Optimized Time-Dependent Congestion Pricing System for Large Networks:

Integrating Distributed Optimization, Departure-Time Choice, and Dynamic Traffic Assignment in the GTA

Aya Aboudina, Ph.D. Baher Abdulhai, Ph.D.

Outline

- Motivation
- Theory
- U of T's Framework and System
- Application to the GTA
- Conclusions and Future Research

What is Congestion Pricing?

- Road pricing is any system that directly charges motorists for the use of a road or network of roads.
- Congestion pricing refers to road tolls intended to <u>reduce traffic</u> <u>congestion</u> or to <u>distribute</u> it more evenly over <u>time</u> and <u>space</u>.

Congestion Pricing Inevitable

- Much like traffic lights are!
- Viable congestion control tool
- Revenue is a (welcomed?) by product
- Why inevitable?
 - Demand/Supply > 1.0 --- \rightarrow Congestion
 - Spills over longer periods and larger space
 - Constrained supply (space, \$, environment)
 - Ever increasing demand
 - Ever increasing congestion until it chokes the metropolis
- Not a matter of if, but when, where and how

Evidence Why Congestion Pricing?

Tragedy of the commons *(Hardin, 1968).*

VKT is quite responsive to **price**, as opposed to transit/capacity expansions *(Duranton and Turner, 2011)*.

Therefore, **policy makers** should emphasize *not only* on improving the supply of alternative modes *but also* on financial disincentives for auto use.

Traffic 101: what is congestion?

Pricing with Static Congestion

Dynamic Hyper-Congestion Pricing The Basic Bottleneck Model

Generalized Dynamic Congestion Pricing

Optimal Congestion Pricing System Design Features

Optimal Congestion Pricing System Framework (Historical) **OD** Demand **Matrices** Levels of 1 st 2nd◀ (Iterative) **DTA Traffic** Network Convergence **Congested Facilities** Simulator (to be tolled) (Route Choice) Network **Optimal Toll Optimal Toll** Performance **Determination** LOS **Determination** – Level II Attributes - Level I **Initial Toll** (Distributed (Bottleneck **Structures for Optimization** Updated Model) **Adjustment Factors** Congested Algorithm) Demand for Initial Toll **Facilities Structures Econometric** Model for **Optimal Toll Determination Departure-Time Choice** Testbed Commuters **Personal and** Socio-Economic

Attributes

Greater Toronto Area Case Study

1- DTA Simulation Model for the GTA

- GIS database from LIO.
- OD matrices: 6-10:30 am.
- Background demand.
- Calibrated and validated.

Main

Features

1- DTA Simulation Model for the GTA (*cont'd*)

Traffic simulation in DynusT

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

2- Departure-Time Choice Model (Sasic and Habib, 2013)

Choice **Model Variables** Driver and LOS attributes. 7:30-8, 8-8:30. 8:30-9, 9-9:30. 9:30 to Before 6:30-7 7-7:30, 7:30-8 8-8:30 8:30-9 9-9:30 9:30to 10, 6:30, 7-7:30 After 6:30-7 10 **GTA DTA** 2011 TTS Simulation Survey 6:30 to 7:30 to 8:30 to 9:30 to Before 7 to 8 to 9 to After 6:30 7 7:30 8 8:30 9 9:30 10 10:00 **Records** Model 350000 Average Travel Time Per Unit Distance (Min/Km) Model Retrofitting for 2011 300000 2.5 250000 • Updating ASC's (2011 TTS data). 150000 Integrating schedule-delay and 100000 Ž toll cost components.

6-6:29

6:30-6:59

7-7:29 AM

7:30-7:59

8-8:29

Time Interval

No. of Commuters "Original Demand" — No. of Commuters "Modified Demand" Travel Time Per Km "Original Demand" — Travel Time Per Km "Modified Demand"

8:30-8:59

9-9:29

9:30-9:59

10-10:29

of Commuters

- Recalibrating travel time coefficients.
- Model validation.

3- Toll Determination – Level I: The **Bottleneck Model** Cumulative

Model Assumptions	Our Implementation	Num
- Homogeneous drivers.	- Heterogeneous drivers. - Distribution of desired	vehio
- Single desired arrival time.	arrival times.	
- Only departure-time choice.	- Route and departure-time choices.	
- No driver attributes.	- Considers driver attributes.	Ave

Initial (sub-optimal) step-toll structure determination procedure:

> 1- Travel time (hence queueingdelay) estimation.

2- Identify the tolling period and set the max toll value.

3- Determine the full toll structure.

4- Toll structure smoothing.

Queueing-Delay Estimation Example (GE-Eastbound)

Queueing-delay is calculated as the excess travel time over the value of "travel time at capacity" on the congested facility.

SCIENCE & ENGINEERING

4- Toll Determination – Level II: Distributed Genetic Algorithm (Mohamed,

(I) Simple Tolling Scenario: GE

	• 18 km (427 to DVP).	
Tolled Route	 6 to 10 lanes wide. 	
(GE)	• 90,000 morning commuting trips on the GE	/
	corridor.	

N

Purpose of	 Test the effectiveness of first-level of optimal toll determination. 	
the Scenario	 Compare flat and variable tolling through the integrated testbed. 	/

	 Queueing-delay estimated based on all 	
Assumptions	corridor users (on both directions).	\rightarrow
I	• Same toll for EB and WB directions of the C	ЪЕ.
	l	7/

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

(II) Extended Tolling Scenario: GE, DVP, and 401 Express

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

(II) Extended Tolling Scenario: GE, DVP, and 401 Express - Correlation Matrix

	GE-EB	GE- WB	DVP- NB	DVP- SB	401-EB- 1	401-EB- 2	401- WB-2	401- WB-3
GE-EB	35976							
GE-WB	11 (0.0%)	42904						
DVP- NB	6576 (23.4%)	238 (0.7%)	26883					
DVP-SB	0 (0.0%)	11481 (35.7%)	394 (1.3%)	32969				
401-EB- 1	2523 (8.0%)	3 (0.0%)	67 (0.2%)	284 (0.9%)	29864			
401-EB- 2	0 (0.0%)	450 (1.1%)	26 (0.1%)	1596 (4.7%)	10809 (38.6%)	36910		
401- WB-2	661 (1.7%)	0 (0.0%)	3284 (9.9%)	346 (0.9%)	0 (0.0%)	0 (0.0%)	42781	
401- WB-3	157 (0.4%)	2094 (5.2%)	209 (0.6%)	6332 (19.0%)	0 (0.0%)	1 (0.0%)	12856 (36.7%)	40086

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

(II) Extended Tolling Scenario: GE, DVP, and 401 Express – Execution Time

	Population Size	# of Generations	Execution Time (Parallel Mode**)	Execution Time (Serial Mode*)
Optimization Problem 1	16	3	198 hours (8.25 days)	828 hours (5 weeks)
Optimization Problem 2	10	3	108 hours (4.5 days)	450 hours (2.7 weeks)
Optimization Problem 3	10	6	216 hours (9 days)	972 hours (6 weeks)
Total			522 hours (22 days)	2250 hours (3 months)

*Serial Mode: Intel Core i7-3770 processor @ 3.40 GHz with 16 GB of RAM memory.

****Parallel Mode**: a parallel cluster of five computers having the above specs.

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Optimal Toll Structures)

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Total Travel Time Savings)

* percentages are calculated relative to the total base case travel times of each group.

ED SCIENCE & ENGINEERING

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Corridor Analysis Ex. 1: GE-EB)

FACULTY OF APPLIED SCIENCE & ENGINEERING

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Corridor Analysis Ex. 2: DVP-NB)

(II) Extended Tolling Scenario: GE, DVP, and 401 Express (Annual Benefit-Cost Analysis)

Entity	Overall Costs (\$ Millions)		Overall Benefits (\$ Millions)		Benefit-Cost Ratio	
	Capital Cost:	Annual Cost:	Toll Revenues	Travel Time Savings	2.15 (after 1 st	
Government (Producer)	88.5	73.2	76.8	80.5		
	<i>Total Producer Costs</i> : <u>1st year</u> : 161.7 <u>After 1st year</u> : 73.2		<i>Total Producer</i> <i>Benefits</i> : 157.3		year)	
Toll Payers (Consumers)	Toll Paid: 76.8		Travel Time Savings 97.2	Schedule- Delay Savings 26.4	1.61	
			Total Consumer Benefits: 123.6			

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Conclusions

- The optimal congestion pricing system developed in this research provides a comprehensive tool for optimal time-dependent tolling strategies determination and evaluation in large-scale networks.
- The **results** demonstrate that:

ED SCIENCE & ENGINEERING

- More benefits are attained from variable tolling due to departure-time rescheduling as opposed to re-routing only in case of flat tolling.
- Widespread spatial re-distributions of traffic are observed across the regional network in response to tolling significant yet limited highways.
- Optimal variable pricing that mirrors temporal and spatial congestion patterns induces departure-time re-scheduling and rerouting, resulting in improved average travel times and schedule-delays at all scales in addition to benefits to toll payers.

Conclusions

- Optimal toll levels intended to manage traffic demand are significantly lower than those intended to maximize toll revenues.
- Toll payers benefit from tolling even before toll revenues are spent.
- Tolling policies determined offer a win-win solution in which travel times and overall network performance are improved while raising funds to invest in sustainable transportation infrastructure.

Research General Contributions **Designing**

A system for optimal congestion pricing determination and evaluation in large networks.

Developing

The different system modules for the GTA region.

Integrating

The large-scale computationally-intensive modules developed.

Key Contributions

- Developing the optimal congestion pricing system by integrating distinct modules.
- Incorporating a **3-level nested feedback** structure in the large-scale optimal congestion pricing system (unlike one-shot approaches).
- Building, calibrating, and validating a large-scale DTA mesoscopic simulation model for the GTA, based on the most recent available data.
- Simulating commuters' departure-time choices through an econometric model that considers drivers' attributes.
- Deriving the initial toll structures based on a conceptual model of dynamic congestion pricing (the Bottleneck Model).
- Applying a GA to adjust/fine-tune the initial toll structures for optimal network performance.
- Distributing the computations of the GA on a parallel computing cluster.
- Implementing the (full) optimal congestion pricing system through an extended scenario of tolling multiple highways in the GTA region.

Future Research

- 1. Considering mode-choice and other possible behavioural responses of pricing.
- 2. Including transit demand and integrating the transit network details along with a transit assignment module.
- 3. Including truck demand.
- 4. Re-estimating the departure-time choice model based on joint **RP** (TTS data) and **SP** data surveys incorporating toll information.
- 5. Developing an online toll regulator to update the optimal tolls based on real-time traffic measurements.

Thank you Questions?

Traffic Simulation in DynusT

- Anisotropic Mesoscopic Simulation (AMS).
- Speed Influencing Region (SIR) = 240 Metres.
- Speed of vehicle *i* is determined using a macroscopic v-k relationship based on the density in SIR*i*.

UNIVERSITY OF TORONTO → FACULTY OF APPLIED SCIENCE & ENGINEERING

Desired Arrival Time Distribution

- X is lognormally distributed → ln(X) has a normal distribution with Mu and Sigma.
- $\ln(X) = (Mu + Sigma * Z) \rightarrow X = e^{(Mu + Sigma * Z)}$
- Mu = ln(150) and sigma = 0.05 (in ln(min)).

Original vs. Modified IVTT Coefficients

Congestion Pricing Policies: Objectives and Impacts

Pricing Policy	Objectives/Impacts	Example(s)	
Cordon tolls	Reduce downtown traffic	 London Congestion Pricing Stockholm Congestion Pricing 	
HOT lanes	Encourage carpooling	 I-15 HOT Lanes, San- Diego, CA I-394 in Minnesota SR-167 in Seattle 	
For Profit (Monopoly) pricing	Maximize profits	ETR 407 (Express Toll Route)	
Variable tolls	Control congestion (temporal and/or spatial distribution)	 Singapore Electronic Road Pricing 	
 Distance-based fees Pay as you drive (PAYD) insurance 	Reduce automobile useReduce emissions	 "MileMeter", Texas, US "Real Insurance PAYD", Australia 	
Bottleneck pricing	Reschedule departure-time (without altering route-choice, mode-choice, or miles driven)		

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

Congestion Pricing Decision Making Process

Operations Side

Analysis Side

Congestion-Pricing Decision Making Process – *Analysis Side*

Congestion-Pricing Decision Making Process – *Analysis Side*

Purpose of Tolling

Revenue maximization

Minimize total travel cost

Maintain certain level of service

Maintain certain road utilization level

Keep emissions under certain level

 How to Spend Pricing Revenues?
 Infrastucture expansions

 Rebating motor fuel taxes
 Rebating motor fuel taxes

 Reducing general taxes (e.g. income and property taxes)
 Subsidizing improvements to the non-priced part of the highway system

International Experience

USA, UK, France, Norway, Sweden, Germany, Switzerland, Singapore, and Australia have implemented major road pricing projects.

London Congestion Pricing

- In service since 2003.
- The first congestion pricing program in a major European city.
- £11.5 daily cordon fee (flat price) for driving in "Central London Congestion Pricing Zone" during weekdays (from 7am to 6pm) (one time per chargeable day).
- Bus and taxi service improved.
- Accidents and air pollution declined in city center.
- After 1 year of cordon tolls and during charging:
 - Traffic circulating within the zone decreased by 15%.
 - Traffic entering the zone decreased by 18%.
 - Congestion (measured as the actual minus the free-flow travel time per km) decreased by 30% within the zone.

London Congestion Pricing

The Central London Congestion Pricing Zone

Stockholm Congestion Charge

- Public support increased after a 7-months trial in 2006.
- Charge based on time of day, and up to a max charge per day.
- Vehicles entering "Stockholm City Center" on weekdays (from 6:30am to 6:30pm) charged \$1.29 to \$4.11 per trip, with a max daily charge of \$8.
- Traffic volumes reduced by ~25%.
- Public transit ridership increased by 40,000 users per day.

Stockholm Congestion Charge

- Uses electronic transponders to bill cars.
- Non-equipped cars are photographed, matched to a motor vehicle database and then billed.

I-15 HOT Lanes, San Diego, CA

- First significant congestion pricing project (i.e., price mirrors congestion).
- Implemented in 1996 along the 13 km HOV section of I-15 in San Diego. The HOT lanes on I-15 are now about 32 km long.
- Convert HOV to HOT; solo drivers pay tolls to use HOV during peak periods.
- In 1998, automated and dynamic pricing scheme.

I-15 HOT Lanes, San Diego, CA

- Toll levels determined from congestion level to maintain "free-flow" conditions in the HOV lane.
- Tolls updated every 6 minutes (\$0.5 to \$4) (closed-loop regulator).
- Toll level displayed on real-time sign.
- Success in congestion minimization.

407 ETR (Express Toll Route)

- Multi-lane, electronic Hwy running 107 km across the top of the GTA from HYWY 403 (in Oakville) to HYWY 48 (in Markham).
- Constructed in a partnership between "Canadian Highways International Corporation" and the Province of Ontario.
- Currently owned by 407-ETR International Inc.

407 ETR (Express Toll Route)

Current Rate Chart:

Regular Zone Rate Peak Period Mon-Fri: 6am-7am, 9am-10am, 3pm-4pm, 6pm-7pm Peak Hours Mon-Fri: 7am-9am, 4pm-6pm	28.30¢ /km 30.20¢ /km
Light Zone Rate Peak Period Mon-Fri: 6am-7am, 9am-10am, 3pm-4pm, 6pm-7pm Peak Hours Mon-Fri: 7am-9am, 4pm-6pm	26.90¢ /km 28.70¢ /km
Midday Rate (entire highway) Weekdays 10am-3pm	24.06¢ /km
Midday Rate (entire highway) Weekends & Holidays 11am-7pm	22.25¢ /km
Off Peak Rate (entire highway) Weekdays 7pm-6am, Weekends & Holidays 7pm-11am	19.35¢ /km

- Speeds on Hwy 407 ~ double free Hwys.
- High level of user satisfaction.
- Monopoly price!

