
 

  
 
 

Subway service down again? Assessing 
the effects of subway service 
interruptions on local surface transit 
performance 
 

 

Diab, Ehab and Amer Shalaby 
 

 

 

 

iCity: Urban Informatics for Sustainable Metropolitan Growth 

 

A project funded by the Ministry of Research and Innovation of Ontario through the ORF-
RE07 Program and by partners Cellint Traffic Solutions, Esri Canada, IBM Canada, 
Waterfront Toronto, the City of Toronto and the Region of Waterloo.  

 

 

Report #17-02-03-02 

By sharing this report we intend to inform iCity partners about progress in iCity research. This 
report may contain information that is confidential. Any dissemination, copying, or use of this 
report or its contents for anything but the intended purpose is strictly prohibited.  



Subway service down again?  1 

Assessing the effects of subway service interruptions on 2 

local surface transit performance 3 

 4 

 5 
 6 

 7 
 8 

Ehab Diab, Ph.D.* 9 

Tel: 514-549-0093; Email: ehab.diab@utoronto.ca 10 

 11 

 12 

Amer Shalaby, Ph.D., P.Eng* 13 

Tel: 416-978-5907; Email: amer@ecf.utoronto.ca 14 

 15 

 16 

* University of Toronto, Department of Civil Engineering, 35 St. George Street, 17 

Toronto, Ontario M5S 1A4 Canada 18 

 19 

 20 

 21 

 22 

Submission date: August 1
st
, 2017 23 

Word Count: 5981, 5 Tables +1 Figure (1500) =7481 24 

 25 

Paper Prepared for Presentation and Publication at the 26 

Transportation Research Board 97
th

 Annual Meeting 27 

 28 

 29 

 30 

31 

mailto:ehab.diab@utoronto.ca
mailto:amer@ecf.utoronto.ca


Diab, Shalaby   2 

ABSTRACT  1 

Cities around the world are keen to offer modern urban transit systems that connect various 2 

locations in an efficient and reliable manner with the highest degrees of riders’ experience. These 3 

systems may consist of various modes such as buses, streetcars (or trams), and rapid transit 4 

systems (e.g., subways). In both research and practice, the quality of transit service has 5 

traditionally been measured and investigated on a mode-by-mode basis. Therefore, it is rare to 6 

find studies that investigated the impacts of poor performance or breakdown of one transit mode 7 

on other functioning modes in multi-modal integrated transit systems. This research aims at 8 

understanding the impact of subway service interruptions on the speed performance of surface 9 

transit in Toronto. In order to do that, a detailed dataset of subway service interruptions collected 10 

in 2013 by the TTC, the public transit provider in the City of Toronto, was used. In addition, 11 

another dataset was obtained from the TTC’s Automatic Vehicle Location (AVL) system for 51 12 

bus and streetcar routes that are within a short walking distance from some subway stations. 13 

Using two statistical models, the paper results indicate that subway service interruptions have a 14 

statistically significant negative impact on bus and streetcar service operations in terms of slower 15 

speeds, with more immediate and intense impacts on streetcar service. Findings from this 16 

research can be useful to transit planners and engineers as they highlight an important interaction 17 

between modes in a multi-modal transit environment. 18 

 19 
 20 

Keywords: Subway system incidents, Bus service, Streetcar service, Service speed  21 

  22 
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INTRODUCTION 1 

Cities around the world are keen to offer modern urban systems that connect various locations in 2 
an efficient and reliable manner with the highest degrees of riders’ experience. These systems 3 
may consist of various modes such as buses, streetcars (or trams), and rapid transit systems (e.g., 4 
subways). A sizable body of literature has focused on understanding the impacts of general 5 

factors (e.g., weather conditions, route distance, demand, number of stops) or various transit 6 
improvement strategies (e.g., transit signal priority (TSP), reserved lanes) on transit service 7 
performance and reliability (1-3). These studies generally focused on one transit mode at a time 8 
such as the bus system (1-3), the streetcar system (4-6), or the subway system (7; 8) while 9 
ignoring the impacts of one system’s disruption on the other systems in multi-modal networks.  10 

For example, Diab and El-Geneidy (1; 9), using bus data collected from the Automatic Vehicle 11 
Location (AVL) and Automatic Passenger Count (APC) systems in Montreal, tested the impact 12 

of a set of improvement strategies (e.g., TSP, articulated buses, bus lanes) on the bus service 13 

running time and variation. In another study, they investigated the impact of bus stop location on 14 
service quality (10). Mesbah et al. (4) explored the impacts of weather conditions on the tram 15 
system’s travel times in Melbourne, Australia. Currie and Reynolds (6) investigated the impacts 16 
of two different fare collection methods on streetcar service performance, while Currie et al. (5) 17 

evaluated the impact of passenger crowding on tram dwell times. Regarding the subway related 18 
studies, Weng et al. (8) examined the impacts of causal variables on subway delay duration, such 19 

as power/vehicle failures and switch malfunction, while Louie et al. (7) investigated the impacts 20 
of both causal and non-causal variables, such as passenger related incidents.  21 

Other researchers focused on understanding, modelling and proposing conceptual 22 

frameworks for rail (or subway) disruption management (i.e., emergency response plans), while 23 
testing different approaches or categorizing rail incidents according to some criteria (11-14). For 24 

example, Pender at al. (15) proposed a method to evaluate the economic viability of providing 25 
dedicated bus service reserved for bus bridging (i.e., shuttle service) purposes for rail system 26 

disruption. Darmanin at al. (16) and van der Hurk et al.(17) developed mathematical approaches 27 
with aim of minimizing commuter discomfort following a service disruption and estimating the 28 

required shuttle line frequencies, respectively.  29 
Despite the previous efforts, it is rare to find studies that focused on understanding the 30 

impacts of service failures of one transit mode on the performance of other functioning transit 31 

modes in multi-modal integrated networks. An improved understating of the various causes 32 
behind the changes in transit system’s performance that users experience on a daily basis would 33 
help transit agencies in developing more appropriate policies to maintain and improve transit 34 

systems’ resilience and performance in the future. This research aims at understanding the 35 
impact of subway system’s interruptions (due to incidents) on the speed performance of surface 36 

transit routes in Toronto. Using Toronto as a case study provides a unique opportunity to 37 
understand the effects of subway service interruptions on the service performance of both bus 38 
and streetcar lines in a highly integrated multi-modal transit system.  39 

STUDY CONTEXT AND METHODOLOGY 40 

Toronto, Ontario, is the most populous city in Canada with more than 2.8 million inhabitants in 41 
2015 (18). The Toronto Transit Commission (TTC) operates the transit service within the City of 42 
Toronto, serving about 2.7 million passengers on a daily basis (19). It operates a multi-modal 43 
transit system, consisting of four subway lines, 11 streetcars lines, and 141 bus routes (20). The 44 
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TTC subway system extends to a total length of 68 km serving 69 stations. A total of 1.3 million 1 

passenger-trips per day were made using the subway system in 2013 (21).   2 
Since the main aim of this study is to understand the impact of incident and interruption 3 

delays of Toronto’s subway system on the performance of the surface transit system, it used two 4 

datasets. The first dataset includes a detailed subway system interruption data collected in 2013 5 
by the TTC. In this dataset, each record includes the incident’s date, time of day (in minutes), 6 
subway station, direction of travel, amount of delay (in minutes), vehicle number and type, as 7 
well as a brief description of the incident and a code representing the incident type. Around 8 
12,000 subway incidents were reported at the stop level in 2013 along the two main subway lines 9 

(i.e., Yonge-University and Bloor–Danforth lines) operated by the TTC in Toronto (Figure 1-A). 10 
The incident causes, for example, included: debris/intrusions at track level, track circuit/track 11 
down, signal/switch/power problems, smoke/fire at the track, and disabled train/train body 12 
problems as well as incidents related to passengers’ activity issues and security aspects (e.g., 13 

injuries, violence, suicide, police investigations etc.). A complete list of incident types at the stop 14 
level can be found at Louie et al. (7). The second dataset was acquired from the TTC’s 15 

Automatic Vehicle Location (AVL) system for several bus and streetcar routes that are within a 16 
short walking distance from some subway stations. This dataset includes information about bus 17 

and streetcar locations (x- and y- coordinates) recorded every 20 seconds as well as other 18 
information related to the time of the record and route and run number.  19 

The study time frame of interest is all the weekdays of May 2013. This month was 20 

selected for analysis because it experienced the greatest number of incidents with the largest 21 
amount of delays and lowest standard deviations for both at the system level. This was done to 22 

capture the impacts of a good number of subway incidents with varying degrees of delays. On 23 
the other hand, other criteria were chosen to identify the subway stations to be included in the 24 
analysis. These criteria were based on generating a composite indicator (or index) for each 25 

subway station using the 2013 daily ridership data and TTC subway incident data to identify the 26 

most vulnerable stations in the subway system. This indicator consists of three equally weighted 27 
variables: daily ridership at the subway station, and total number of incidents and total amount of 28 
delay per weekdays of the month. Each variable was normalized using a z-score, then a total was 29 

generated by summing all three z-scores (Figure 1-B). This index was used to rank all the 30 
subway stations in May 2013. The results of this method helped identify the subway stations that 31 

suffered most from delays in May 2013. The majority of these stations were located along the 32 
Yonge-University-Spadina (YUS) Line, which travel north-south to serve the downtown area. 33 

Therefore, this study placed its focus on this line.  34 
Furthermore, in order to achieve a good understanding of the impacts of subway incidents 35 

on the surface transit system, a subway station should satisfy the following conditions. It should 36 
be neither the first or last stations of the subway line nor a transfer station, where two subway 37 

lines are intersecting. This was done since delays in one subway line can encourage passengers 38 
to use the other line. Finally, the top ranked 24 subway stations along the YUS Line (out of 32 39 
stations) were included in the analysis. This allowed for analyzing the impacts of around 388 40 

incidents with total delay of 1702 minutes, ranging from two to 73-minute incidents. In addition, 41 
over 100 million individual observations were acquired from the TTC’s AVL system for 41 bus 42 
routes and 10 streetcar routes for the weekdays between May 1, 2013 and May 31, 2013. These 43 
routes have stops within 200 metres from the selected subway stations, representing a viable 44 
option for subway users when a subway service interruption occurs. In fact, the focus on 45 
analyzing one subway line allowed us to dramatically decrease the number of analyzed routes. 46 
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The selected month had mild and clear weather with no reordered snow on the ground that could 1 

impact the bus and streetcar route operations. 2 

 3 

 4 
Figure 1: A- Toronto transit system, and B- subway system total z-score by subway station.   5 

A 

B 
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In order to isolate the effects of the subway service interruptions on surface transit 1 

performance, we developed two statistical models. They capture the impacts of subway service 2 
interruptions on the streetcar and bus service speeds, respectively, at the segment-level of 3 
analysis. The segment was defined as the route section between each two consecutive time points 4 

along a route. The time points are important locations for transit agencies schedule building and 5 
operational control (22; 23). Subsequently, all the variables in this study were defined according 6 
at the trip-segment level. For example, the average speed per trip-segment was computed as the 7 
average speed of all GPS points of a given trip within a given segment. In the analysis, we kept 8 
only trip-segments that start within a three kilometre straight-line distance buffer of the YUS 9 

Line to reduce the number of analyzed trip-segments. After processing the raw AVL data in 10 
ArcGIS by running an automated script written in Python, while removing system recording 11 
errors, duplicate records, holiday and weekend trips, the trip-segment’s average speed, direction, 12 
starting time, and route and trip numbers were obtained.  13 

Table 2 includes a list of variables incorporated in the statistical analysis with a detailed 14 
description. The squared terms of some independent variables are used to account for a possible 15 

non-linear relationship between each and the dependent variable. Other variables have been 16 
tested but eliminated from the study due to their insignificance and/or correlation with other used 17 

variables (with a Pearson coefficient greater than 0.80) such as bus/streetcar headway, express 18 
routes and total number of nearby bus/streetcar lines. According to previous studies, the general 19 
factors affecting bus and streetcar travel times include stop sequence along a trip, time of day 20 

(morning peak, off-peak, afternoon peak), segment distance and number of stops (23-25).  21 
Regarding the control variables, dummy variables for the direction of travel and time of 22 

the day were included in the models to isolate the impacts of traffic congestion on the service 23 
performance. A dummy variable, Adjacent segment, was included in the analysis to control for 24 
the trip-segments that start within 200 metres from a subway station. These segments are 25 

expected to have lower speeds due to higher passenger activity at these locations.  It should be 26 

noted that in a few cases the time-point segments start before the 200-metre buffer; however, 27 
they were distinguished as within 200 metres, if they had a stop that serve passengers at subway 28 
locations. Also, in order to fully capture the impacts of subway system on bus/streetcar 29 

performance, time-point segments that start immediately at subway stations were extended by 30 30 
metres at the expense of one stop before. This was done to capture the total impact of passenger 31 

activity (boarding and alighting passengers) at subway stations as well as to eliminate stopping 32 
errors (e.g., cases where bus/streetcar stopped a few metres before the stop location to serve 33 

passengers). Another variable that was used in the models is the distance between Union Station 34 
and the segment in question. Union Station, the country’s largest intermodal transit hub, is 35 
located in the heart of downtown Toronto. 36 

Several variables were included in the models to examine the potential effect of subway 37 

service interruptions on surface transit speed. The first is a set of dummy variables that capture 38 
whether a trip has taken place after the occurrence of a subway service incident along a 39 
bus/streetcar time-point segment located within 200 metres of a subway station (from the created 40 

Adjacent segment variable). These dummy variables were utilized to capture both the spatial and 41 
temporal connections between the subway incidents and the neighbouring bus and streetcar 42 
segments. These dummy variables were categorized into six groups, namely trips starting within 43 
0-5, 5-10, 10-20, 20-30, and 30-60 minutes of an incident, as well as trips starting 60 minutes 44 
after an incident. Theses dummy variables represent trips that have started after a subway 45 
incident starting time, while the incident is still taking place or within a 30-minute buffer after 46 
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the incident clearance time. These 30 minutes were considered as the maximum recovery time 1 

for the system to return to its normal operation. Accordingly, another variable, Trips starting 2 
after a cleared incident time (minutes), representing the difference between the trip’s starting 3 
time and the incident clearance time was used to control for the changes in speed of trips that 4 

start after the incidents’ clearance time and within the 30-minute buffer. Another variable was 5 
used to understand in more detail the spatial and temporal impacts of subway system 6 
interruptions. This variable, trip-segment downstream a segment adjacent to interruption, 7 
distinguishes the trip-segments downstream of a trip-segment adjacent to the location of subway 8 
service interruption. In other words, this variable captures the change in speed along the 9 

bus/streetcar segments that are not immediately adjacent to the subway but lie within the three-10 
kilometre buffer of the YUS Line).  It is important to note that the TTC’ subway service 11 
interruption data are recorded at the station level, indicating the type and amount of delay, with 12 
no clear information about the extent of its spatial effect in terms of other subway stations that 13 

had also experienced no service. Therefore, another cleaning step was done. This step was based 14 
on removing all the segments that are within the interruption impact window (incident duration + 15 

30 minutes of recovery time) and within 200 metres from subway stations adjacent to the subway 16 
station reported in the data. This was done to make sure that we are capturing the subway service 17 

interruptions impact at only one location (i.e., the first location).  18 
In this paper, we used two models to reveal the potential effects of the subway service 19 

interruptions. The first is a streetcar speed model, which uses the streetcar speed (measured in 20 

km/hour) over a segment (i.e., time-point segment) as the dependent variable. A negative value 21 
for the coefficient in the model means that a streetcar had a slower speed. In this model, in 22 

addition to the route number dummy variables (10 dummy variables in total), additional 23 
variables are used to control for the type of vehicles. This was done because the TTC uses more 24 
than one type of vehicle along each single streetcar route, including the short Canadian Light 25 

Rail Vehicle (CLRV) and the long Articulated Light Rail Vehicle (ALRV). Furthermore, in 26 

2014, the TTC began introducing new low-floor and articulated streetcar vehicles, named Flexity 27 
Outlook, to offer more capacity (26). Also, sometimes and due to the shortage streetcar service 28 
capacity, the TTC uses regular buses on streetcar routes to provide a supplementary service 29 

alongside the streetcar service. The second model is the bus speed model, which uses the bus 30 
speed over a segment as the dependent variable. In this model, 41 dummy variables of the bus 31 

route numbers were generated to isolate the unique impacts of each individual bus route on 32 
service speed. 33 

 34 

TABLE 1:  Description of variables used in the model 35 

Variable Name Description 

Trip speed (km/h) Trip speed over a segment. The segment is defined as the route section 

between two consecutive time points along a route (dependent 

variable). 

Segment  sequence A number that represents the sequence of the time-point segment 

along a trip calculated from the terminal 

Number of scheduled stops Number of scheduled stops within a time-point segment  

Adjacent segment A dummy variable equals one if the segment is within 200 metres 

from subway station 

Segment with a layover A dummy variable equals one if the segment includes a layover stop  
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Variable Name Description 

Segment distance (km) Segment length between the two consecutive time-points  

Distance to Union Station (km) Distance measured from the Union Station to the nearest point of the 

time-point segment 

Distance to Union Station 

(KM)^2 

Distance to Union Station squared. The squared term is used to 

account for the observed non-linear relationship between the variable 

and the dependent variable. 

Morning peak A dummy variable equals one if the trip over a time-point segment 

started between 6:00 am to 9:00 am and zero otherwise 

Afternoon peak A dummy variable equals one if the trip over a time-point segment 

started between 3:00 pm to 7:00 pm and zero otherwise 

Early evening A dummy variable equals one if the trip over a time-point segment 

started between 7:00 pm to 10:00 pm and zero otherwise 

Late evening A dummy variable equals one if the trip over a time-point segment 

started between 10:00 pm to 1:00 am and zero otherwise. 

Subway station ridership (000s) Daily ridership of the subway station. 

Subway station ridership^2 Subway station daily ridership squared. 

Trips starting within 5 minutes 

of an incident 

A dummy variable equals one if the trip started between 0 to 5 minutes 

after a nearby subway service interruption took place 

Trips starting within 5-10 

minutes of an incident 

A dummy variable equals one if the trip started between 5 to 10 

minutes after a nearby subway service interruption took place 

Trips starting within 10-20 

minutes of an incident 

A dummy variable equals one if the trip started between 10 to 20 

minutes after a nearby subway service interruption took place 

Trips starting within 20-30 

minutes of an incident 

A dummy variable equals one if the trip started between 20 to 30 

minutes after a nearby subway service interruption took place 

Trips starting within 30-60 

minutes of an incident 

A dummy variable equals one if the trip-segment started between 30 to 

60 minutes after a nearby subway service interruption took place 

Trips starting within 60+ 

minutes of an incident 

A dummy variable equals one if the trip-segment started 60 minutes or 

more after a nearby subway service interruption took place. 

Trips starting after a cleared 

incident time (minutes) 

Time between the trip starting time (after an incident was cleared) and 

the incident clearance time. This time should range between 1 to 30 

minutes (i.e., within the 30-mintue recovery buffer). 

Trip-segment downstream a 

segment adjacent to interruption 

A dummy variable equals one if the trip-segment was downstream of a 

trip-segment adjacent to the location of subway service interruption. 

Bus line i A dummy variable that equals to 1 when the trip-segment is done 

along bus line i, where i represents a bus line; it equals zero otherwise.  

Streetcar—Bus 
A dummy variable equals 1 if the trip-segment is done using buses 

along the streetcar routes 

Streetcar—CLRV 
A dummy variable equals 1 if the trip-segment is done using a 

Canadian Light Rail Vehicle (CLRV)   

Streetcar—ALRV 
A dummy variable equals 1 if the trip-segment is done using an 

Articulated Light Rail Vehicle (ALRV)   

Streetcar—Flexity 
A dummy variable equals 1 if the trip-segment is done using a Flexity 

Outlook  

Streetcar line i A dummy variable that equals 1 when the trip-segment is done along 

streetcar line i, where i represents a streetcar line; it equals zero 

otherwise. 
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ANALYSIS  1 

Descriptive Statistics 2 

Table 2 presents the summary statistics of the variables used in the streetcar and bus models. The 3 
results are differentiated according to the subway service operations: trips during subway service 4 
normal operations and trips during subway service interruptions. For the streetcar system, a total 5 
of 753,820 records were included in the analysis, with about 2,800 records occurring after a 6 
subway incident and within 200 metres from the subway station. In contrast, a total of 1,074,497 7 

records were included in the bus model, with about 10,300 records occurring after a subway 8 
incident took place and within 200 metres from the subject subway station. 9 

As observed in the table, the overall speed of all streetcar trips during normal operations 10 
was about 12.8 km/h with a standard deviation of 5.5 km/h, while the average speed of streetcar 11 

trips that occurred after a subway service interruption was 9.6 km/h with a standard deviation of 12 
3.9 km/h. For the bus routes, a similar pattern can be observed regarding the difference between 13 

trips occurring after a subway incident and those taking place during normal subway service 14 
operations. The overall bus average speed was 18.6 km/h with a standard deviation of 9.3 km/h 15 

under normal operations and 14.2 km/h with a standard deviation of 9.6 km/h after a subway 16 
system incident. Nevertheless, in order to better understand how subway service interruptions 17 
impact surface transit operations while controlling a set of relevant variables, two statistical 18 
models are presented in the following section.  19 
 20 

TABLE 2:  Streetcar and bus route descriptive statistics 21 

 

Streetcar segments Bus segments  

 

Subway 

normal 

operations 

After subway 

incident 

Subway 

normal 

operations 

After subway 

incidents 

 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Segment average speed (KM/H) 12.81 5.55 9.64 3.92 18.56 9.26 14.23 9.56 

Outbound direction 0.50 0.50 0.54 0.50 0.50 0.50 0.51 0.50 

Time-point sequence 5.73 3.35 6.61 1.54 6.24 4.23 6.60 5.26 

Number of scheduled stops 4.78 9.76 3.51 2.87 3.63 2.48 3.07 2.51 

Adjacent segment 0.18 0.38 1.00 0.00 0.23 0.42 1.00 0.00 

Segment with a layover 0.19 0.49 0.13 0.39 0.16 0.37 0.29 0.45 

Segment distance (KM) 1.00 0.64 0.88 0.41 1.20 0.79 1.27 0.92 

Streetcar—Bus 0.10 0.30 0.06 0.23 0.00 0.00 0.00 0.00 

Streetcar—CLRV 0.79 0.41 0.86 0.35 0.00 0.00 0.00 0.00 

Streetcar—ALRV 0.11 0.31 0.09 0.28 0.00 0.00 0.00 0.00 

Streetcar—Flexity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average headway 3.84 1.61 3.89 2.02 7.00 5.77 7.19 6.12 

Distance to Union Station (KM) 2.22 1.48 1.95 1.85 7.91 3.35 8.22 2.82 

Distance to Union Station (KM)^2 7.11 9.82 7.22 10.2 73.7 54.1 75.4 40.6 

Morning peak 0.18 0.39 0.23 0.42 0.20 0.40 0.29 0.45 

Afternoon peak 0.24 0.42 0.25 0.43 0.23 0.42 0.37    0.48 

Early evening 0.13 0.34 0.15 0.35 0.13 0.34 0.08 0.26 

Late evening 0.13 0.33 0.06 0.23 0.13 0.33 0.06 0.24 
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Trips starting within 5 minutes of an incident 0.00 0.00 0.14 0.35 0.00 0.00 0.15 0.36 

Trips starting within 5-10 minutes of an incident 0.00 0.00 0.15 0.36 0.00 0.00 0.16 0.37 

Trips starting within 10-20 minutes of an incident 0.00 0.00 0.30 0.46 0.00 0.00 0.30 0.46 

Trips starting within 20-30 minutes of an incident 0.00 0.00 0.27 0.44 0.00 0.00 0.29 0.45 

Trips starting within 30-60 minutes of an incident 0.00 0.00 0.12 0.33 0.00 0.00 0.10 0.30 

Trips starting within 60+ minutes of an incident 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.03 

Trips starting after a cleared incident time (minutes) 0.00 0.00 12.63 9.56 0.00 0.00 13.34 9.42 

Trip-segment downstream a segment adjacent to 

interruption 
0.03 0.17 0.00 0.00 0.03 0.18 0.00 0.00 

Number of records 751,016 2,804 1,064,197 10,300 

 1 

Streetcar Speed Model 2 

A linear regression model was developed using streetcar speed per trip-segment in 3 
kilometre/hour as the dependent variable. The output of this model is reported in Table 3. Only 4 

significant variables were kept in the model. The t-statistics and the statistical significance are 5 
reported in the table along with their coefficients. The model contains 753,820 observations and 6 

explains 32% of the variation in speed. As seen in the table, generally, the key policy variables, 7 
Trips starting within (…) minutes of an incident, accounting for the trip’s starting time after the 8 

occurrence of a subway service interruption and before resumption of subway service, have 9 
negative significant coefficients. While, this indicates a general negative impact of subway 10 
incidents on the streetcar speed, the impacts vary according to when the trip starts relative to the 11 

incident’s start time. More specifically, trips starting within 0-5 minutes from a subway incident 12 
that has not been cleared yet, do not suffer any significant change in their speed. This indicates 13 

that there is no immediate impact of subway incidents on streetcar performance within the first 5 14 

minutes. Nevertheless, streetcar trips starting within 5-10 minutes from a subway incident that is 15 

still persisting start to see some delays, experiencing a reduction in speed by 0.68 km/h. This 16 
may be reflecting the combined effect of people coming to use the subway only to learn the 17 

service was interrupted and deciding to use the streetcar lines instead and subway users off-18 
loaded from the interrupted subway trains and deciding immediately to use the nearby streetcar 19 
lines instead of waiting for the resumption of subway service.  20 

The speed reduction persists at about 0.57 km/h when the streetcar trip starts in 10-20 21 

minutes after a subway incident start time and while it is still in effect. The trips starting within 22 
20-30 minutes from a subway incident that is still taking place suffer a reduction of 0.83 km/h in 23 
speed. The decrease in speed grows to reach 1.01 km/h and 1.47 km/h for trips starting within 24 
30-60 minutes and more than 60 minutes of an incident, respectively. This means that more 25 
delays and lower speeds are expected for streetcar trips starting while longer subway incidents 26 

are persistent, while keeping all other variables at their mean values. This can be due to the 27 
current policies followed by TTC of providing fewer shuttle buses at disrupted subway locations 28 

served by nearby streetcar service in downtown Toronto (27). Therefore, transit agencies should 29 
provide more resources and different disruption management strategies in responding to subway 30 
incidents in downtown areas in order to reduce the adverse impacts on nearby surface transit 31 
which are typically characterized with overcrowding issues. After the incident clearance time, 32 
every minute difference between the streetcar trip’s starting time and the incident’s clearance 33 

time is expected to improve the streetcar service speed by 0.035 km/h. This indicates that trips 34 
starting after 10 minutes of the subway incident clearance time could expect about 0.35 km/h 35 
recovery in their average speed, while trips starting after 20 and 30 minutes could expect a 0.70 36 
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and 1.05 km/h recovery in their average speed. This indicates (with comparison to the model’s 1 

coefficients in Table 3) that most of the trips will recover within the 30-minute window to their 2 
original speed, except for the trips that start at 60 minutes or later of an incident that is still 3 
taking place. However, this window still represents a good recovery approximation, since the 4 

longest subway incident duration in our sample is 73 minutes.   5 
In accordance with previous work (23; 24; 28; 29), the remaining control variables in the 6 

model perform as expected with regard to the expected sign and significance. Trips during the 7 
afternoon peak were slower by 0.7 km/h than mid-day trips, while trips made during other time 8 
periods were faster than mid-day trips. This is not particular to the context of Toronto, and it has 9 

been observed in other cities in the literature (9; 24; 28), and it was explained by the higher level 10 
of congestion and demand during this period of time. Segment distance, which reflects the 11 
distance of streetcar route section between two consecutive time points, increases the service 12 
speed. For every additional kilometre, streetcar speed is expected to increase by 2.85 km/h. This 13 

suggests that longer distances between time-point stops can improve the service speed, which is 14 
consistent with previous research (24). Distance to downtown, represented by Union Station, 15 

increases streetcar service speed. For every additional kilometre in distance to downtown the 16 
streetcar speed is expected to increase by 0.13 km/h. This is expected due to less traffic 17 

congestion and demand at locations that are farther from downtown. Nevertheless, the distance 18 
to Union Station square term (which is used to account for the observed non-linear relationship) 19 
had a statistically significant positive association with the speed, indicating that after a certain 20 

distance no negative association between the distance to Union Station and streetcar speed can be 21 
expected. 22 

Route speed also varies by direction, likely resulting from traffic conditions and other 23 
unseen factors not explained by the model’s variables, which can be found in previous 24 
operational models (30-32). The increase in the segment sequence within a trip is expected to 25 

increase the streetcar operational speed slightly by 0.006 km/h for every additional segment. The 26 

number of scheduled stops within a segment is expected to decrease the speed by 0.03 for every 27 
additional stop, which is expected due to passenger activity and streetcar acceleration and 28 
deceleration at stops. Any segment within 200 metres from a subway station and any segment 29 

that includes a layover stop are slower by 2.85 and 1.9 km/h compared to other segments, 30 
respectively. This is expected due to the high volume of passengers at these locations. In 31 

addition, the subway station’s daily ridership has a negative impact on streetcar service speed. 32 
For every additional one thousand passengers per subway station the streetcar service speed 33 

starting at segments that are within 200 metres is expected to be slower by 0.05 km/h. 34 
Nevertheless, the subway ridership square term shows that after a certain ridership level, no 35 
decrease in speed can be expected.  Finally, the type of streetcar vehicles and route number also 36 
have an impact on streetcar average speed, which can be related to the vehicle offered capacity 37 

and specifications, traffic conditions, route lengths, and TTC scheduling and route management 38 

practices.  39 

  40 
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Table 3: Streetcar segment speed model 1 

 

Coeff. Z 

95% Conf. Interval 

Lower 

Bound 

Upper 

Bound 

(Constant) 9.73 288.4 *** 9.67 9.80 
Outbound direction -0.40 -37.4 *** -0.42 -0.38 
Time-point sequence 0.01 2.68 *** 0.00 0.01 
Number of scheduled stops -0.03 -44.35 *** -0.03 -0.03 
Adjacent segment  -2.85 -152.8 *** -2.89 -2.81 
Segment with a layover -1.90 -146.5 *** -1.93 -1.88 
Segment distance (KM) 2.24 213.8 *** 2.22 2.26 
Streetcar bus -0.06 -1.73 *** -0.13   0.01 

Streetcar ALRV -0.19 -4.58 *** -0.28 -0.11 

Streetcar Flexity 0.42 0.20 
 

-3.60 4.43 

Distance to Union Station (KM) 1.30 76.5 *** 1.27 1.33 

Distance to Union Station (KM)^2 -0.18 -57.1 *** -0.18 -0.17 

Morning peak 1.51 96.8 *** 1.48 1.54 

Afternoon peak -0.72 -50.6 *** -0.75 -0.70 

Early evening 1.16 67.6 *** 1.13 1.20 

Late evening 4.00 226.9 *** 3.96 4.03 

Subway station ridership -0.05 -17.54 *** -0.05 -0.04 

Subway station ridership^2 0.00 18.55 *** 0.00 0.00 

Trips starting within 5 minutes of an incident 0.07 0.28 
 

-0.40 0.53 

Trips starting within 5-10 minutes of an incident -0.68 -2.83 *** -1.16 -0.21 

Trips starting within 10-20 minutes of an incident -0.57 -2.36 ** -1.05 -0.10 

Trips starting within 20-30 minutes of an incident -0.81 -2.23 ** -1.53 -0.10 

Trips starting within 30-60 minutes of an incident -1.01 -2.37 ** -1.84 -0.18 

Trips starting within 60+ minutes of an incident -1.47 -1.74 * -3.12 0.19 

Trips starting after a cleared incident time (minutes) 0.035 2.23 ** 0.00 0.06 

Route 501 -0.69 -15.10 *** -0.78 -0.60 

Route 502 -0.66 -13.41 *** -0.76 -0.56 

Route 503 -0.10 -1.33 
 

-0.24 0.05 

Route 504 0.07 3.72 *** 0.03 0.11 

Route 506 0.15 6.94 *** 0.11 0.20 

Route 509 1.23 25.45 *** 1.14 1.33 

Route 510 -2.75 -107.6 *** -2.80 -2.70 

Route 511 -1.51 -54.77 *** -1.56 -1.45 

Route 512 1.07 20.84 *** 0.97 1.17 

N 753,820 

Adjusted R Square 0.32 

F statistics (34, 753819) 10430 

F significance (Prob > F) 0 

Bold indicates statistical significance 

*** Significant at 99% ** Significant at 95% * Significant at 90%  

 2 

 3 

 4 
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Bus Speed Model 1 

A linear regression model was also developed using bus speed per trip-segment in km/h as the 2 
dependent variable. The output of this model is reported in Table 4. Only the significant 3 
variables were kept in the model. The t-statistics and the statistical significance are also reported 4 
in the table along with their coefficients. The model contains 1,074,496 observations and explains 5 

37% of the variation in bus service’s speed. As seen in the table, a different pattern can be 6 
observed with respect to the variable signs and magnitude of coefficients in comparison to the 7 
previous model. The key policy variables, Trips starting within (…) minutes of an incident, have 8 
a negative significant coefficient for only two cases, namely for trips starting within 20-30 9 
minutes and within 30-60 minutes after a subway incident start time. More specifically, trips 10 

starting within 20-30 and 30-60 minutes of a subway incident while it is still in effect suffer a 11 
reduction of 0.25 km/h and 0.53 km/h in their speed, respectively.  12 

Nevertheless, the observed reductions in speed are relatively minor compared to the 13 

previous model, particularly considering that bus speeds are normally higher than streetcar 14 
speeds. Therefore, the following section presents a sensitivity analysis to better understand the 15 
relative impacts on both systems. Bus trips starting more than 60 minutes after a subway incident 16 
do not suffer a statistically significant reduction in their service speed. This indicates an 17 

improved situation, which can be related to the TTC’s practice of employing shuttle buses at 18 
these locations, relieving the impacts of subway incidents. On the other hand, bus speeds over 19 

the same trip’s segments following an impacted segment by the subway service interruption is 20 
expected to be slower by 0.47 km/h, which could be explained by induced passenger activity 21 
along these segments and/or by traffic conditions along the bus corridor.  22 

Regarding the other remaining control variables in the model, it is clear that the model 23 
coefficients follow the same signs and magnitude as the previous model. Afternoon peak trips 24 

are slower than all other trips during the day. Distance to Union Station increases the bus service 25 
speed up to a certain point, beyond which no positive impact is observed. The segment distance 26 

and segment sequence have a positive impact on speed, while the number of stops within a 27 
segment, trips that are within 200 metres from a subway station, and trips with layovers have 28 

negative impacts on bus speed. Finally, the route direction and route number (40 dummy 29 
variables but not reported in Table 4) also showed a significant impact on bus speeds, which can 30 
be attributed to each route specifications, traffic conditions, and scheduling. 31 

 32 

  33 
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TABLE 4:  Bus segment speed model 1 

 

Coeff. Z 

95% Conf. Interval 

 

Lower 

Bound 

Upper 

Bound 

(Constant) 13.11 150.6 *** 12.9 13.3 

Outbound direction 0.28 19.24 *** 0.25 0.30 

Time-point sequence 0.02 6.92 *** 0.02 0.03 

Number of scheduled stops -0.21 -47.0 *** -0.22 -0.20 

Adjacent segment -3.98 -208.5 *** -4.02 -3.94 

Segment with a layover -7.13 -295.2 *** -7.18 -7.09 

Segment distance (KM) 2.85 195.8 *** 2.82 2.88 

Distance to Union Station (KM) 0.42 29.63 *** 0.39 0.45 

Distance to Union Station (KM)^2 -0.01 -18.36 *** -0.02 -0.01 

Morning peak 0.55 26.49 *** 0.51 0.59 

Afternoon peak -2.11 -108.0 *** -2.15 -2.07 

Early evening 2.00 85.68 *** 1.96 2.05 

Late evening 6.42 266.4 *** 6.37 6.46 

Subway station ridership -0.04 -12.39 *** -0.05 -0.03 

Subway station ridership^2 0.001 13.63 *** 0.00 0.00 

Trips starting within 5 minutes of an incident 0.13 0.66 
 

-0.25 0.51 

Trips starting within 5-10 minutes of an incident 0.19 0.98 
 

-0.19 0.56 

Trips starting within 10-20 minutes of an incident 0.07 0.52 
 

-0.21 0.35 

Trips starting within 20-30 minutes of an incident -0.25 -1.70 * -0.53 0.04 

Trips starting within 30-60 minutes of an incident -0.53 -2.28 ** -0.98 -0.07 

Trips starting within 60+ minutes of an incident -2.98 -1.14 
 

-8.07 2.12 

Trip-segment downstream a segment adjacent to 

interruption 
-0.47 -11.7 *** -0.55 -0.39 

**** 40 dummy variables to control for the route 

number 

     N 1074496 

Adjusted R Square 0.37 

F statistics (62, 1074495)10220 

F significance (Prob > F) 0 

Bold indicates statistical significance 

*** Significant at 99% ** Significant at 95% * Significant at 90%  

 2 

Sensitivity Analysis 3 

A sensitivity analysis is conducted in order to explore the relative impacts of subway incidents 4 
on streetcar and bus systems speed while keeping all variables constant at their mean values. 5 
Table 5 shows the expected average speed for streetcars and buses during the different time 6 
periods of the day. For the streetcar system, the speed estimates were made for the eastbound 7 

trips of Route 501 and using CLRVs. While for the bus system, the speed estimates were made 8 
for the westbound trips of Route 96. Both routes included in the sensitivity analysis operate at 9 
the median speed of their respective systems. In Table 5, the percentage of change in average 10 
speed due to subway service interruptions compared to normal operations is reported. 11 
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As shown in the table, the average speed for streetcars over an adjacent segment within 1 

200 metres from a subway station and during normal operations is 10.7 km/h. This average 2 
decreases by 6.5% for trips starting in 5-10 minutes after a subway incident start time and while 3 
it is still in effect. The reduction in speed remains at about 5.5% for trips that start within 10-20 4 

minutes after a subway incident’s start time. Afterwards, the speeds further decline gradually by 5 
7.7%, 9.6 %, and 13.9 % for trips starting within 20-30, 30-60 and more than 60 minutes of an 6 
incident, respectively. This reflects a higher magnitude of impact of longer subway incidents on 7 
the streetcar service speed. The maximum delay for streetcars occurs during the afternoon peak 8 
period, with a 16.6% reduction in speed for trips starting more than 60 minutes of an incident 9 

while the service interruption is still in effect. This highlights a challenge during this time period 10 
that requires more attention from the transit agency. 11 

The average speed for buses over an adjacent segment within 200 metres from a subway 12 
station and during normal operations is 19.4 km/h. This average decreases slightly by 1.3% and 13 

2.8% for trips starting in 20-30 and 30-60 minutes after a subway incident’s start time and while 14 
it is still in effect, respectively. Similar to the streetcar system, the peak delay occurs during the 15 

afternoon peak period, with a 3.3% reduction in speed for trips starting 30-60 minutes after a 16 
subway incident’s start time. This highlights a maximum of 13.3% of additional delay for 17 

streetcars due to subway service interruptions in comparison with buses. This delay means an 18 
increased waiting time, travel time and overcrowding experienced by the streetcar’s users, which 19 
would have a direct negative effect on their perceptions of the service quality. Therefore, 20 

developing more appropriate policies to maintain and improve the streetcar systems’ resilience 21 
and performance during these situations is highly recommended.  22 

 23 

Table 5: Streetcar and bus service speed (in km/h) sensitivity analysis 24 

 

Morning  

peak 
Midday 

Afternoon 

peak 
Early evening 

Late  

evening 
Overall 

Streetcar service speed 

During normal operations 11.0 9.6 8.8 10.7 13.6 10.7 

During subway disruption Speed %  Speed %  Speed %  Speed %  Speed %  %  

Trips starting within 5 

 minutes of an incident 
11.0 0.0% 9.6 0.0% 8.8 0.0% 10.7 0.0% 13.6 0.0% 0.0% 

Trips starting within 5-10  

minutes of an incident 
10.3 -6.2% 8.9 -7.2% 8.1 -7.8% 10.0 -6.4% 12.8 -5.0% -6.5% 

Trips starting within 10-20 

minutes of an incident 
10.5 -5.2% 8.9 -6.0% 8.2 -6.5% 10.1 -5.4% 12.9 -4.2% -5.5% 

Trips starting within 20-30 

minutes of an incident 
10.2 -7.4% 8.7 -8.5% 8.0 -9.2% 9.9 -7.6% 12.7 -6.0% -7.7% 

Trips starting within 30-60 

minutes of an incident 
10.0 -9.1% 8.5 -10.6% 7.8 -11.4% 9.7 -9.4% 12.5 -7.5% -9.6% 

Trips starting within 60+  

minutes of an incident 
9.60 -13.3% 8.1 -15.4% 7.3 -16.6% 9.2 -13.7% 12.1 -10.8% -13.9% 

Bus service speed 

During normal operations 16.5 17.0 15.9 21.0 26.4 19.4 
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During subway disruption Speed    %  Speed %  Speed     %  Speed %  Speed %  %  

Trips starting within 5 

 minutes of an incident 
16.5 0.0% 17.0 0.0% 15.9 0.0% 21.0 0.0% 26.4 0.0% 0.0% 

Trips starting within 5-10  

minutes of an incident 
16.5 0.0% 17.0 0.0% 15.9 0.0% 21.0 0.0% 26.4 0.0% 0.0% 

Trips starting within 10-20 

minutes of an incident 
16.5 0.0% 17.0 0.0% 15.9 0.0% 21.0 0.0% 26.4 0.0% 0.0% 

Trips starting within 20-30 

minutes of an incident 
16.3 -1.5% 16.7 -1.4% 15.6 -1.6% 20.7 -1.2% 26.1 -0.9% -1.3% 

Trips starting within 30-60 

minutes of an incident 
16.0 -3.2% 16.4 -3.1% 15.3 -3.3% 20.4 -2.5% 25.8 -2.0% -2.8% 

Trips starting within 60+  

minutes of an incident 
16.5 0.0% 17.0 0.0% 15.9 0.0% 21.0 0.0% 26.4 0.0% 0.0% 

% refers to the percentage of change in speed = (trip speed during an incident category -  trip speed during normal 

operations)/ trip speed during normal operations 

 1 

CONCLUSION 2 

The objective of this study is to evaluate the impact of subway system’s interruptions on surface 3 
transit system’s performance in Toronto. In order to do that, the study mainly used two datasets 4 
obtained from the TTC. The first dataset included detailed subway system interruption data 5 
collected in 2013, while the second dataset was acquired from the TTC’s AVL system for all the 6 
weekdays of May 2013 for 51 transit routes (i.e., 41 bus routes and 10 streetcar routes) within a 7 
short walking distance from a subway station (i.e., < 200 metres). The selection of subway 8 

stations to be included in the analysis was based on a composite indicator generated to identify 9 

the most vulnerable stations in the subway system and to capture the exceptional events of 10 
subway interruptions. Two models were utilized using bus and streetcar speeds at the 11 
disaggregate level of time-point segment and trip as the dependent variable. 12 

The models indicate that subway service interruptions have a statistically significant 13 
impact on streetcar and bus operations, contributing to longer passengers’ waiting times at 14 

downstream locations and in-vehicle passengers’ total travel time. Nevertheless, the intensity of 15 
delay varies according to the mode and the starting time of the trip category in comparison with 16 
the starting time of the incident. More specifically, subway incidents have more immediate and 17 

long lasting negative impacts on the streetcar service speed. This reduction in speed ranged 18 
between 5.5% and 13.9% of the average speed during normal operations. In contrast to the 19 

streetcar service, the bus service experienced less significant delays in its operational speed due 20 
to subway service interruptions. This reduction in speed ranged only between 1.3% and 2.8% of 21 

the average speed during incident-free operations. 22 
This difference in impacts between the two systems may reflect the TTC’s use of 23 

disruption management protocols for dealing with subway service disruptions. These protocols 24 
mainly deploy fewer shuttle buses along the southern section of the subway system (U-shaped 25 
section) where nearby streetcar service is available, which could very well be the reason for the 26 

sharper decline in streetcar service speed. Therefore, a detailed investigation regarding the 27 
shuttle service level of employment that is required to minimize the subway incidents’ impact on 28 
local streetcar service is recommended, which we were not able to investigate here due to 29 
missing accurate information about shuttle service arrival and departure times during our study 30 
period.  31 
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Since it is rare to find studies in the literature that explore the impact of one public 1 

transport mode failure on other public transport modes in a multi-modal environment, one of the 2 
key contributions of this research is developing a methodology that can be used by other 3 
agencies and researchers to understand these impacts at different setups and locations. While this 4 

research explores the impact of subway system interruptions on the neighbouring bus and 5 
streetcar systems, it is recommended to expand this study to cover the impact of other system 6 
interruptions such as commuter rail systems on surface transit quality.  7 
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