneckModel varies continuously over time, as illustrated in Fig. 1b. It is however impractical to change the toll every
second as suggested by the model. ‘Step tolls’ are the closest approximation of this ideal situation in practice; different toll
values are set at discrete time intervals and the toll is constant within each interval.

Although the bottleneck model provides the core concept, it is limited to the case of a single bottleneck, where the depar-
ture time choice is the only choice travelers have to respond to pricing. In large urban networks, there is a myriad of origin-
destination pairs, trip lengths, travelers’ schedules, routing options and travel behavior that vary across the population.
Therefore, our pricing framework extends the conceptual triangular pricing structure suggested by the bottleneck model
to the more complex and general case of a large urban network. Our framework uses econometric departure time choice
modeling based on regional travel surveys in conjunction with dynamic traffic assignment to capture departure time choice
and routing dynamics in response to tolling.

2.2. The econometric model for departure time choice

In order to capture users’ individual responses to pricing, this study uses a discrete-choice module to capture the depar-
ture time choice dynamics in response to tolling. The discrete choice module considers drivers’ socio-economic attributes
and the network level-of-service attributes. This study extends a discrete choice model developed by Sasic and Habib
(2013) at the University of Toronto that describes departure time choice in the Greater Toronto and Hamilton Area (GTHA).
The model is extended to incorporate a schedule delay cost component for realistic modeling of morning peak travel behav-
ior. The model was developed and calibrated in the original study and retrofitted in this study using the Transportation
Tomorrow travel Surveys (TTS) of 2006 and (the latest) 2011 respectively (DMG, 2015). The developed departure time choice
model belongs to the Generalized Extreme Value (GEV) class of models for discrete choice applications that make use of ran-
dom utility maximization theory, where each agent (traveler) is assumed to choose an alternative that maximizes its random
utility. The random utility for any alternative is defined as a systematic and a random component (where the joint density of
all random components is distributed according to the extreme value distribution).

Two types of scale parameters are introduced in this model. These are root scale parameter and nest scale parameter of a
particular choice set. Moreover, the modeling framework uses a scale parameterization approach. This approach captures
heteroskedasticity in departure time choices. It also captures heterogeneity in users’ departure time choice responses to vari-
ations in trip-related attributes (e.g., travel time and cost) at each choice interval. Further details on the choice set structure,
the utility function variables, the model parameters’ adjustment process, and the model calibration results are presented in
the simulation-based case study on the GTA region later in this paper.

2.3. The mesoscopic dynamic traffic assignment model

Congestion pricing is typically sought in congested large urban areas, where congestion spreads over space for long peak
hours. Therefore, to dynamically control traffic in large-scale congested networks, three systems are needed concurrently:
(1) a prescriptive decision-setting/control tool (e.g., a demand or supply control policy such as congestion pricing or ramp
metering), (2) a descriptive econometric departure time choice model as discussed above, and (3) a descriptive dynamic traf-
fic assignment model that captures route choice dynamics and the evolution of traffic congestion resulting from travelers
seeking the least-generalized-cost routes to their destinations. A large scale dynamic traffic assignment simulation model
is, hence, required for practical congestion pricing policy derivation and application; a model that can realistically capture
the route choice dynamics network-wide (over time and space) resulting from fixed or variable tolls along key corridors.
It is noteworthy that these tolls would in turn affect travelers’ departure time choice; therefore the need to integrate both
the route and departure time choices within the same framework.

For that purpose, and to capture system-wide effects of tolling in large urban areas, a mesoscopic dynamic traffic
assignment (DTA) model is used in this study. In general, mesoscopic models simulate the movement of vehicles in
the transportation network in groups according to the fundamental diagrams of traffic theory. These models offer a compro-
mise between microscopic and macroscopic models; unlike macroscopic models, they model individual vehicles, and unlike
microscopic models, they are less computationally demanding and hence are more suited for modeling large networks
(Abdelgawad and Abdulhai, 2009).
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More details related to the demand patterns, which are inputs to the mesoscopic simulation, the key traffic assignment
control parameters, and the simulation calibration results will be discussed within a case study on the GTA simulation net-
work in the following sections.

2.4. The integrated variable congestion pricing framework

Fig. 2 shows the integrated variable congestion pricing framework. The ultimate goal of this framework is to provide a
tool for variable congestion pricing policy derivation and evaluation, while taking into account the route choice and depar-
ture time choice dimensions in large-scale regional networks. The system works in the following order:

– Input Data: The system first takes as input the network topology, anticipated demand and user demographics to form a
hybrid dynamic traffic assignment and travel behavior model. Moreover, a nonlinear version of the price structure of the
bottleneck model (i.e., step tolls rather than a continuous toll structure) is to be provided as input to the system for the
facility of interest in the network (e.g., link, road, corridor or area). The nonlinear triangular price structure rises from zero
to a maximum then falls back to zero when congestion diminishes, as shown in the ‘‘Dynamic Toll Schedule” module in
Fig. 2. It is important to mention that the framework is intended to test different tolling scenarios; e.g., HOT lanes, con-
gested highway sections, and cordon tolls. Toll values can be discretized per time (up to a toll value per-minute) and
space (up to a toll value per-link).

– Run DTA Simulation Model: The DTA simulation model takes the network topology, toll structure (if any, which is added
to travel costs), anticipated demand; and performs iterative dynamic user-equilibrium traffic assignment; resulting in OD
travel times, updated network conditions, and routing options given the inputs received.

– Apply Discrete Choice Model: The discrete choice model takes as input the toll structure, the heterogeneous personal and
socio-economic attributes of impacted drivers (for which the discrete-choice model is applied), and the average OD travel
times and costs calculated across the network from the most recent DTA simulation run. The output of the discrete-choice
model, in turn, represents the new temporal demand patterns (with modified start times) due to tolling.

– Integrate Departure Time and Route Choices: The equilibrium in drivers’ behavioral responses to variable pricing policies
is sought by iteratively and sequentially simulating the changes in route choice and departure time choice in response to
tolling through the DTA simulator and the discrete-choice model, respectively. At the end of each iteration, the discrete-
choice module estimates the impact of the input toll schedule given the most recent network conditions (travel times and
costs) on travelers’ individual departure time choices. The updated choices are then fed back into the dynamic traffic
assignment simulator, which, in turn, produces the new network conditions and so on until certain convergence criterion
is met.
Fig. 2. Framework for variable congestion pricing evaluation.
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As described in this section, two levels of equilibrium are sought in the implementation of the proposed framework. The
first one (inner iterative loop) is the dynamic user equilibrium within the traffic assignment simulation model. The conver-
gence criteria used for traffic assignment is referred to as the Relative GAP (RG); it is a measure of how close the current
assignment solution is to the User Equilibrium (UE) network assignment (Chiu et al., 2008). The traffic assignment iterations
terminate when the RG drops below certain pre-specified convergence threshold or when a pre-specified maximum number
of iterations is reached. The second one (outer iterative loop) is the equilibrium in the departure time choice model output in
response to changes in the traffic network travel times and costs after tolling, as shown in Fig. 2. The outer loop terminates
when travelers cease to change their departure time interval, i.e., when the maximum (absolute) relative difference in the
total number of vehicles at any departure time interval drops below a pre-specified convergence threshold, as clarified in
the following formula:
max
i

abs
Ci � Pi

Pi

� �
6/; i ¼ 1;2; . . . ;n
where n is the number of departure time choice intervals, Ci is the number of drivers who chose to depart during interval i in
the current iteration, Pi is the number of drivers who chose to depart during interval i in the previous iteration, and / is the
convergence threshold that represents the maximum acceptable error in the departure time choice model output (compared
to the output of the previous iteration). This criterion could be difficult to satisfy if very few drivers depart during some inter-
vals. However, this is not usually the case in large-scale studies featuring a large population of drivers and a time period that
encompasses widely-traveled times.

The above is further detailed via an application of the proposed framework to a simulation-based case study of the GTA, as
discussed in the next section.

3. Model calibration and application: case study on the GTA

Traffic congestion is reaching a crisis level in larger cities and metropolises in Canada and worldwide. The Greater Toronto
and Hamilton Area (GTHA) in Ontario, Canada, is a vivid example in terms of widespread congestion on all modes, particu-
larly roads. Toronto is one of the ‘top ten’ most congested North American cities (TomTom International BV, 2014). In 2006,
the annual cost of congestion to commuters in the GTA was $3.3 billion. Looking ahead to 2031, this cost is expected to rise to
$7.8 billion (GTTA, 2008).

Different levels of government in Canada are contemplating congestion pricing options to alleviate traffic congestion
problems. The Ministry of Transportation Ontario (MTO) is actively evaluating High Occupancy Toll (HOT) lane options,
(Nikolic et al., 2015). In 2013, Metrolinx (an agency of the government of Ontario) released its investment strategy in which
it recommended the implementation of HOT lanes as a potential source of fund for transit expansion in the region.

Together these factors strengthen the need to analyze, test, and deploy various traffic control policies (such as the one
proposed herein) in order to tackle the alarming congestion problems in the GTA region. This region involves widespread
activities, heterogeneous travel behavior, different values of time among diverse drivers, multiple routing options, as well
as many satellite cities; which makes it an ideal case study on which to test the proposed framework for variable congestion
pricing. It should be emphasized that the GTHA region contains the GTA and that the GTA comprises a large majority of the
GTHA. Therefore, the use of data (e.g., the TTS survey datasets) and a model (e.g., the departure time choice model) for the
GTHA should be suitable for application to the GTA.

This section presents the details of the first implementation of the proposed framework to a key corridor (the Gardiner
Expressway) in the GTA and the resulting impact on the full region. The section starts with a brief description of the data
used in this study, followed by a detailed explanation of the modeling process of the GTA network (in terms of network
geometry, travel demand, and key simulation parameters calibration and validation process). The last, and main, part of this
section corresponds to the departure time discrete choice model; its formulation, variables, the parameters adjustment pro-
cess, and the empirical model validation results.

3.1. Demand data sources

The travel demand related data used in this study (as input to the traffic network simulation model and the discrete-
choice model, as shown in Fig. 2) is extracted from the latest 2011 Transportation Tomorrow Survey (TTS), (DMG, 2015).
TTS is a household based travel demand survey that is conducted in the Greater Toronto and Hamilton Area (GTHA) every
five years. The survey provides detailed information on trips made on a typical weekday by all individuals in the selected
households. Information collected in the survey includes household related attributes (e.g., the number of people and the
number of vehicles available for personal use), person related attributes (e.g., their age, driver licence availability, and
work/school location), and trip related attributes (e.g., origin, destination, purpose, start time, and type of transportation
used). Five percent of the GTHA households are contacted by telephone and all trips made by residents eleven years of
age or older on a specific weekday are recorded. Expansion factors are used to expand the collected data to represent the
total population of the survey area in the year of the survey. The expansion factors are determined based on geographical
areas and verified based on Canada Census data that are used as the control total for calculating the expansion factors.
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3.2. GTA dynamic traffic assignment simulation model

3.2.1. GTA simulation model specification - network geometry
The simulation model of the GTA network, used in this study, incorporates all highways, major arterials, on-and-off

ramps, as well as traffic signal information at the major signalized intersections in the GTA. The DTA platform used is DynusT
(Chiu et al., 2008). As shown in Fig. 3, the network was built to cover all major arterials and freeways within the GTA to cap-
ture all routing options in response to tolling scenarios. The network covers 1497 traffic analysis zones (TAZs), as defined by
the most recent zoning system (DMG, 2015), 1138 km of freeways, 4589 km of arterials, and 830 traffic signals.

3.2.2. GTA simulation model specification - travel demand
As mentioned in the data description section, the time-dependent OD matrices used as input for the GTA simulation

model were extracted from the 2011 TTS data survey, after applying the reported expansion factors to cover the total
demand in the survey area. The demand extracted included all auto modes (SOV, HOV, taxi passenger, and motorcycles),
and morning trips from 6:00 to 10:30 am generated every 15 min. The majority of home-based work trips in the GTA -
on which we focus in this study - were observed to occur during this time interval (Sasic and Habib, 2013). Additionally,
the background demand (i.e., trips that pass through the GTA network but start and/or end outside of it) was added - at
the proper time intervals - to the GTA demand. A demand shifting procedure was conducted to capture the time elapsed until
those background trips reached the boundaries of GTA network, then added to the demand from those boundary zones.
Moreover, loop detector counts across multiple highways in the GTA were used to refine the OD matrix. Fig. 4 shows the
total demand at each 15 min time interval during the am period, before and after adding the background demand.

Despite their unquestionable impact on traffic conditions, truck demand and transit on-street units (e.g., buses and street
cars) are not included in the input demand considered in this study. This is primarily due to the absence of their relevant data
in the TTS survey from which the input demand was extracted. Additionally, the DTA simulation software used does not
include transit assignment model to simulate/assign transit units in the network. However, the absence of trucks and transit
units in the model was compensated for by adjusting the demand of some OD’s during the model calibration process. This
was applied to OD’s feeding corridors where loop detector readings exceeded simulated traffic (probably due to shortage in
the input demand). It is also important to emphasize that this study focuses on the am peak period of auto traffic during
which truck demand is relatively low (Roorda et al., 2010).
Fig. 3. Snapshot of the GTA DynusT simulation model.



Fig. 4. GTA total demand profile (Kamel et al., 2015).
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In this study, two modes of releasing traffic demand (i.e., generating vehicles) into the simulation model are utilized: (1)
typical OD demandmatrix, and (2) vehicle-by-vehicle input with detailed start-time and path information. Initially, the vehi-
cles in the network are simulated from the input time-dependent OD matrices, extracted from travel survey data, over the
simulation horizon. After a DynusT run from OD demand matrix mode converges to UE, information on the simulated vehi-
cles (e.g., vehicle ID, start-time, and origin and destination zones) is listed in output files. DynusT can use this vehicle-by-
vehicle output information as input for alternative scenarios.

The advantage of using the second input mode is to have an apples-to-apples comparison between the base-case scenario
and a variety of other scenarios with the same input vehicles. In other words, the vehicle-by-vehicle input mode removes the
possibility of variability in simulation results stemming from different vehicle input. As described, the second mode is based
on the completion and output of a DynusT run from the OD demand matrix mode. Accordingly, in order to apply the depar-
ture time choice model to capture the impact of variable tolling on the start-times of specific vehicles in the network, the
base-case network is re-simulated (after a complete run with OD demand mode) with the imposed tolling scenarios using
the detailed vehicle-by-vehicle input mode. The total demand estimated from the TTS for the 4.5 h period is 1.8 million vehi-
cles. Although the core demand was estimated for 4.5 h, the simulation was conducted for 6 h period to capture the shoul-
ders of rush hour.

3.2.3. GTA network calibration
The parameters adjusted in the calibration process of the GTA DynusT simulation network include the traffic flow model

parameters, the freeway bias factor (that controls traveler’s perception bias towards freeway travel time), and the demand
values among certain OD pairs at specific time intervals. The simulated hourly traffic volumes at 177 locations over highways
400, 401, 403, 404, QEW, the Gardiner expressway, and the Lakeshore Blvd were compared against real data collected from
loop detectors (Kamel et al., 2015).

The GEH statistic (named after Geoffrey E. Havers who invented it in the 1970s), widely used in calibrating traffic sim-
ulation models, was used by Kamel et al. (2015) as an evaluation criterion for the simulated volumes in the GTA model.
Its value reflects the difference between the observed and the simulated volumes. The GEH statistic is computed as follows:
GEH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV � CÞ2
ðVþ CÞ

s

where V is the model simulated hourly volume at a location and C is the actual hourly count at the same location. The aver-

age GEH of the whole model is 9.75, as shown in Fig. 5. This value of 9.75 falls in the cautiously acceptable range of the cal-
ibration targets developed by Wisconsin DOT, as summarized in Table 1.

The best attained GEH of 9.75 is interpreted and accepted with two factors in mind: (1) the sheer size of the regional net-
work and (2) the large number of loop detector stations and the inevitable variability in the quality of the loop detector data
used in the calibration process.

The traffic assignment software used in this study allows for only single-user class with single value of time (VOT).
According to Lu et al. (2006), considering multiclass traffic assignment (i.e., considering heterogeneity in VOT in route

choice) is generally challenging in large-scale simulation models due to computational-efficiency and solution storing-

space issues. The VOT used in the simulation model for the GTA is $15/h, according to Habib and Weiss (2014).
As mentioned in Section 2.4, the convergence criteria used for the traffic assignment model is referred to as the Relative

GAP (RG). The RG measures the relative difference between the experienced and the shortest total path travel times for each
OD and simulation time interval (typically 5 min) combination. It reflects how close the assignment solution (at each iter-
ation) is to the target User Equilibrium (UE) network assignment. The detailed formulas of the RG are provided in (Chiu et al.,
2008). Fig. 6 illustrates the evolution of the RG over a 20 iterations run of the GTA network simulation model.



Fig. 5. Scatter plot of the observed and simulated hourly volumes (Kamel et al., 2015).

Table 1
GEH calibration targets (www.wisdot.info/microsimulation).

GEH less than 5 Acceptable fit, probably OK
GEH between 5 and 10 Caution: possible model error or bad data
GEH greater than 10 Warning: high probability of modeling error or bad data
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The GTA network contains thousands of links and nodes, and millions of vehicles, making it one of the largest mesoscopic
dynamic traffic simulation models built in the region. A number of challenges were faced while building, calibrating, run-
ning, and processing the output of the GTA simulation platform, as will be summarized in this section. This is mostly due
to the size of the network, the volume of data, the variety of data sources, the veracity and value of the data used to build
and calibrate the model, and the volume of the output data produced during the simulation. On an i7 Machine with 16 GB of
RAM, the DTA run-time of the GTA simulation model until convergence (using 20 iterations, as illustrated in Fig. 6) is around
7.5 h. As clarified in the description of the integrated variable congestion pricing framework, the GTA simulation model is run
several times in sequence with the departure time choice model until convergence is reached.

3.3. Econometric model for departure time choice in the GTA

Several approaches can be followed to simulate drivers’ departure time along with route changes within a traffic simu-
lation environment. The most simple, yet naïve and non-realistic, approach is to induce random perturbation of trips start-
Fig. 6. GTA DTA simulation model convergence.

http://www.wisdot.info/microsimulation
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times throughout the simulation, based on certain pre-set probability, as in (Balmer et al., 2008). This approach is easy to
implement and not computationally demanding. However, the stochastic mutations might bring unrealistic start-times
(e.g., work trip starting at 2:00 am). Additionally, the changes in start-time are not directly affected by policies introduced
(like time-dependent congestion pricing).

Another approach, followed in (Lu et al., 2006), involves joint departure time and route-choice algorithms - implemented
iteratively until equilibrium - based on a set of trip attributes that include travel time, out-of-pocket cost, and schedule-delay

cost. The model developed in this study was applied to an actual relatively small network (180 nodes, 445 links, and 13
zones) through a simulation-based algorithm. This approach has the advantage of realistically Modeling the joint nature
of both departure time and route choices within a simulation environment. However, it cannot be handled in a large network
setting within the limits of practical computational capabilities. Additionally, it does not consider the impact of driver
related attributes (e.g., personal and socio-economic characteristics) on the choice making process.

A third approach, followed in this study, is through integrating an econometric behavioral departure time choice model
(that considers both trip and driver attributes) into a large-scale traffic assignment simulation model. It provides a compu-
tationally tractable tool to estimate departure time and route choice responses to traffic management policies that affect tra-
vel times and costs, in a large-scale setting. The problem with this approach is the underlying assumption that departure
time and route choices are made sequentially (rather than jointly). However, this is compensated for in this study by iter-
ating and feeding back between departure time and route choices until both choices reach equilibrium.

This study extends a departure time choice model in the GTHA, developed by Sasic and Habib (2013), to incorporate a
schedule delay cost component for realistic modeling of morning peak travel behavior. The developed model is a
Heteroskedastic Generalized Extreme Value (Het-GEV) model that further enhances the Choice Set Generation Logit (GenL)
captivity component developed by Swait (2001). The Het-GEV model explicitly captures the correlation between adjacent
choice alternatives (by allowing choice alternatives to appear in multiple clusters) while the GenL form captures the captiv-
ity of decision makers to specific choice alternatives due to schedule constraints.

This section describes the details of the econometric model used in this study to model the departure time choice in the
proposed variable congestion pricing framework. The section starts with an introduction to the model choice set formula-
tion, followed by a discussion of the original variables used in the utility functions as well as the extensions and assumptions
done to incorporate schedule delay and toll cost components in the model variables. Lastly, the re-calibration process of
some model parameters and the final validation results are presented.

3.3.1. Model formulation
The datasets from the 2006 TTS survey (DMG, 2015) were used for the empirical model of departure time choices of

home-based commuting (home to work or school) trips in the Greater Toronto and Hamilton Area (GTHA) (Sasic and
Habib, 2013). The datasets from the latest 2011 TTS survey are used in this study to retrofit the 2006 model for 2011 con-
ditions, as will be explained later in the paper. In this model, departure time is represented as nine half-hour intervals that
span the morning peak, when the majority of home-based work trips occur. For compatibility with the departure time choice
model, the variable-tolling intervals used (for step tolls) are the same nine intervals used in the model. The choice framework
is shown in Fig. 7. This framework resembles the decision making process where an individual chooses his/her departure
time within a specific range (portion) of the day. In this framework, the probability that an individual chooses to depart from
home to work during some interval is defined as the weighted sum of the probability of choosing this time interval over the
one preceding it and the probability of choosing this time interval over the one following it. Moreover, the probability of
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Fig. 7. Departure time choice framework in the Het-GEV model (Sasic and Habib, 2013).
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choosing some departure time interval is affected by the explanatory variables, as well as the root and nest scale parameters
(lR and lc) that explain additional choice heterogeneity. In particular, the probability of choosing certain alternative j, Pj, is
calculated as follows:
Pj ¼
X8
c¼1

ððPjjcÞ � QcÞ; j ¼ 1;2; . . .9;
where Pj|c is the conditional probability of alternative j in the choice set c and Qc is the probability of the choice set c. Qc is
calculated based on the following formula:
Qc ¼
expðlRIcÞP8
c¼1 expðlRIcÞ

;

where Ic is the inclusive value of a particular choice set c. Ic is calculated as follows:
Ic ¼ 1
lc

ln
XK
k¼1

expðlcVkÞ
 !

;

where K is the total number of alternatives in the choice set c. The conditional probability of any alternative j in a particular
choice set c is calculated according to the following formula:
Pjjc ¼ expðlcV jÞPK
k¼1 expðlcVkÞ

:

3.3.2. Model variables
The model has two types of explanatory variables in the systematic utility functions and the root and nest scale param-

eters: commuters’ personal and socio-economic attributes such as work duration, occupation category (general office, man-
ufacturing, or professional), gender, job status (full-or-part- time), and age category; and transportation level-of-service
(LOS) attributes corresponding to alternative departure time segments such as travel time, travel distance, and travel cost.
It should be mentioned that the departure time choice model is only applied to commuting trips (representing the majority
of morning trips) for which the original model was estimated. Hence, route choice is assumed to be the only choice non-
commuting trips have to respond to pricing; it is modeled through the DTA simulator. We believe that this assumption
should not create much bias in the overall measured effect because only a fraction of travelers typically respond to a toll
or other shock by changing departure time. A lack of response from non-commuters could be compensated by a more-
than-proportional response from commuters so that the overall response is similar to a case in which all travelers are
flexible.

Preparing the commuters’ attributes required: (1) extracting the records of the original and background commuting
trips – considered in this study – from the TTS datasets; and (2) determining if certain trip in the model is commuting
and properly extracting its attributes (from the database prepared in the first steps) based on its OD and start-time interval.
Whereas, preparing the LOS attributes involves processing the detailed path and time trajectories of millions of vehicles,
stored in large output files of the simulation model. The records processed for each vehicle contain its OD, start-time, travel
time, links traversed, and time spent on each link along the trip. The travel distance of each commuting trip is calculated by
summing the lengths of links traversed during that trip and the travel cost is calculated via multiplying the travel distance by

the average cost of auto use per unit distance. The value used for the latter parameter is 0.1534 $/km; as was calculated in
Miller et al. (2015) based on average gas and other car-related operations and maintenance costs in the GTA.

It is important to note that the model above does not include an explicit variable for the toll cost as the TTS survey dataset
contains no toll information to assist in the coefficient estimation of such parameter. For the sake of variable pricing policy
testing in this study, the imposed tolls are added to the travel cost variable. The coefficient of the inserted toll variable (in the
utility of each departure time choice) is set such that the ratio between the coefficients of travel time and toll variables is
compatible with the average VOT used in the DTA simulation model of $15/hr.

It should be noted that forecasting the impact of hypothetical transportation demand management strategies based on
revealed preference (RP) model parameters might underestimate the impact of these policies (Habib et al., 2013). In other
words, using the auto cost parameter might not be ideally suited for tolls. This is due to the fact that drivers – to some
extent – may not be very elastic to increases in travel time and basic costs (maintenance, fuel, etc.); however, they may react
more clearly to changes in parking cost and road charges (i.e., out-of-pocket money), as it is something they can avoid.
Nevertheless, adding the toll cost to the travel cost variable is expected to give approximate estimation of drivers’ behavioral
responses to variable pricing. More realistic Modeling of commuters’ responses to pricing in the GTA might be achieved by
re-estimating the departure time choice model based on stated preference (SP) data surveys incorporating toll information,
in addition to the existing revealed preference information in the TTS surveys, which is beyond the scope of this study and
can be done in future work.

Although the schedule delay (early or late arrival) cost is intuitively an important factor contributing to the departure
time choice for morning commuting trips (having specific desired arrival time), this variable is absent from this model since
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the work/school start times (i.e., desired arrival times) of commuting trips are not reported in the TTS survey. The schedule
delay cost is, however, crucial to attain the anticipated departure time rescheduling effects of tolling in accordance with the
bottleneck model triangular pricing structure adapted in this study. Without schedule delay cost, the model would erro-
neously exaggerate shifting commuting trips to outside the toll period. In other words, schedule delay cost is what keeps
commuters ‘‘anchored” to their desired arrival times. Accordingly, this variable is added to the model. The detailed formula
used in this study for schedule delay as well as the determination process of its parameters are presented in the next sub-
section.

3.3.3. Empirical model
The departure time choice model considers the following: (1) alternative specific constants, (2) coefficients of variables

defining systematic utility functions, (3) coefficients of variables defining root scale parameters, and (4) coefficients of vari-
ables defining nest scale parameters. As a result, the model has 74 parameters. As mentioned before, the empirical model
was originally estimated based on the datasets from the 2006 TTS survey. The alternative specific constants (ASCs) were
hence updated to be consistent with the 2011 dataset, according to the following rule (Train, 2003):
Table 2
Origina

Orig
New
ASCiNew ¼ ASCiOriginal þ ln
Ai

Si

� �
; i ¼ 1;2;3; . . .9
where Ai is the share of decision-makers in the 2011 population who chose departure time interval i; whereas Si is the share
of decision-makers in the 2006 population who chose alternative i. Table 2 shows the ASCs before and after adjustment; the
updated constants are proportional to the corresponding shares of drivers in the 2011 dataset - at each time interval - yet
carrying the behavioral information involved in the originally estimated constants.

The schedule delay cost, cs, used in this study takes the following formula (Small, 1982):
cs ¼
bðtd � t � TðtÞÞ if t þ TðtÞ 6 td ðEarly Arrival CostÞ
cðt þ TðtÞ � tdÞ if t þ TðtÞ > td ðLate Arrival CostÞ

�

where b and c are the shadow prices of early and late arrival delays, respectively. t is the trip start time, T(t) is the travel time,
and td is the desired arrival time. As mentioned before, the commuters’ desired arrival time info is not reported in the TTS
survey; only actual arrival time (shifted from desired time by an unrevealed schedule delay component) is reported.
Accordingly, the desired arrival time (td) is randomly generated – in this study – for each vehicle in the network following
a ‘Log-Normal’ distribution. i.e., ln(td) is assumed to have a ‘Normal’ distribution with parameters l (mean) and r (standard
deviation). The Log-Normal distribution is suitable for random variables inherently positive. Additionally, it has a quasi-bell
shape that enforces ascending probabilities for values (i.e., desired arrival times) close to the mean, and vice versa. Accord-
ingly, it is believed to produce more realistic distribution of simulated desired arrival times than following a uniform
distribution.

Several values were tested for the mean and standard deviation of this distribution; 8:30 am (i.e., minute 150 counting
from 6:00 am) was ultimately selected as the mean desired arrival time (i.e., l = ln(150)) and r = 0.05 – measured in ln(min-
ute) – was set as the standard deviation. The selected parameters were found to bring adequate validation results among
other tested values, when the integrated – departure time and traffic assignment – testbed is applied in the base-case. More
specifically, they resulted in the closest output distribution of simulated departure (hence arrival) times for commuting trips
as those obtained in the GTA base-case traffic assignment simulation results (without applying the departure time choice
model), as will demonstrated later. Furthermore, the selected parameters entail the best relationship between travel time
and schedule-delay cost values; such that the minimum schedule-delay costs are observed at the same time-interval where
the maximum travel time delays are experienced, and vice versa, as suggested by the bottleneck model (Fig. 1b).

According to Small (1982), the early and late arrival delays are perceived differently by commuters and hence have dif-
ferent coefficients (i.e., shadow prices) in the schedule delay cost function with a ratio of 1–4, respectively. This ratio was
further modified in this study, during model validation, to be 1–2 which better fits the GTA data. As mentioned before,
the departure time choice model uses a scale parameterization approach where the root and nest scale parameters do
not take constant values; rather, they vary according to trip and driver attributes. These parameters are eventually multi-
plied by the coefficients of different variables in the model, including the integrated schedule delay cost variable. Accord-
ingly, the scale parametrization approach implicitly captures heterogeneity in drivers’ values of (early or late) schedule
delay.

After the schedule delay cost is added to the model, the coefficients of travel time in the utility functions needed to be
recalibrated. The calibrated parameters were determined using a factorial design procedure, (Cheng, 2013), and are reported
in Table 3. The objective of this procedure was to determine the set of parameters that minimize the absolute error between
the observed and the estimated values at all time intervals; for the following measurements:
l and new Alternative Specific Constants (ASCs).

inal ASCs 0 �0.4508 �0.2099 0.1803 0.3659 0.1143 0.007 �0.3665 1.3054
ASCs 1.0010 1.0426 1.4983 2.0899 2.3680 2.2478 2.0469 1.3484 1.7053



Table 3
Original and adjusted coefficients of the travel time variable.

Original Time Coeffs 0 �0.0107 �0.0087 �0.0149 �0.0196 �0.03 �0.0332 �0.0182 0
New Time Coeffs �0.015 �0.0187 �0.0167 �0.0249 �0.0196 �0.015 �0.0102 �0.0082 �0.005
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– number of commuters who chose to depart at each time interval;
– average resulting travel time per km (calculated by averaging the travel time of each commuter divided by the distance
traveled in km, over all commuters departing at each time interval); and

– average travel distance traveled.

The simulation process of commuters’ departure time selection process in the system proposed involves looping over all
commuting vehicles in the model. The personal attributes of each commuter are linked to the corresponding trip LOS attri-
butes generated – at all departure time intervals – by the DTA simulation model of the GTA. The schedule-delay and toll costs
are then calculated for that commuter at all time intervals. The extracted and calculated variables are hence plugged into the
model formulas to obtain the probability of choosing each departure time interval. The commuter departure time choice is
determined using a RouletteWheel selection approach, in which choices with higher probabilities have higher chances to get
selected (Back, 1996). The trip new start-time is then calculated by adding or subtracting multiples of 30 min (depending on
the departure time interval chosen) to its original start-time set in the DTA simulation run under original TTS demand. After
all commuting trips are processed, their start-times are updated in the input demand file of the DTA simulation model.

In Fig. 8, the number of commuting trips started at each half-hour interval and their corresponding average travel time
per km are compared among two simulation runs, whose measurements are referred to in the figure as ‘‘original demand”
and ‘‘modified demand”. The total number of commuting trips in the GTA model – for which departure time choice model is

applied and plots in Fig. 8 are reported – is around 1,270,000 trips (out of a total of 1.8 million trips in the model), as men-
tioned before. The measurements under ‘‘original demand” are obtained from the output of a GTA DTA simulation run in
base-case conditions (i.e., without tolling) using the original demand extracted from TTS survey data, without applying
the departure time choice model. Whereas, those under ‘‘modified demand” are obtained from applying the retrofitted/
re-calibrated departure time choice model iteratively with the GTA DTA simulation model under base-case conditions.
The patterns shown in the figure indicate the best attainable correspondence, in the absolute values and the overall trends,
between the ‘original’ and ‘modified’ demand related measurements after performing all model retrofitting/calibration steps.

The 9 departure time intervals used in this model (6–6:30, 6:30–7 . . . 10–10:30) were assigned the numeric indices
0, 1 . . . 8. For each vehicle in the simulation model, the difference between its observed (original) departure time interval
index and its estimated one was calculated at the end of the iterative simulations. The value of the difference lies between
�8 and 8. Intuitively, the higher the percentage of vehicles with a zero difference (when estimated and observed departure
time intervals coincide) the better. The chart in Fig. 9 shows the percentage of vehicles whose difference lies in each index
difference group when applying the calibrated discrete choice model iteratively with the DTA simulation model in the base
case (i.e., without tolling). It is clear that the estimated departure time choice of more than 80% of the commuters lies within
3 intervals (before or after) from the original (half-hour) choice, which we believe is acceptable; given the continuous nature
of the departure time and the boundary value problems that may result from time discretization. The findings from
Fig. 8. Comparisons between observed and estimated simulation measurements.



Fig. 9. Percentage of commuters vs. indices difference.
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Figs. 8 and 9 demonstrate the performance of the calibrated framework when applied to the GTA in the base case without
tolling.

The discrete choice model has 74 statistically significant parameters, among which only 18 needed to be adjusted for the
validation of the model outputs. The adjustment was necessary for the following reasons: (1) to update the model to be con-
sistent with the 2011 TTS dataset being used, and (2) to adapt with the added schedule component cost. It should be noted
that we retrofitted the 2006 model to the target year of 2011 for three reasons: (1) the 2006 model was recently developed,
i.e., existed, and repeating the estimation for 2011 was out of our scope, (2) updating a 2006 model using 2011 dataset is a
way of using two repeated cross-sectional datasets in a pseudo-panel data formation where 2006 data are used for estima-
tion and 2011 data for validation, and (3) estimating a departure time choice model that captures toll cost and schedule
delay cost directly was not possible as neither the 2006 nor the 2011 TTS data contained the necessary information, i.e., ret-
rofitting was unavoidable. The retrofitting process performed, however, shouldn’t affect the robustness of the original model
formulation given its relatively large number of parameters and statistically significant explanatory variables, as well as the
parameterized root and nested scale parameters.

The integration of the described discrete choice model into the proposed congestion pricing framework is important to
assess the differential impact of pricing scenarios on the departure time choice of distinct drivers, based on their personal
and socio-economic attributes used in the model. The departure time choice model considers users’ heterogeneity in values
of (early or late) schedule delay and desired arrival time. At the DTA level, however, the traffic assignment software allows
for only single-user class with single value of time. Considering multiclass traffic assignment (i.e., considering the effect of
heterogeneous VOT on route choice) is not a simple modification of the software and is hence deferred to future work.

As illustrated in Section 2.4, the DTA network simulation model and the departure time choice model run sequentially
and iteratively until convergence in the departure time model output (i.e., drivers’ start-time rescheduling responses to tol-
ling) is reached. This is achieved when the maximum absolute relative difference in the total share of vehicles at any depar-
ture time interval drops below a pre-specified convergence threshold, denoted as /. It should be noted that the randomness
inherent in the nature of the probabilistic discrete departure time choice process might cause some variation/difference in
the discrete choice model output, even when the model is applied repeatedly under identical inputs. Therefore, the value of
/ should be higher than the upper limit of those potential differences. Observing the model output - across different runs -
when applied on the GTA morning commuting trips (around 1,270,000), under identical inputs, it was found a suitable value
for / to be used in this application is 0.1. According to the convergence criteria specified, it takes the integrated framework
around 3 iterations of the outer loop to converge in the GTA simulation-based case study. This is a relatively fast convergence
in terms of the number of iterations required for such a large-scale application. On an i7 Machine with 16 GB of RAM, the
run-time of the integrated departure time and DTA simulation models until convergence, under each tolling scenario being
tested, is around 18 h.

The departure time choice model integration process was accompanied by many challenges. For example, preparing the
driver-related data required by the model entailed time-consuming efforts to process the raw 2011 TTS survey datasets and
properly extract the attributes linked to each (original or background) commuter identified in the GTA model. Moreover, cal-
culating the network-related attributes required by the model involves processing vehicles’ records stored in massive output
files, produced by the traffic assignment simulation model. The calculation process is obviously time and computationally
demanding. Moreover, it is repeated iteratively – post the termination of each GTA traffic assignment simulation run – to
provide the departure time choice model with the updated network attributes based on which the model estimates the
new demand profiles to be fed back to the traffic simulation model, and so on until convergence. As a result, this process
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represents the second major factor, after the DTA simulation model run-time, causing the running time of the full (inte-
grated) system to be long (around 18 h).

In the following section, the application of the overall variable congestion pricing framework is illustrated using tolling
scenarios in the GTA.

4. Tolling scenario evaluation

4.1. Tolled route (Gardiner Expressway- GE)

The implemented framework is intended to test different tolling scenarios; e.g., single or multiple freeways, urban cor-
ridors, HOT lanes, a sub-network and cordon tolls. As a first implementation, the route selected in this study to be tolled
is the Gardiner Expressway (GE). The GE, as shown in Fig. 3, is the main artery running through Downtown Toronto, the core
and economic hub of the GTA and arguably Canada. The expressway is 18 km long between Highway 427 and the Don Valley
Parkway (DVP). It is six-to-ten lanes wide in varying locations. In addition to the fact that the GE suffers from extended peri-
ods of congestion, there is an ongoing debate on whether to tear it down, to toll it and use the revenue for its maintenance, or
to apply other hybrid proposals to improve its operation. Hence, the GE was our first choice to test the proposed variable
congestion pricing framework. It is important, however, to emphasize that although the pricing strategy is applied only
to this main artery within the heart of Toronto, the impact of doing so is regional, as it draws demand from across the
GTA. Therefore, the simulations and analyses are conducted on the entire GTA network, due to the inter-connectivity and
multiple routing options existing in this network and to capture regional effects.

4.2. Toll structure

The toll considered is distance-based and its value is entered in $/km. Different toll values are set at different time inter-
vals, according to a triangular structure (as shown in Fig. 2). The study period is focused on the morning period from 6:00 to
10:30 am when the majority of commuting trips in the GTA occurs, and significant traffic utilizes the GE to downtown Tor-
onto. The variable-tolling intervals used are the nine half-hour intervals shown in Fig. 7, for compatibility with the departure
time choice model.

4.2.1. Determination of morning peak period duration and variable toll structure
The number of trips during 6:00–10:30 am morning period on the GE corridor (i.e., the Gardiner Expressway and its par-

allel arterials) is approximately 90,000. In order to attain the departure time scheduling benefits of variable tolling, the toll
pattern should replicate the queueing-delay pattern during the peak period, as suggested by the bottleneck model (pre-
sented in Section 2.1). For that purpose, the toll structure determination process starts with determining the morning peak
period start and end times (on the GE corridor) as well as the pattern of excess travel time (i.e., queueing-delay) during that
period.

As shown in Fig. 1a, the peak period is considered to start when the inflow exceeds the available route capacity, resulting
in traffic queues and increased travel times that build-up to a maximum when the inflow starts decreasing below capacity.
The peak does not end at this point of time; rather, it ends when all travelers who entered the system (from the beginning of
the peak period) ultimately exit after being queued for a while.

According to this definition, and based on the demand information and the base-case simulation results of the trips made
on the GE corridor, the peak period start and end times were found to be 7:00 am and 9:30 am, respectively. Consequently,
no toll is imposed before 7:00 am or after 9:30 am in the variable pricing scenarios tested in this study. Additionally, and
according to the bottleneck model optimum triangular pricing rules, the toll pattern selected replicates the pattern of
queueing-delays on the corridor in the un-priced equilibrium, shown in Fig. 10, which - as mentioned - was found to exist
Fig. 10. Average (base-case) queueing-delay on the GE corridor.
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between 7:00 am and 9:30 am. The queueing-delay, at any time instant, was calculated as the average excess travel time, at
this time instant, over the travel time experienced just before the peak started.

As mentioned earlier, the continuous toll pattern of the bottleneck model is approximated in this study through step tolls
in which distinct toll values are imposed on half-hour tolling intervals. The first and last tolling intervals are identified as the
half-hour intervals during which the peak period of that facility starts and ends, respectively. The variable toll pattern repli-

cates the estimated base-case queueing-delay pattern in order to attain the desired rescheduling benefits of variable tolling.
Therefore, the variable toll is assigned a zero value during early and late intervals having zero queueing-delay; whereas, it is
assigned the maximum value during the interval having the largest average queueing-delay.

As a reference, a toll value of 0.15 $/km should be set per interval for every 1 min/km average ‘queueing-delay per km’
experienced in the base-case during that interval. This value was found – among multiple values tested – to create moderate
route shifts to parallel (non-tolled) arterials, under the average VOT used in the simulation model. Accordingly, the toll value
at each tolling interval (i 2 {1, 2, . . . , 9}) - in the variable toll structure - is calculated by multiplying 0.15 by the average
‘queueing-delay per km’ estimated on the GE during that interval. The latter value represents the average of queueing-
delay values (plotted in Fig. 10) estimated during the designated interval divided by the GE length in km.

4.2.2. Tolling scenarios
In order to study the effectiveness of the proposed framework in variable congestion-pricing policy evaluation, two tol-

ling scenarios are investigated: (1) variable tolling structure that replicates the queueing-delay pattern, as described above,
and (2) flat tolling across all time intervals; its value was set by taking the average of the time-dependent non-zero toll val-
ues of the first tolling scenario, for a fair comparison between two tolling structures having the same ‘average’ order of mag-
nitude, as shown in Fig. 11.

4.3. Results and conclusions

4.3.1. Network-wide analysis

Total travel times network-wide dropped from 595,346 h - in the base-case - to 585,510 h as a result of variable tolling;
i.e., 9836 h (1.7%) were saved network-wide. Whereas, flat tolling resulted in an increase in total travel times to 598,659 h;
i.e., base-case travel times network-wide increased by 3313 h (0.6%). Fig. 12 shows the major routing decision points for traf-
fic approaching Toronto. The results are summarized in the form of percentage difference of overall traffic flow during the
period from 6:00 am to the end of the tolling period (in each case) along the key corridors between the base case, the flat
tolling and the variable tolling scenarios. Examining the results indicates the following:

4.3.1.1. Variable tolling.
– Overall, the variable toll resulted in mild routing changes across the GTA when compared to the flat tolling scenario; �1%
at QEW, +5% at Highway 401, and �7% at DVP.

– At the GE, only 5% divergence was observed at the bifurcation to Lake Shore; resulting in maximizing the efficiency of the
downstream sections of the GE.
4.3.1.2. Flat tolling.
– Overall, the flat toll resulted in more pronounced re-routing patterns across the GTA compared to variable tolling; show-
ing �2% at QEW, +5% at Highway 401, and �8% at DVP. Flat tolling is less conducive to departure time changes as all peri-
ods have the same toll, and therefore its impact is predominantly on re-routing.
Fig. 11. Tolling scenarios 1 and 2 for the Gardiner expressway.



Legend
GARDINERFlat Toll...%

Variable Toll...%

403 QEW

GARDINER

401

DVP
404

403 427

-2%
-1%

5%
5%

401 401

16%
5%

-5%
0%

-8%
-7%

-44%
-15%

-14%
-2%

LakeShore 

Tolled Corridor Major Rou�ng Decisions Percent Volume Divergence Highway Name Schema�c Network

Fig. 12. Major routing decision points for GE Corridor traffic.

A. Aboudina et al. / Transportation Research Part A 94 (2016) 411–430 427
– On the GE, significant divergence (re-routing) was observed at the bifurcation to Lake Shore; resulting in shockwave and
congestion upstream of this bifurcation. This congestion resulted in – interestingly – less flow on the GE downstream
from the off-ramp to Lake Shore, i.e., underutilizing the GE by as much as 44%. This observation was confirmed by the
low speed values (20–28 km/h) along the sections of the GE upstream of the off ramp.

4.3.2. Trip-based analysis
Fig. 13 shows: (a) the changes in departure time choices, (b) travel times, and (c) the patterns of entry and exits from the

network for the original 90,000 trips that traveled through the GE corridor (i.e., the GE and its parallel arterials) in the morn-
ing period, under different tolling scenarios. This analysis involves all the trips that are affected by tolling the GE, including:

– trips passing through the tolled route;
– trips diverting from the tolled route to other parallel arterials after tolling (e.g., Lake Shore Blvd); and
– trips on the parallel arterials that might be affected by those shifting their route to avoid the tolled route.
4.3.2.1. Variable tolling. As clear from Fig. 13a, variable tolling induced shifting approximately 5% of the peak hour traffic
passing through the corridor (from 7:30 am to 8:30 am) to earlier and later time intervals. As a result, lower travel times
are observed at all time intervals after variable tolling, as shown in Fig. 13b. Further, the variable pricing scenario resulted
in 9.5% savings in the total travel times of the trips that traveled through the corridor (at all time intervals), relative to the
base case as shown in Fig. 13c. In Fig. 13c; the total area between the loading and exit curves of the trips that traveled
through the corridor (which represents the total travel times spent on the network by those trips) shrunk by 9.5%. The
benefits come from rescheduling of departure times from the trip origin, in addition to the route shift impacts of tolling.
Moreover, this figure shows that – unlike in the simple Bottleneck Model – variable tolling on real-world road networks
affects not only the cumulative loading curve but also the cumulative exit curve.

4.3.2.2. Flat tolling. Flat tolls create no incentive for drivers to avoid relatively congested periods by changing their departure
times across the tolled periods, as they have the same toll. This is noticed in Fig. 13a. This scenario outperforms the base case
by only 2% net savings in the total travel times compared to 9.5% in the variable tolling case. The benefits under flat tolling
come solely from the route shift impacts of tolling. However, as clear in Fig. 13b, this gain is realized more at early and late
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intervals while some deterioration in travel times is observed at peak time intervals (8–9 am). An additional explanation for
these findings will be given in the next section.

4.3.3. Tolled route-based analysis
Fig. 14 shows the average travel times on the tolled route (the GE), eastbound direction, from highway 427 to the DVP.

The times are reported at each time interval for different tolling scenarios.

4.3.3.1. Variable tolling. As noticed in Fig. 14, variable tolling entails noticeable decrease in travel times on the tolled route;
especially at the middle congested time intervals. The maximum saving observed is 7 min (out of 27 min), i.e., around 25%, at
the 8:00–8:30 am time interval.

4.3.3.2. Flat tolling. Flat tolling results in improvements in travel times at early and late intervals. However, it causes signif-
icant increase in travel times on the tolled route from 8:30 to 9:30 am, as clearly shown in Fig. 14; which agrees with the
findings from the trip-based analysis. The deterioration occurs due to the excessive demand at peak hours that didn’t shift
to other time intervals due to absence of any incentive to do so (i.e., no toll variation over time). This demand tries to exit the
tolled route (the GE) to the immediate parallel arterials (Lake Shore Blvd) and is limited by off-ramp and arterial capacity
constraints. Therefore, it creates congestion upstream that blocks the tolled route itself at peak hours, which is very



Fig. 14. Average travel time on the Gardiner Expressway Eastbound (from 427 to DVP).
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counterproductive. In fact, this observation demonstrates how flat tolling on real-world road networks (in which congestion
propagates in the form of spillbacks, shockwaves, etc.) can have appreciably different effects than has been suggested by
studies of single links or toy networks.
5. Conclusions and future work

As presented in this paper, congestion pricing is widely viewed among economists and practitioners as one of the promis-
ing control tools to tackle traffic congestion. A significant amount of research has been conducted thus far in this area. How-
ever, theoretically and or methodologically sound studies are often applied to small or even hypothetical networks, i.e., case
studies on large-scale urban network models are scarce. Additionally, the tolling scenarios applied in most practically ori-
ented studies lack methodological justification. Furthermore, the users’ individual responses to pricing (e.g., departure time
and route choices) were usually disregarded and, if considered, the impact of personal and socio-economic attributes on
their choices was often neglected. In this study, a framework for variable congestion pricing policy evaluation has been pre-
sented with detailed implementation information on a simulation-based case study in the GTA, in Ontario, Canada. The
framework considers the heterogeneity in drivers’ values of (early or late) schedule delay and desired arrival time; it involves
a discrete-choice model for departure time choice that has been extended in this study to incorporate a schedule delay cost
component (besides the existing personal, socio-economic, and trip related attributes) for realistic modeling of morning peak
travel behavior. The framework is intended to be general and applicable to a variety of tolling scenarios (e.g., congested
highway sections, HOT lanes, cordon tolls, etc.). As a first implementation, it has been utilized in this study to analyze the
impact of different tolling scenarios on the Gardiner Expressway (GE), a key freeway passing through downtown Toronto.
Impacts are assessed at the regional level, trip level as well as tolled-route level. The results affirm the effectiveness of
the integrated variable pricing framework in analyzing the effect of variable tolling in a large-scale simulation application.
Moreover, the results obtained demonstrate how congestion pricing on real-world road networks can have different effects
than has been suggested by studies of single links or toy networks. For example, unlike in the simple Bottleneck Model,
variable tolling affects not only the cumulative loading curve but also the cumulative exit curve. Another example is that
imposing a flat toll on a link can actually increase travel time on the link because of spillback.

It can be concluded from the analysis of different tolling scenarios presented in this study (on network, trip, and tolled-
route basis) that:

1. In a large-scale interconnected network (like the GTA) where long-distance trips have diverse routing options, tolling a
relatively short, yet major, highway like the GE creates temporal and spatial traffic changes network-wide that go beyond
the tolling interval and the tolled route. This confirms the necessity of conducting the simulations on a regional scale for
policy determination and assessment.

2. More benefits are gained from departure time re-scheduling due to variable pricing, compared to just re-routing as in flat
tolling. This emphasizes the importance of the integrated discrete-choice module to the proposed variable congestion
pricing framework, to provide a realistic modeling of users’ individual departure time responses to variable pricing
policies.

3. Pricing that induces re-routing only (and no departure time re-scheduling), or excessive re-routing due to, for instance,
over pricing, can send traffic to off ramps to parallel routes so aggressively that it blocks the off ramp and backs up onto
the main freeway, limiting access to the priced road itself, which is not only counterproductive but also nullifies the very
purpose of pricing itself. This emphasizes the importance of variable pricing to mirror congestion patterns over time,
which is the methodological basis (adapted from the bottleneck model) of the proposed variable tolling framework.
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The next step in this research is to integrate an optimization module to the variable congestion pricing framework to fine-
tune the variable toll structures obtained based on the bottleneck model pricing rules, in order to consider the network-wide
dynamics and the possible route shifts to parallel arterials that were absent in the bottleneck model. This should eventually
produce the optimal spatio-temporal toll structure (i.e., toll value on each tolled link for every time interval) resulting in the
optimal schedule of entering the system and spatial distribution of traffic across the network that would minimize the total
travel delay and maximize infrastructure utilization. Additionally, mode and destination choice are potential responses to
tolling that will be added to the framework in future work. The framework presented in this study can also be extended
by: including transit and trucks demand; developing/integrating the details of transit networks in the GTA and a transit
assignment module to the DTA simulation model; considering multi-class traffic assignment though heterogeneous (rather
than single) VOT assumption in the route choice models which requires a modification of the DTA simulation software used
or using other DTA software that allows for multi-class assignment; and investigating drivers’ perception and behavioral
responses towards variable tolling policies in the afternoon/evening peak period.
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