#### Data-Driven Mesoscopic Simulation of Large-Scale Surface Transit Networks

MASc Candidate: Bo Wen Wen Supervisor: Prof. Amer Shalaby





# **Presentation Outline**

- Introduction
- Modelling Framework
- Data
- Model Estimation
- Data-driven Simulation
- Case Study



#### Introduction



The Nexus Platform <sup>1</sup>

- **Simulation platform**: currently in development, motivated by the need for a high-fidelity multimodal transit network modelling system with capability to:
  - Represents the dynamic behaviour of transit lines and stations
  - Predicts passenger travel behaviour under normal and irregular conditions
- Scenario analyses: disruptions, response strategies, and long range planning

1. Srikukenthiran, 2015



#### The Nexus Platform

 Connects specialized simulators of <u>train</u> <u>operation</u>, <u>pedestrian simulation</u> and <u>surface</u> <u>vehicle movement</u> into a network allowing for modular, multi-modal simulation



#### **Research Motivation**

- An accurate and efficient surface transit simulator to connect with Nexus
- Simulation of large-scale transit networks where detailed microsimulation is not needed
- Rapid construction of the transit simulation model with little manual effort



## **Research Motivation**

- Traditional models:
  - Difficult to calibrate and computationally intensive
  - Updated infrequently (out of date)
- Open transit data (AVL, APC, GTFS, AFC, etc.) provides:
  - The potential to capture real world stochasticity
  - Rapidly build models using appropriate methodological tools for big data
- Instead of modelling the kinematics of vehicles, transit vehicle arrivals can be modelled using historical data.



### **Research Objectives**

- Develop segment-based (stop-to-stop) transit simulation model based on running speeds and dwell times
- Measures of effectiveness:
  - Accurate network representations
  - Rapid model construction
  - Efficient simulation



















# Model Type 1: Basic Analysis

- Route level model
- This type of model accounts for:
  - temporal effects:
    - time of day, and day of the week
  - transit operational characteristics:
    - headway, delay, and previous speeds.
  - basic link characteristics:
    - link distance, link name



# Model Type 2: Advanced Analysis

- Network level model
- This type of model accounts for:
  - temporal effects
  - transit operational characteristics
  - expanded link characteristics:
    - stop locations, link distances, link name (link identification), number of signalized intersections, left and right turns made by transit vehicles between stops, traffic and pedestrian volumes
  - route characteristics
    - dedicated right of way, streetcar versus bus route, disruptions, road restrictions or incidents, precipitation.



## Data Requirements

- Model 1: Basic Analysis
  - AVL or GPS traces of transit vehicle trips
  - Schedule information about the route
- Model 2: Advanced Analysis
  - AVL data streams for the entire network
  - GTFS transit network schedules
  - Signalized intersection locations
  - Intersection volume data
  - Road restriction data streams
  - Weather data streams



#### Data



## Methods - Automatic Data Collection

#### Manual download procedure for archival data





# Methods - Automatic Data Collection

- For archival data, retrieval can be performed periodically
  - General Transit Feed Specification (GTFS):
    - Open Data Toronto GTFS data archive
  - Signalized intersection locations and volume:
    - Open Data Toronto active archive
- Periodically sends web requests to retrieve real-time data from public APIs throughout the data collection period
  - Automatic Vehicle Location (AVL):
    - <u>Nextbus real-time data streams</u>, 20 seconds resolution
  - Road restriction:
    - Open Data Toronto real-time data streams, periodic updates
  - Weather:
    - <u>OpenWeatherMap real-time data streams</u>, 3-hour precipitation



# Methods - Data Processing

Program procedure for data processing



- Processes unstructured location and feature data into structured and defined variables
- Preprocesses the data to
  - exclude duplicate points and
  - invalid points (illogical locations)



### Methods - Data Processing

- Use AVL and GTFS data to compute various transit operational characteristics.
  - Trip construction
  - Trip matching based on trip geometry
  - Compute trip characteristics:
    - Arrival times,
    - Dwell times,
    - Headway,
    - Delay, etc.
- Spatially and temporally matched additional data to transit trips
  - Signalized intersection location and volume
  - Road restrictions
  - Weather



# Methods – Variable Definition

| Variable Name          | Description                                                                        | Variable Type | Typ. Range       |
|------------------------|------------------------------------------------------------------------------------|---------------|------------------|
| RunningSpeed           | Arrival to arrival speed between two stops, dependent var. for running speed model | Continuous    | 0 to 120 kph     |
| DwellTime              | Dwell time at the start stop, dependent variable for dwell time model              | Continuous    | 0 to 300 secs    |
| RouteCode.f            | Route Code of travelling vehicle                                                   | Categorical   | 163 levels       |
| hasIncident.f          | If the link segment has road restriction                                           | Categorical   | 0, 1             |
| prevLinkRunningSpeed   | Previous Running Speed upstream of the current link                                | Continuous    | 0 to 120 kph     |
| prevTripRunningSpeed   | Previous Trip's Running Speed on the current link                                  | Continuous    | 0 to 120 kph     |
| Day.f                  | Day of week                                                                        | Categorical   | 0 to 6           |
| Time_mins              | Time of day in minutes since start of study period                                 | Continuous    | 0 to 86,400 mins |
| linkDist               | Distance of the current link                                                       | Continuous    | 0 to 11,600 m    |
| Delay                  | Estimated schedule delay experienced by the vehicle on the link                    | Continuous    | -1000 to 5000 s  |
| Headway Ratio          | The Ratio between Scheduled and Estimated headway of the vehicle at a stop         | Continuous    | 0 to 30          |
| totalPptn              | Total precipitation reported at the nearest weather station to current link        | Continuous    | 0 to 10 mm       |
| num_VehLtTurns         | Number of Left Turns by the transit vehicle on the link                            | Categorical   | 0 to 2           |
| num_VehRtTurns         | Number of Right Turns by the transit vehicle on the link                           | Categorical   | 0 to 3           |
| num_VehThroughs        | Number of through movements at intersections made by the transit vehicle           | Categorical   | 0 to 14          |
| num_TSP_equipped       | Number of TSP equipped intersections on the link                                   | Categorical   | 0 to 6           |
| num_PedCross           | Number of pedestrian crossings on the link                                         | Categorical   | 0 to 3           |
| sum_SigIntxnApproach   | Total number of signalized approaches of the intersections on the link             | Categorical   | 0 to 49          |
| avgVehVol              | Average vehicle volume of the link                                                 | Categorical   | 0 to 20,000      |
| avgPedVol              | Average pedestrian volume of the link                                              | Categorical   | 0 to 10,000      |
| isStartStopNearSided.f | If start stop is near sided                                                        | Categorical   | 0 or 1           |
| isEndStopFarSided.f    | If end stop is far sided                                                           | Categorical   | 0 or 1           |
| isStreetcar.f          | If the route on the link a streetcar route                                         | Categorical   | 0 or 1           |
| isSeparatedROW.f       | If the link on the route separated right-of-way                                    | Categorical   | 0 or 1           |
| linkName               | The name of the link                                                               | Categorical   | 9267 levels      |

\*Italicized variables are used in network level models



#### **Model Estimation**



#### Methods – Model Estimation

- Running Speed Regression Models
  - Multiple Linear Regression (MLR)
  - Support Vector Machine (SVM)
  - Linear Mixed Effect Model (LME)
  - Regression Tree (RT)
  - Random Forest (RF)
- Dwell Time Model
  - dwell times at transit stops followed the lognormal distribution <sup>1-5</sup>

1. Bellei and Gkoumas, 2010; 2. Li et al., 2012; 3. Meng and Qu, 2013; 4. Rashidi et al., 2014; 5. Zhang Jian and Bai Hai-jian, 2015



# **Running Speed Model Estimation**

Program procedure for estimating regression models



- Running Speed Model trained in R, using R.Net via C#
  - Efficient data manipulation (with R data.table)
  - Open source machine learning packages
  - Rapid model prototyping



# Multiple Linear Regression (MLR)

- Based on ordinary least squares.
- Four fundamental assumptions <sup>1</sup>:
  - Linear relationships
  - Homoscedasticity
  - Normally distributed errors
  - Independency
- The general form of Multiple Linear Regression model<sup>2</sup>:

$$\mathbf{Y} = \mathbf{a} + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2 + \dots + \mathbf{b}_i \mathbf{X}_i + \boldsymbol{\varepsilon}$$

- **Y**: response variable,
- **b**<sub>i</sub>: estimated coefficients for predictor variables,
- **X**<sub>i</sub>: predictor variables,
- **ɛ**: residuals

<sup>1.</sup> Marill, 2004

# Support Vector Machine (SVM)

- Based on hyperplane margin optimization <sup>1</sup>
  - Edge training points "supports" the minimum margin vector
- Kernel Functions
  - Linear: fast
  - Polynomial: can become too wavy, and it is very slow.
  - Radial Basis function: commonly used, most flexible, but slower than linear kernel.
- Different loss functions determines how model is trained:
  - v-SVR: controls number of vectors
  - ε-SVR: penalizes errors
- ε-SVR is most suitable
  - Consistent objective in reducing errors
  - Need to address overfitting with crossvalidation



1. Chang and Lin, 2011;

2. Scikit-learn developers, 2014



UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING Transportation Research Institute

#### Linear Mixed Effect Model (LME)

- Accounts for the random sampling variations due to repeated measurements.<sup>1</sup>
  - Deals with heteroscedasticity
- Models random effects by:
  - Varying intercepts
  - Varying slopes
- Same assumptions for each level of the random effects as MLR:
  - Linear relationships
  - Normally distributed errors





- 2. Daniel Von, 2014;
- 3. Human Language Processing (HLP) lab at the University of Rochester, 2014



# Regression Tree (RT)<sup>1</sup>

- Partition to determine data clusters.
- Construction of trees are based on splitting criteria.
- Aims to minimize Gini impurity, thus reduce probability of misclassifications.
- Variables that affects the split the most is the most important.
- Complexity and depth of tree are determined by
  - complexity parameter (cp)
  - minimum split criteria
  - prune cp
- Tree pruning with cross-validation can minimize overfitting.



1. Terry M. Therneau and Elizabeth J. Atkinson, 2017;

2. Charpentier, 2013



#### Random Forest (RF)

- Grow a number of trees based on random draws of the original samples (with replacements)<sup>1</sup>
- An ensemble method:
  - Each tree is a weak learner, but collectively are strong
  - The result from all the trees produces a single prediction
- Works well for clustered data and can replicate complex relationships
- Each draw is independent
- Low correlation needed between residuals and between trees
- Shown not to overfit and reduce bias



1. Breiman, 2001;

2. R. Hänsch and O. Hellwich, 2015



#### **Comparisons of Running Speed Models**

Model Fitness

$$R^2 = 1 - \frac{\mathrm{SS}_{\mathrm{R}}/\mathrm{df}_{\mathrm{e}}}{\mathrm{SS}_{\mathrm{T}}/\mathrm{df}_{\mathrm{t}}}$$
 ,  $\mathrm{df}_{\mathrm{e}} = n - 1$  ,  $\mathrm{df}_{\mathrm{t}} = n - p - 1$ 

Mean absolute percentage error:

MAPE 
$$= \frac{1}{n} \sum_{i=0}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right| \times 100\%$$

Mean absolute error:

$$MAE = \frac{1}{n} \sum_{i=0}^{n} |\hat{y}_i - y_i|$$

• Relative absolute error:

RAE = 
$$\frac{\sum_{i=0}^{n} |\hat{y}_i - y_i|}{\sum_{i=0}^{n} |y_i - \bar{y}|}$$



#### **Comparisons of Running Speed Models**

Root mean square error:

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (\widehat{y}_i - y_i)^2}$$

• Root relative square error:

RRSE = 
$$\sqrt{\frac{\sum_{i=0}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=0}^{n} (y_{i} - \bar{y})^{2}}}$$

- Relative differences in RMSE (RD): RD = (RMSE<sub>i</sub> - RMSE<sub>MLR</sub>) / RMSE<sub>MLR</sub>
- Training Time and Test Prediction Time



#### Methods – Model Estimation

- Running Speed Regression Models
  - Multiple Linear Regression (MLR)
  - Support Vector Machine (SVM)
  - Linear Mixed Effect Model (LME)
  - Regression Tree (RT)
  - Random Forest (RF)
- Dwell Time Model

   dwell times at transit stops followed the lognormal distribution <sup>1-5</sup>

1. Bellei and Gkoumas, 2010; 2. Li et al., 2012; 3. Meng and Qu, 2013; 4. Rashidi et al., 2014; 5. Zhang Jian and Bai Hai-jian, 2015



# **Dwell Time Model Estimation**

Program procedure for estimating distribution models 



- Dwell Time Model trained in native C#
  - Stop-based models, trained using historical dwell times at the stop
  - Lognormal distribution
  - Open source statistical package (with Math.NET Numerics)



#### **Dwell Time Models**

- Model Estimation: Lognormal Distribution
  - Estimation of log mean parameter

$$\hat{\mu} = \frac{\sum_{i=1}^k \ln x_k}{n}$$

– Estimation of shape parameter

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^k (\ln x_k - \hat{\mu})^2}{n}$$

Model evaluation: chi-squared goodness of fit

$$\chi^2 = \sum \left( P_i - O_i \right)^2 / O_i$$



1. Li et al., 2012



#### **Data-driven Simulation**



# **Model Simulation**

#### Program procedure for simulation



- Base case scenario used transit schedule departures from terminals with no short turns
- Running speed and dwell time models predicted mesoscopic transit movements



#### Model Simulation – Iterative predictions



#### Results Case Study: Toronto Transit Commission network



#### Case Study: the TTC network

- The Toronto Transit Commission (TTC) provides public transit in the city of Toronto.
  - Population of Toronto: 2.8 Million
- 4 subway/rail lines, 11 streetcar routes, and over 140 bus routes
- Period of the case study
  - Training Data: 2017-02-28 to 2017-03-02, 6AM to 9AM (AM Peak)
  - Test Data: 2017-03-07 to 2017-03-09, 6AM to 9AM



# Summary of Data during study period

- GTFS
  - 8304 Trips (typical weekday AM peak)
- AVL
  - 8381 Trips (Feb 28), 8350 Trips (Mar 1), 8403 Trips (Mar 2), 8428 Trips (Mar 7), 8395 Trips (Mar 8), 8414 Trips (Mar 9)
- Road Restrictions
  - 734 Events (Feb 28 to Mar 2), 766 Events (Mar 7 to Mar 9)
- Weather
  - 72 Records (per day)
- Traffic intersections
  - 2269 Records (intersection volumes)
  - 71 Records (minor intersections)



# Running Speed Model Results (Network)

| Model Type                | MLR   | SVM       | LME   | RT     | RF (100 trees) |
|---------------------------|-------|-----------|-------|--------|----------------|
| R Package                 | MASS  | liquidSVM | LME4  | RPART  | RANGER         |
| R <sup>2</sup>            | 0.277 | 0.265     | 0.387 | 0.225  | 0.359          |
| MAPE                      | 0.355 | 0.358     | 0.311 | 0.372  | 0.325          |
| MAE                       | 7.625 | 7.677     | 6.902 | 7.911  | 7.109          |
| RAE                       | 0.831 | 0.837     | 0.752 | 0.862  | 0.775          |
| RMSE                      | 9.950 | 10.035    | 9.160 | 10.303 | 9.366          |
| RRSE                      | 0.850 | 0.858     | 0.783 | 0.881  | 0.800          |
| Reduction in RMSE         | -     | -0.9%     | 7.9%  | -3.5%  | 5.9%           |
| Training Time (min.)      | 0.419 | 36.272    | 2.629 | 1.021  | 14.681         |
| Prediction Time<br>(min.) | 0.036 | 3.249     | 0.049 | 0.015  | 0.331          |

# Running Speed Model Results (504-King)

| Model Type*               | MLR   | SVM       | LME   | RT    | RF (100 trees) |
|---------------------------|-------|-----------|-------|-------|----------------|
| R Package                 | MASS  | liquidSVM | LME4  | RPART | RANGER         |
| R <sup>2</sup>            | 0.107 | 0.115     | 0.223 | 0.102 | 0.153          |
| MAPE                      | 0.329 | 0.326     | 0.296 | 0.330 | 0.318          |
| MAE                       | 5.127 | 5.077     | 4.726 | 5.134 | 4.982          |
| RAE                       | 0.940 | 0.931     | 0.866 | 0.941 | 0.913          |
| RMSE                      | 6.816 | 6.784     | 6.359 | 6.834 | 6.639          |
| RRSE                      | 0.945 | 0.941     | 0.882 | 0.947 | 0.920          |
| Reduction in RMSE         | -     | 0.5%      | 6.7%  | -0.3% | 2.6%           |
| Training Time (sec.)      | 0.017 | 31.790    | 0.327 | 0.662 | 3.838          |
| Prediction Time<br>(sec.) | 0.011 | 2.286     | 0.076 | 0.012 | 0.158          |

\* Route-level model trained using data from 504-King only.



# **Running Speed Model Results**

- Sample size
  - Network level: training =593,234, test = 600,351
  - Route level (504-King only): training = 12,827, test = 12,612
- RT and SVM did not provide improvements over MLR
- SVM provided small improvements over MLR for route level models
- LME model yields the best result with:
  - varying intercept model
  - link identification (link name) as the random effect variable
- RF did well and provided a more flexible implementation
  - allows new links, whereas LME model does not
- LME is more computationally efficient than RF.

# Dwell Time Models: Parameters



# Dwell Time Model: Observed vs Predicted



# Simulation Model Results

- Simulation scenario:
  - Weekday schedule
  - On-time terminal schedule departure, if possible.
  - No short turns
  - Road conditions from test day: 2017-03-08, 6AM to 9AM
    - 704 road restriction events (Mar 8 only)
    - 72 weather records per day
    - Intersection attribute data for links
- Simulations using RF and LME were generated.
- Comparisons of vehicle trajectories with time-distance diagrams.
- Model Validations
  - Route level with route speeds
  - Stop level with stop delays



#### Simulation Model Results - RF



#### Simulation Model Results - LME



## Model Validations – Route Speeds

#### Random forest





#### Linear Mixed Effect



504-KING-EB

12.5 15.0 17.5

Route Speed(kph)

60 -

40 -

0

50 -

40 -

10 -

0 -

10.0

- 00 Count

35

20 - 20 -





0.





7.5 10.0 12.5 15.0 17.5

Route Speed(kph)



54-LAWRENCE EAST-WB



UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING Transportation Research Institute

#### Model Validations – Stop Delays

#### Random forest

#### Linear Mixed Effect



# Findings

- Running speed model comparisons
  - LME model accuracy outperformed MLR by 8%
  - RF model accuracy outperformed MLR by 6%
  - LME has lower training time, but requires repeated observations from existing links.
- Lognormal dwell time introduce realistic stochasticity into vehicle movements.
- Simulation model prediction runtimes
  - RF (ranger package): 36 minutes
  - LME (lme4 package): 1 minute



# Findings

- A data-driven transit simulation model
  - replicated instances of vehicle bunching, distribution of dwell times, and stochastic patterns of delays and headways
- Validation results suggests the need to incorporate:
  - Effect of traffic congestion
  - Signal delays
  - Vehicle short-turns



#### Future Research

- Model the effects of short-turning vehicles
- Incorporate congestion data
- Advanced dwell time models to incorporate passenger demand
  - Allows reallocation of passenger demand
  - Stop addition, relocation, and removals
- Continuous model training for streaming data



Acknowledgements





