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Introduction

 Pedestrian simulation is a powerful tool for 
evaluating major pedestrian facilities

 Many models have been developed in this field, 
from simple tools to commercial software

 In practice, these models have been used to 
improve the design, operation, and safety of 
transit stations, event venues, and religious sites

3



Introduction

 Recent advances in 
pedestrian modelling have 
created more complex 
models, both for research 
and commercial use

 While powerful, these 
models can be slow and 
computationally 
demanding
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Introduction

 Older and less complex 
models are still thought to 
be useful

 Little has been done to 
compare their accuracy 
and performance against 
modern competitors
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Introduction

 A wide variety of models exist, ranging from 
macroscopic to microscopic approaches

 Some ‘traditional’ methods include fluid flow 
approximation, graph/ network models, Cellular 
Automata, and Social Forces

 Contemporary methods include hybrids (e.g. 
Optimal Steps) and new developments (e.g. 
Gradient Navigation, group dynamics)
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Introduction
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 Existing research has 
touched on these areas 
separately when 
comparing models

 Often, models are all 
from the same family 
(microscopic, CA, etc.)

 Computational 
performance is often 
ignored
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Introduction
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 This research combines 
all three elements to fill 
this knowledge gapReal-World 

Scenarios

Computational 
Performance

Range of 
Models



Context and Motivation

 The Nexus platform connects rail, surface, and 
pedestrian simulation to model transit networks

 Pedestrian simulation is an important part of the 
platform, but it is often the slowest component
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Context and Motivation

 Currently, MassMotion is the simulator of choice 
for all station models, but it is demanding in 
terms of data, computer resources, and time

 The ideal solution is to use a simplified model 
for smaller and less complex facilities
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Context and Motivation

 Without existing comparisons of simple and 
more advanced models, how can we pick?

 How do agent behaviours differ between models, 
and how does this affect results?

 More importantly, how do we know whether a 
new model will improve computational 
performance?
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Context and Motivation

 Performing simple tests with MassMotion and 
Legion illustrates how two similar tools can 
produce surprisingly different behaviours

 If two advanced models cannot agree on results, 
what can we expect from a range of models?
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Context and Motivation
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Project Methodology

We want to compare a set of pedestrian models by:

 Selecting models from the literature

 Collecting real-world data from transit stations

 Coding the models to interface with MassMotion

 Calibrating the models

 Testing the models using a number of scenarios
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Project Methodology
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Project Methodology
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Project Methodology
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Project Methodology
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Project Methodology
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 By running each model for each scenario, we can 
evaluate performance in a variety of ways

 These evaluation methods can be used to identify 
limits to each model’s accurate operation

Simulation
Models

Test
Scenarios
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Data Collection

 To simulate each scenario, we need complete 
station geometry as well as data detailing how 
pedestrians move through the space
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Data Collection

 Stations with moderate peak volumes and 
geometry of interest were selected
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Data Collection

Osgoode
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Data Collection

Osgoode

 Straight 
Corridor

 Complete 
Concourse
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Queen’s Park
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Data Collection



Queen’s Park

 T-Junction

 Complete 
Concourse
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Data Collection

 A team of 10 students and researchers collected 
data at the stations

 Each collection lasted approximately 1.5  hours:

– 60 minutes of continuous counting,

– 20 minutes of simultaneous timings, and

– 20 minutes of measurements

 Collected data was used to make origin-
destination matrices for each scenario

27



Data Collection

 Timestamped pedestrian counts were taken at all 
screenline locations shown on maps

 Bidirectional flows were recorded using 
smartphone applications (Android/iOS)
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Model Development

 To test and compare model types, a set of 
representative methods were selected

 Each specific method was coded in C# to control 
agent movement via the MassMotion SDK

 This allows each method to be compared against 
others with identical external parameters:

– Cost mapping,

– Model geometry,

– Agent attributes, etc.
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Model Development – Graph Model

 A mesoscopic approach 
representing each model 
as a set of links and 
nodes
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Model Development – Graph Model

 A mesoscopic approach 
representing each model 
as a set of links and 
nodes

 Agents jump between 
waypoints based on the 
distance and their speed
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Model Development – Graph Model
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Model Development – Graph Model
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 A mesoscopic approach 
representing each model 
as a set of links and 
nodes

 Agents jump between 
waypoints based on the 
distance and their speed

 Has limited analytical 
value, but runs quickly



Model Development – Social Forces

 A simple Social Forces method based on work by 
Helbing and Molnár (1995), with equations 
provided by Helbing and Johansson (2009)
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Model Development – Social Forces

 The agent’s current 
location and velocity is 
queried
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Model Development – Social Forces

 The agent’s current 
location and velocity is 
queried

 The agent’s attractive “goal 
force” is calculated based 
on direction to goal and 
desired velocity
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Model Development – Social Forces

 The agent’s current 
location and velocity is 
queried

 The agent’s attractive “goal 
force” is calculated based 
on direction to goal and 
desired velocity

 A repulsive “neighbour 
force” is calculated for 
every nearby agent based 
on distance and direction
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Model Development – Social Forces

 The agent’s current 
location and velocity is 
queried

 The agent’s attractive “goal 
force” is calculated based 
on direction to goal and 
desired velocity

 A repulsive “neighbour 
force” is calculated for 
every nearby agent based 
on distance and direction
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Model Development – Social Forces

 The neighbour forces are 
summed into a net 
neighbour force
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Model Development – Social Forces

 The neighbour forces are 
summed into a net 
neighbour force

 A repulsive “obstacle force” 
is calculated for the nearest 
obstacle based on distance 
and direction
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Model Development – Social Forces

 The neighbour forces are 
summed into a net 
neighbour force

 A repulsive “obstacle force” 
is calculated for the nearest 
obstacle based on distance 
and direction

 All forces are summed, 
resulting in a net force to 
be applied to the agent
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Model Development – Social Forces

 The agent’s next velocity 
and position are calculated
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Model Development – Social Forces

 The agent’s next velocity 
and position are calculated

 The agent is moved – if the 
move is invalid (e.g. off the 
floor), the agent is 
repositioned back onto the 
floor
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Model Development – Social Forces

 The agent’s next velocity 
and position are calculated

 The agent is moved – if the 
move is invalid (e.g. off the 
floor), the agent is 
repositioned back onto the 
floor

 The process is repeated 
with all other agents and 
the simulation is advanced 
by one step
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Model Development – Optimal Steps

 Optimal Steps is a hybrid method, combining the 
continuous space of Social Forces with discrete 
movements of Cellular Automata

 This specific implementation is based on the 
work of Seitz and Köster (2012)

 Modifications have been made to handle 
MassMotion’s floor and link elements, which 
discretize walkable space
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Model Development – Optimal Steps

 The agent’s current 
location and velocity are 
queried
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Model Development – Optimal Steps

 The agent’s current 
location and velocity are 
queried

 A corresponding step 
length is calculated, and 
potential positions are 
selected
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Model Development – Optimal Steps

 The agent’s current 
location and velocity are 
queried

 A corresponding step 
length is calculated, and 
potential positions are 
selected

 Potential values are 
assigned to each position 
based distance to the goal
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Model Development – Optimal Steps

 Neighbours near each 
position are checked –
close neighbours make the 
position less desirable
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Model Development – Optimal Steps

 Neighbours near each 
position are checked –
close neighbours make the 
position less desirable
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Model Development – Optimal Steps

 Neighbours near each 
position are checked –
close neighbours make the 
position less desirable

 Obstacles near each 
position are similarly 
checked
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Model Development – Optimal Steps

 Neighbours near each 
position are checked –
close neighbours make the 
position less desirable

 Obstacles near each 
position are similarly 
checked

 Based on all three factors, 
the most desirable position 
is selected
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Model Development – Optimal Steps

 The agent is moved to the 
new position
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Model Development – Optimal Steps

 The agent is moved to the 
new position

 Every other agent is 
sequentially checked and 
moved based on the same 
criteria
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Model Development – MassMotion

 MassMotion is based on 
the Social Forces 
concept, but with many 
more forces
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Model Development – MassMotion

 MassMotion is based on 
the Social Forces 
concept, but with many 
more forces

 These include cohesion, 
queueing, drift, corner, 
and collision forces, to 
name a few
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Model Development – MassMotion

 MassMotion is based on 
the Social Forces 
concept, but with many 
more forces

 These include cohesion, 
queueing, drift, corner, 
and collision forces, to 
name a few

 No changes were made 
to this model
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Model Calibration

 A Genetic Algorithm approach was chosen for 
calibration and is supported in the literature

 Attempts were made to calibrate microscopic 
model parameters (neighbour force, etc.), but 
this failed due to the lack of microscopic data

 In the end, a speed adjustment parameter was 
calibrated for all models, compensating for some 
idiosyncratic behaviours
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Model Calibration

 Model fitness was based on matching 30 minutes 
of peak concourse exit flow rates

 Global Relative Error (GRE)                                
was used as a fitness function

 20 different speed adjustment parameters were 
tested per generation, using 5 runs per factor 
and 10 generations
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𝐺𝑅𝐸 =
σ𝑖=1
𝑛 𝑦𝑜𝑏𝑠 − 𝑦𝑠𝑖𝑚
σ𝑖=1
𝑛 𝑦𝑜𝑏𝑠



Model Calibration

 All models fit the data relatively well following 
calibration
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Model Calibration

 All models fit the data relatively well following 
calibration
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Model Calibration

 All models fit the data relatively well following 
calibration
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Model Calibration

 All models fit the data relatively well following 
calibration

 Some pointwise deviations are due to random 
assignment of agent destinations – not 
necessarily a bad model

 Overall, all models had similar error values 
following calibration and could be compared
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Validation and Comparison

 Base case validation involved testing all models 
using the observed Queen’s Park scenario

 Comparing observed screenline flows to 
simulated flows shows some differences, but 
overall good fits

 At these low volumes, all four models produce 
extremely similar results
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Validation and Comparison
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Validation and Comparison

 R-squared and Sum of Squared Errors (SSE) fits 
were also similar for all models

 Social Forces model had slightly lower total SSE
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Model Screenline
A B C D E F

R-Squared (%) Average
Graph 97.22 98.97 99.23 99.52 99.89 99.77 99.10
Social Forces 97.21 99.00 99.36 99.41 99.89 99.84 99.12
Optimal Steps 97.39 98.99 99.32 99.48 99.89 99.81 99.15
MassMotion 97.24 99.02 99.27 99.51 99.90 99.81 99.12
SSE (1000s) Total
Graph 228 166 71 27 653 4,706 5,851
Social Forces 228 161 59 33 660 3,242 4,382
Optimal Steps 215 165 63 29 665 4,001 5,137
MassMotion 226 159 67 27 633 4,044 5,157



Validation and Comparison

 Project and simulation setup speeds were 
generally the same, but run speeds differed 
greatly between the models!

 Graph model was by far the fastest, followed by 
Social Forces

67

Model Project Setup (s) Simulation Setup (s) Model Run (s)
µ σ µ σ µ σ

Graph 0.08 0.02 8.59 0.16 24.87 0.50
Social Forces 0.09 0.01 8.67 0.11 75.13 4.25
Optimal Steps 0.08 0.01 8.59 0.10 132.87 1.45
MassMotion 0.09 0.02 8.60 0.18 101.43 0.93



Validation and Comparison

 Comparing average 
element Level of Service, 
differences in agent 
paths became apparent

 Some spots also 
appeared where agent 
densities increased due 
to waiting behaviours
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Validation and Comparison

 Comparing maximum concourse densities also 
highlighted route and crowding differences
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Social Forces Optimal Steps

MassMotion



Validation and Comparison

 Increased volume scenarios compared model 
results to MassMotion, a trusted ‘ground truth’

 These showed much greater differences!
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Validation and Comparison

 Increased volume scenarios compared model 
results to MassMotion, a trusted ‘ground truth’

 These showed much greater differences!
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Validation and Comparison

 At very high volumes, Graph and Optimal Steps 
models failed to respond to congestion – flow 
rates were not appropriately reduced
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Validation and Comparison

 At very high volumes, Graph and Optimal Steps 
models failed to respond to congestion – flow 
rates were not appropriately reduced

 R-squared fits were also noticeably lower
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Scenario Model Average R2 (%) Worst R2 (%) Model Run (s)
Osgoode 
100% (base)

Graph 99.97 99.95 9.96
Social Forces 99.98 99.96 20.63
Optimal Steps 99.97 99.93 53.93

Osgoode 
160%

Graph 99.47 99.00 15.70
Social Forces 99.91 99.76 64.92
Optimal Steps 99.52 99.10 91.82

Osgoode 
170%

Graph 99.14 97.85 15.91
Social Forces 99.87 99.49 76.42
Optimal Steps 99.24 98.15 99.75



Validation and Comparison

 Similar trends for Queen’s Park volume increase 
scenarios, but Social Forces model seemed overly 
sensitive to congestion
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Validation and Comparison

 High volumes led MassMotion to predict system 
breakdown, which no other model showed

 Even low volume screenlines are visibly affected
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Validation and Comparison

 High volumes led MassMotion to predict system 
breakdown, which no other model showed

 Even low volume screenlines are visibly affected
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Scenario Model Average R2 (%) Worst R2 (%) Model Run (s)
Queen’s 
Park 100%

Graph 99.99 99.99 24.87
Social Forces 99.98 99.97 75.13
Optimal Steps 99.99 99.99 132.87

Queen’s 
Park 170%

Graph 99.98 99.97 44.48
Social Forces 99.75 99.48 266.64
Optimal Steps 99.98 99.95 286.29

Queen’s 
Park 180%

Graph 94.77 90.97 47.39
Social Forces 97.04 91.85 358.23
Optimal Steps 94.96 91.45 319.47



Conclusions

 In all cases, Graph model is fastest to run, 
followed by Social Forces, MassMotion, and 
Optimal Steps

 Base case tests show good fits for all models, 
suggesting low volume stations don’t require 
complex models
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Conclusions

 Agent densities and paths show differences, 
especially with Social Forces model, but we have 
no ‘ground truth’ to compare against

 High volume tests indicate reasonable 
performance up to a point – once flow reducing 
congestion occurs, MassMotion is the only 
choice
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Future Work

 Collect microscopic pedestrian movement data, 
perhaps using Bluetooth/Wi-Fi tracking and 
video recording, for better calibration

 Collect higher-volume data at busier stations or 
during disruption events

 Modify and improve the MassMotion SDK, 
allowing other models to integrate with the 
software and improving performance
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