

BUILT FOR WALKING: SAFE ENVIRONMENTS FOR ACTIVE TRANSPORTATION

Ontario Road Safety Forum March 6, 2018

Andrew Howard, MD, FRCSC, MSc

Linda Rothman, BScOT, PhD

Child Health Evaluative Sciences, Hospital for Sick Children

OVERVIEW

- Introduction
- Background
- Methodological Overview
 - Cross Sectional Studies
 - Case Control Studies
 - Quasi Experimental Studies (Natural Experiments)

Further School-Based Studies

- Parent Perceptions
- Driver Behaviour
- Vision Zero Intervention Project
- Further City Wide Studies
 - Social inequities and the BE
 - Child Active Transportation Safety and the Environment (CHASE)
- Conclusions and Discussion

WHO WE ARE

- Dr. Andrew Howard- Senior Scientist, Orthopaedic Surgeon, Hospital for Sick Children, Toronto, ON
- Dr. Linda Rothman Senior Research Associate, Epidemiologist, Hospital for Sick Children, Toronto, ON
- Dr. Colin Macarthur-Senior Scientist, Clinical Research, Epidemiologist, Hospital for Sick Children, Toronto, ON
- Dr. Alison Macpherson- *Professor, Epidemiologist, York University, Toronto, ON*
- Dr. Ron Buliung- Professor, Geographer, University of Toronto, Mississauga, ON
- Dr. Marie Soleil Cloutier Professor, Geographer, Institut national de la recherche scientifique (INRS), Montreal, QC

WHAT WE DO

- Children's injury prevention research since the late 1990s
 - Playground
 - Hockey
 - Orthopaedic injuries
 - Motor vehicle occupants
 - Vulnerable road users and active transportation
- Data
 - Trauma, emergency room surveillance, hospital discharge, coroner's, police data, municipal, school board, census, surveys, City of Toronto

COLLABORATORS, PARTNERS, KNOWLEDGE USERS, STAKEHOLDERS

- Universities
- Hospitals
- Municipalities (Public Health, Policy, Transportation)
- Provincial government (Transportation, Metrolinx),
- School boards
- Coroners
- Parachute
- Green Communities Canada
- Toronto Police Services
- CAA

Contents lists available at ScienceDirect Preventive Medicine

journal homepage: www.elsevier.com/locate/ypmed

Influence of social and built environment features on children walking to school: An observational study

Linda Rothman ^{a,b,*}, Teresa To^a, Ron Buliung^c, Colin Macarthur^a, Andrew Howard^a

Contents lists available at ScienceDirect Accident Analysis and Prevention

journal homepage: www.elsevier.com/locate/aap

Exploring the impact of a dedicated streetcar right-of-way on pedestrian motor vehicle collisions: A quasi experimental design

Sarah A. Richmond^{a,*}, Linda Rothman^{a,c,1}, Ron Buliung^d, Naomi Schwartz^{a,b,2}, Kristian Larsen^d, Andrew Howard^{a,e,f,g,3} BMC

Public Health **Open Access**

CrossMark

RESEARCH ARTICLE

Do school crossing guards make crossing roads safer? A quasi-experimental study of pedestrian-motor vehicle collisions in Toronto, Canada

Linda Rothman^{1,3*}, Daniel Perry^{2,4}, Ron Buliung⁵, Colin Macarthur^{1,6,8}, Teresa To^{1,8,9}, Alison Macpherson Kristian Larsen^{1,5} and Andrew Howard^{1,2,7,8}

Online First	Current is	sue	Archive	Ab	out the jou	rnal	Submit	
Online First	Current issue	Archive	Supplem	ents	eLetters	Topic	collections	
Home > Volume 20, Issue 3 > Article								

Inj Prev 2014;20:155-158 doi:10.1136/injuryprev-2012-040717

Original article

The impact of pedestrian countdown signals on pedestrian-motor vehicle collisions: a reanalysis of data from a quasi-experimental study 8 OPEN ACCESS

Sarah A Richmond¹, Andrew R Willan^{1,2}, Linda Rothman¹, Andi Camden¹, Ron Buliung³, Colin Macarthur^{1,4}, Andrew Howard^{1,5,6,7}

Motor Vehicle-Pedestrian Collisions and Walking to School: The Role of the Built Environment

PEDIATRICS Volume 133, Number 5, May 2014

AUTHORS: Linda Rothman, BScOT, MHSC, PhD.^{ab} Colin Macarthur, MBChB, PhD, a.c.d Teresa To, PhD. ab.d.e Ron Buliung, PhD,^f and Andrew Howard, MD, MSC, FRCSC^{a,d,g,h}

Journal of Transport & Health Volume 3, Issue 4, December 2016, Pages 523-528

Examining the impact of cycle lanes on cyclist-motor vehicle collisions in the city of Toronto Deepit Bhatia a, c, Sarah A. Richmond a & Ø, C.K. Jennifer Loo c, Linda Rothman b, Colin

E Show more

Macarthur d, Andrew Howard a

School environments and social risk factors for child pedestrian-motor vehicle collisions: A case-control study

Linda Rothman (BScOT MHSC PhD)^{a,b,*}, Andrew Howard (MSC MD FRCSC)^b, Ron Buliung (PhD)^c, Colin Macarthur (MBChB PhD)^b, Sarah A. Richmond (PhD)^{a,b}, Alison Macpherson (PhD)^a

³ Faculty of Health-School of Kinesiology & Health Science York University, Norman Bethune College, 4700 Keele SL, Room 337 Toronto, ON M3J 1P3, Canada ⁶ Child Health Evaluative Sciences, The Hospital for Sick Children, 555 University Ave, Toronto M5G 1X8, Canada ⁷ Department of Cooparph, University of Toronio Missiongui, 3350 Missiongui Rood, 8310 Ave Missiongui, ON ISLI CS, Canada

Direct observations of active school transportation and stroller use in kindergarten children

Linda Rothman a.d.*, Alison K Macpherson d, Andrew Howard a.b., Patricia C Parkin a.c., Sarah A Richmond a.d. Catherine S Birken a.c

Travel Behaviour and Society

journal homepage: www.elsevier.com/locate/tbs

The school environment and student car drop-off at elementary schools Linda Rothman^{a,b,*}, Ron Buliung^c, Andrew Howard^{b,d}, Colin Macarthur^b, Alison Macpherson^a

вмс

Contents lists available at ScienceDi Accident Analysis and Prevention

journal homepage: www.elsevier.com/locate/aaj

Exploring the impact of a dedicated streetcar right-of-way on pedestrian motor vehicle collisions: A quasi experimental design Sarah A. Richmond^{a,a}, Linda Rothman^{a,c,1}, Ron Buliung^d, Naomi Schwartz^{a,b,2}, Kristian Larsen^d, Andrew Howard^{a,e,f,g,3}

Traffic Injury Prevention

CrossMar

Rothman et al. BMC Public Health (2015) 15:774 DOI 10.1186/s12889-015-2116-4

a guasi-experimental study

RESEARCH ARTICLE

and Andrew Howard⁵

ISSN: 1538-9588 (Print) 1538-957X (Online) Journal homepage: http://www.tandfonline.com/loi/gcpi20

Dangerous student car drop-off behaviours and child pedestrian-motor vehicle collisions: an observational study

Linda Rothman MHSCPhD , Andrew Howard MSCFRCSC , Ron Buliung PhD, Colin Macarthur MBChBPhD & Alison Macpherson PhD

> thestar.com <

GTA

News / GTA

Kids' rates of walking to school not linked to crashes: study

The proportion of kids who walk to school is not linked to the number of crashes in a neighbourhood. Instead the "built environment" is responsible, a new study shows.

Walking the walk: How cities can make it safe for kids en route to school

ADRIANA BARTON The Globe and Mail Published Tuesday, Apr. 08 2014, 3:10 PM EDT Last updated Tuesday, Apr. 08 2014, 11:57 PM EDT

As more cities embrace countdown signals at intersections, Toronto study casts doubt on their safety

St. Clair streetcar line has made pedestrians safer: study

Hospital for Sick Children research concludes that pedestrian-vehicle collisions were reduced by half after the separated streetcar line was built.

Study recommends kids walk to school

News Staff Apr 7, 2014 06:47:09 AM

School drop-offs more dangerous than parents think: study

BY NEWS STAFF POSTED JAN 21, 2016 10:31 AM EST

Parents' dangerous driving at drop-off areas puts students at risk, study finds Study finds increased chance of injury in and around schools in the morning rush as

thestar.com

News / GTA

Toronto countdown crosswalks have led to increase in pedestrian collisions, study finds

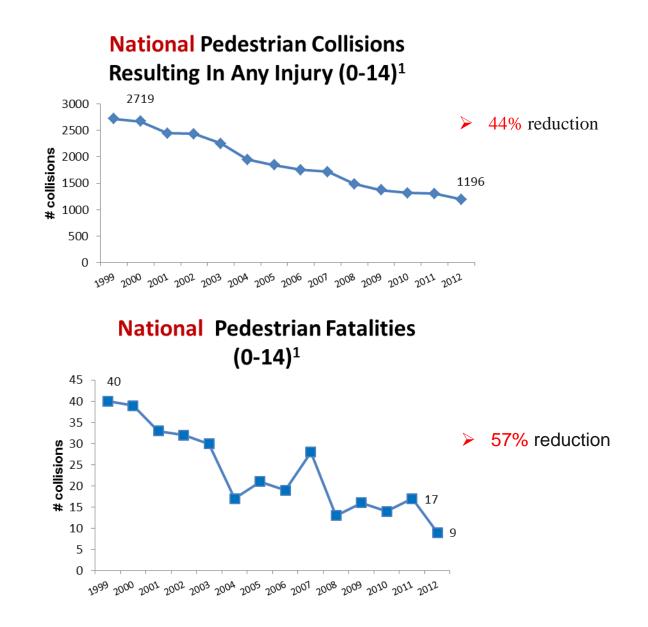
A fresh look at old data finds a 26 per cent rise in people being struck in intersections. But timing tweaks could change that.

Safety of walking to school for children related to features of the environment

April 7, 2014 / Author: Tara Haelle / Reviewed by: Robert Carlson, M.D Beth Bolt, RPh

Driving your kids to school puts other children at risk, new study finds

Dangerous driving a problem at over 100 Toronto-area elementary schools



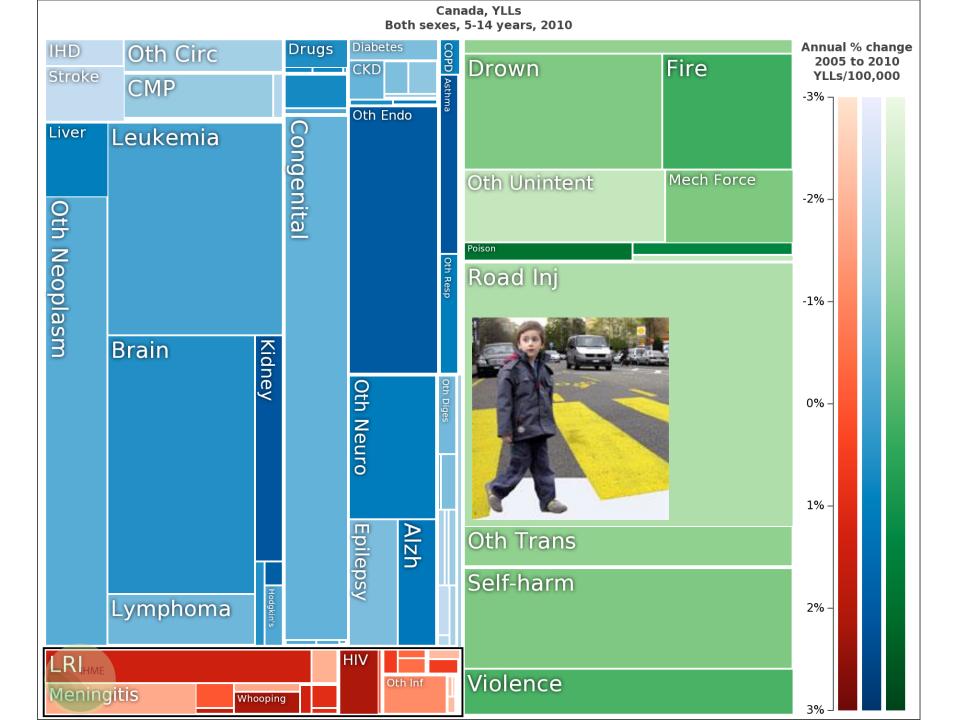
nected with CBC News

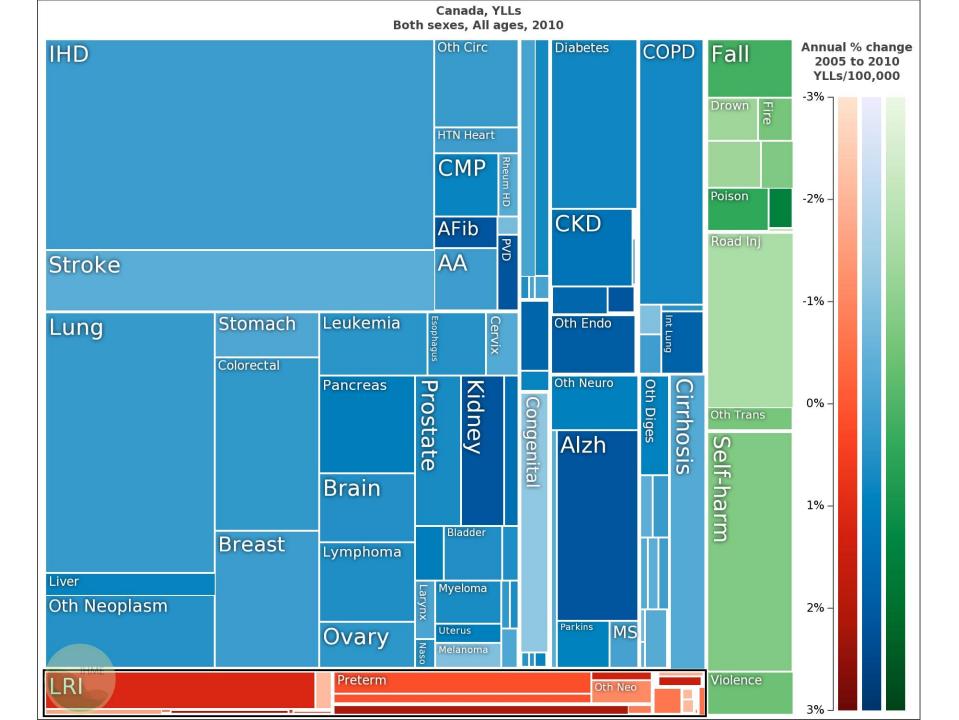
A child crossing the street at a

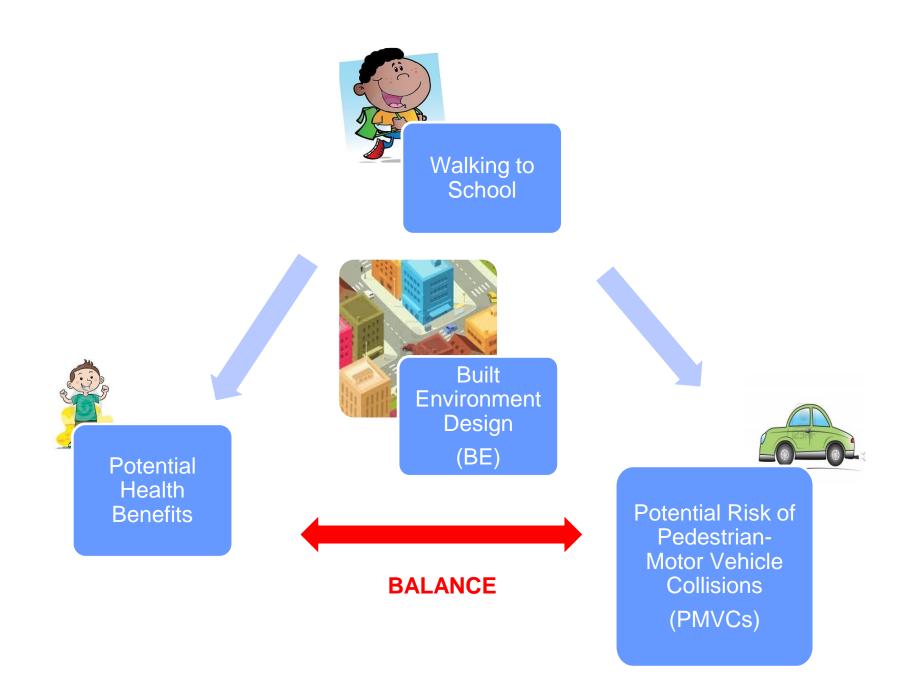
THINKSTOCK PHOTO

crosswalk

¹Transport Canada, Canadian Motor Vehicle Traffic Collision Statistics: 2013




WHAT IS TRANSPORTATION HEALTH?


- Road Traffic Injury Prevention
- <u>Health promotion through active</u> transportation (walking, cycling, public transit)
- Same population, built environment, same denominators
- Need to be considered together

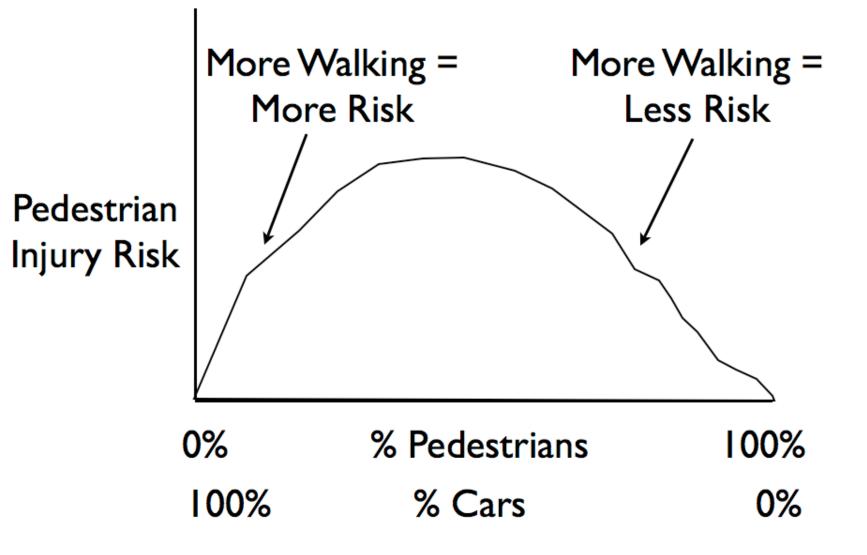
TORONTO TRAUMA PATIENTS, 2015

	All	ISS12+
Occupant	42	14
Pedestrian	30	10
Cyclist	15	7

Haddon's Matrix -Pedestrian Injury

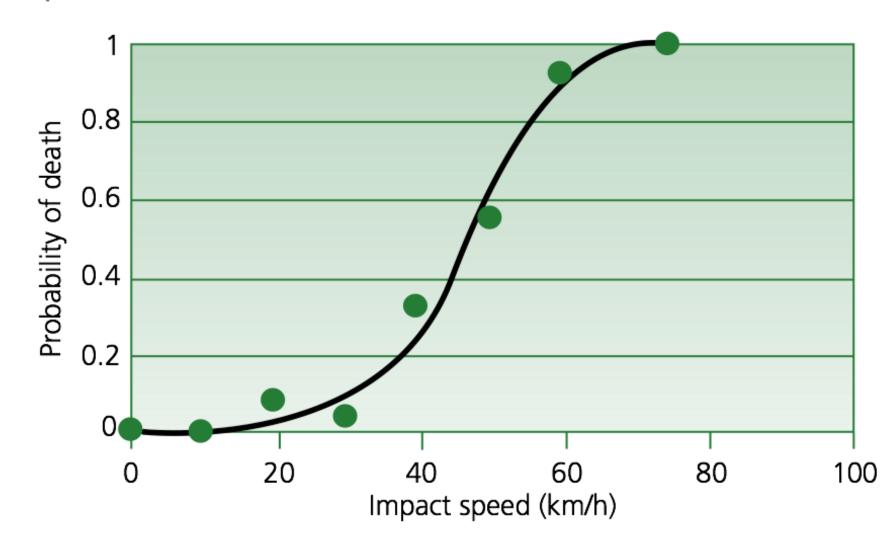
	<u>Person</u>	<u>Equipment</u>	<u>Environment</u>
<u>Pre Event</u>	Driver Training, Distraction, pedestrian visibility	Pedestrian warning systems	Road design, raised crosswalks, speed camera, crossing guards, signals, lighting, etc
<u>Event</u>		Bumper, hood, windshield design	
Post Event	Access to health care	Collision Notification	ATLS system

Safety in numbers?¹ OR


Increased walking exposure = increased risk?^{2,3,4}

1 Jacobsen PL, Inj Prev. 2003;9:205-209.

2 Macpherson, A. Am J Public Health. 1998;88:1840-1843.


3 Rao, Bull N.Y. Acad Med. 1997;74:65-80.

4 Gropp Inj Prev. 2013;19:64-67

Risk of Pedestrian Injury Varies by Transport Mix

Pedestrian fatality risk as a function of the impact speed of a car

WALKING, SAFETY AND THE BUILT ENVIRONMENT

- Systematic review of built environment correlates of both walking and child pedestrian injury¹
- Ten electronic databases,1980-Feb, 2012, urban, ages 4-12, highly motorized countries
- Associations between BE and walking or injury
- 35 child pedestrian injury, 50 walking papers

Downloaded from injuryprevention.bmj.com on January 17, 2014 - Published by group.bmj.com

Systematic review

Walking and child pedestrian injury: a systematic review of built environment correlates of safe walking

Linda Rothman, $^{\rm 1,2}$ Ron Buliung, $^{\rm 3}$ Colin Macarthur, $^{\rm 1,4,5}$ Teresa To, $^{\rm 1,2,5,6}$ Andrew Howard $^{\rm 1,5,7,8}$

METHODOLOGIC OVERVIEW

- Cross Sectional Studies
- Case Control Studies
- Quasi Experimental Studies (Natural Experiments)

	Preventive Medicine 60 (2014) 10-15	
	Contents lists available at ScienceDirect	[×] PM
5 F. (-)	Preventive Medicine	Preventive
ELSEVIER	journal homepage: www.elsevier.com/locate/ypmed	
nfluence of socia school: An obser	ll and built environment features on children walking to vational study $\stackrel{ m var}{\asymp}$	CrossMark
Linda Rothman ^{a,b,*} , '	[°] Feresa To ^a , Ron Buliung ^c , Colin Macarthur ^a , Andrew Howard ^a	

Direct observations of active school transportation and stroller use in kindergarten children

Linda Rothman ^{a.d.}, Alison K Macpherson ^d, Andrew Howard ^{a.b}, Patricia C Parkin ^{a.c}, Sarah A Richmond ^{a.d}, Catherine S Birken ^{a.c}

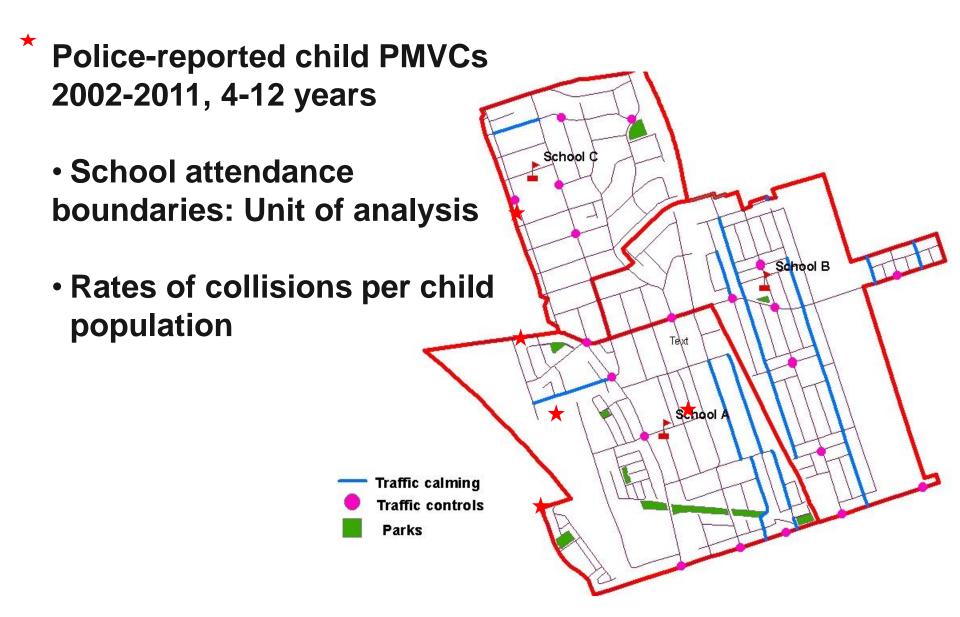
ARTICL

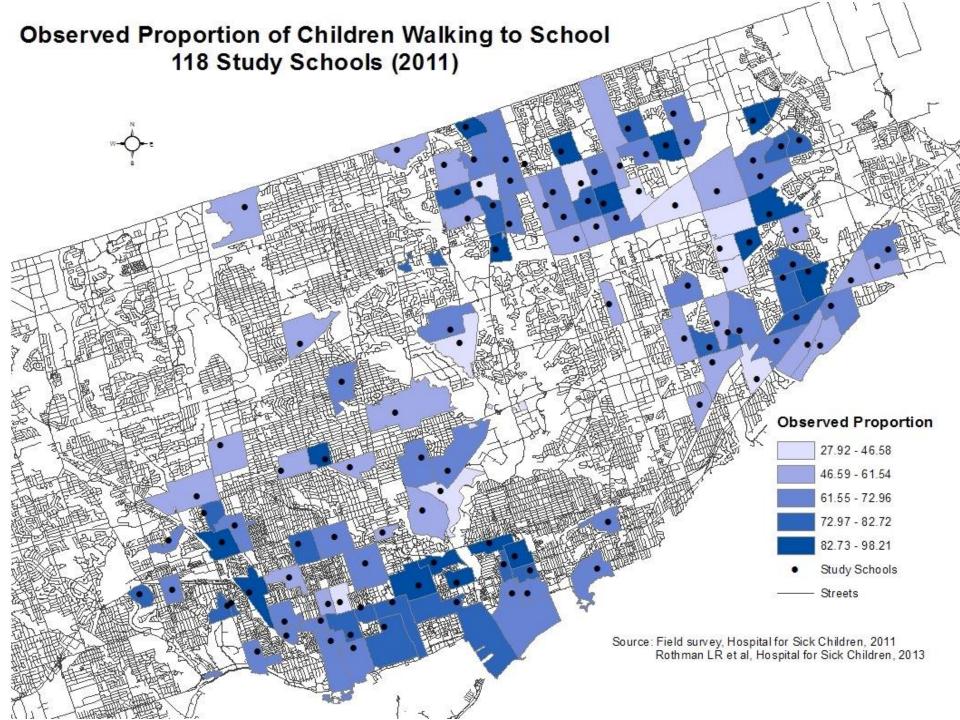
Motor Vehicle-Pedestrian Collisions and Walking to School: The Role of the Built Environment

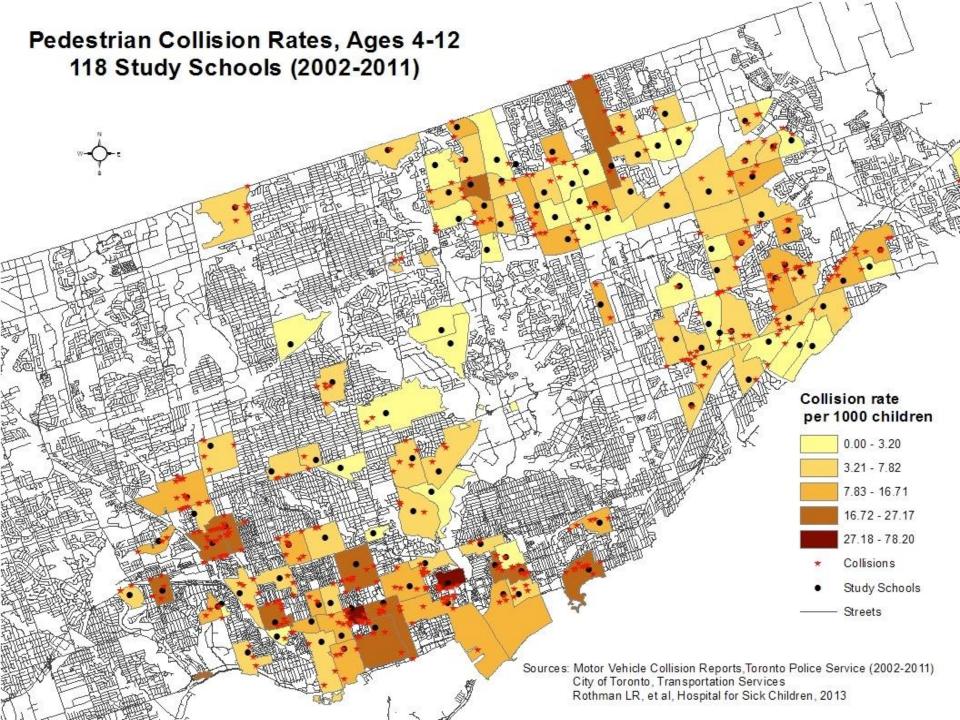
PEDIATRICS Volume 133, Number 5, May 2014

AUTHORS: Linda Rothman, BScOT, MHSC, PhD,^{ab} Colin Macarthur, MBChB, PhD,^{acd} Teresa To, PhD,^{ab,d,e} Ron Buliung, PhD,^f and Andrew Howard, MD, MSC, FRCSC^{a,d,g,h}

OBSERVATIONAL STUDY


- What is the relationship between increased walking to school and child PMVC?
- Can walking/injury relationship be modified through the built environment?

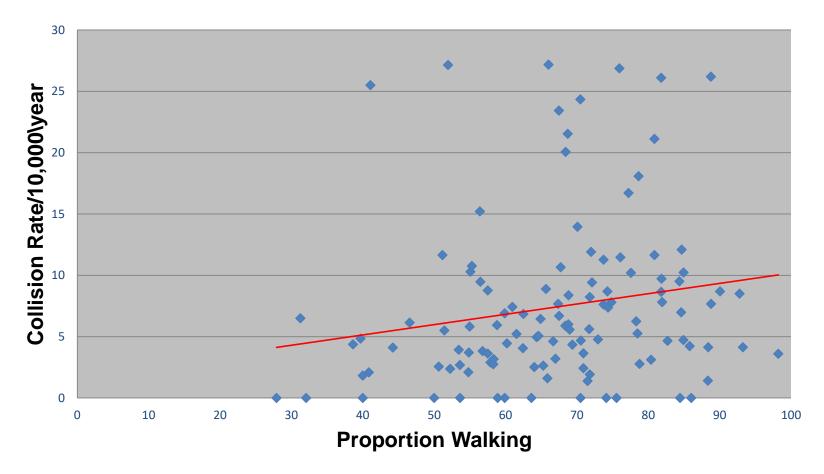

METHODS


- Observational counts, Toronto
- Spring 2011, Grades JK 6 elementary schools
- Proportion of children living within walking distance
- Total number of children counted: 23,157
- 12 observers, 4 teams sent to different areas of the city
- Parent questionnaire in 20 schools, grades 4-6

	Child population	Multi-dwelling
Built Environment	Child population	Mail-awening
Density	Total population	
Census	Males, 4 to 12	
Diversity	Mixed land use (entropy)	Residential
MPAC, City of Toronto	Commercial land use	Vacant land
	Industrial	Recreational
	Institutional	Park land
Design	Crossing guards	One way streets
City of Toronto, Census	Dead end	Old houses (pre 1946)
	Flashing lights	Sidewalks missing (both, one)
	Intersection	Traffic calming
	Road	Traffic lights
	Local road	Trails
	Collector road	Urban
	Major road	Route directness (Inter/inter+dead end)
	Minor road	Other TDSB and Catholic schools
Field Survey	School crossing guard	Cars appear to be driving fast
, , , , , , , , , , , , , , , , , , ,	Mean speed> 5 km over speed limit	Traffic congestion
	Any dangerous crossing	Any dangerous intersection
	Double parking	Dropping opposite side
	Cars parked blocking	School vehicle volume
Social Environment	School LOI (Social disadvantage)	Below ATLICO by school DA
TDSB, Census	School population	New immigrants at school
	Children grades 4 - 6 at school	School age (years)
	Males at school	English not first language

MAPPING

CHILD PMVC, 2002-2011 (10 years)



- 481 collisions within 105 school boundaries*
- No collisions in 13 school boundaries
- No Injury:
- Minimal Injury:
- Minor Injury (seen in ED):
- Major Injury (admitted):
- Fatality:

24 (5%) 191 (40%) 236 (49%) 30 (6%) 1 (<1%)

• 214 (44%) were school travel time collisions

COLLISION RATE AND PROPORTION WALKING TO SCHOOL

•13% increase in collision rate with every 10% increase walking

RESULTS: COLLISIONS MODELLED (NEG BINOM)

	Variable	IRR (95% CI)
Exposure	Walking to School	0.84 (0.29, 2.46)
Built Environment Density	Multi-dwelling density # /1000m ²	0.84 (0.73, 0.96)
Design	Traffic lights/km roads One way streets/10 km roads	3.20 (1.89, 5.41) 1.19 (1.03, 1.36)
	Traffic calming/10 km roads	1.31 (1.06, 1.63)
	School crossing guard	1.45 (1.09, 1.91)
Non-built environment	Lower school SES	2.36 (1.39, 3.99)

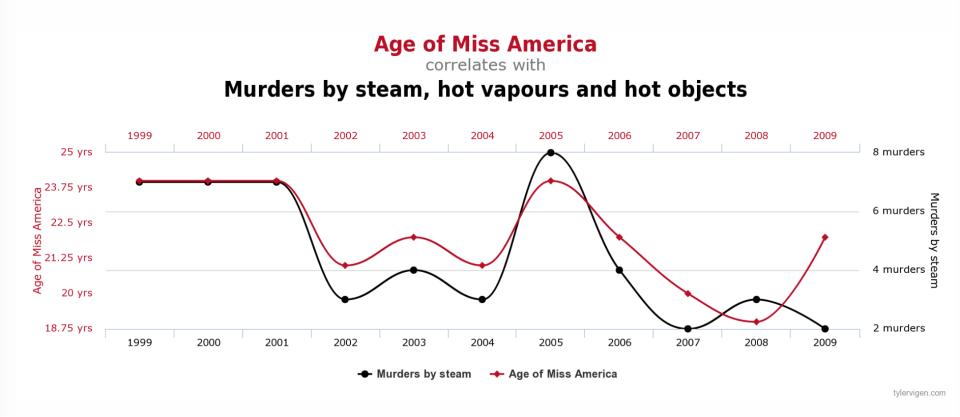
METHODOLOGIC OVERVIEW

- Cross Sectional Studies
- Case Control Studies
- Quasi Experimental Studies (Natural Experiments)

School environments and social risk factors for child pedestrian-motor vehicle collisions: A case-control study Linda Rothman (BScOT MHSC PhD)^{a,b,*}, Andrew Howard (MSC MD FRCSC)^b, Ron Buliung (PhD)^c, Colin Macarthur (MBChB PhD)^b, Sarah A. Richmond (PhD)^{a,b}, Alison Macpherson (PhD)^a ^a Faculty of Health-School of Kinestology & Health Science York University, Norman Bethune College, 4700 Keele SL, Room 337 Toronto, ON M3J 1P3, Canada ^b Child Health Evaluative Sciences, The Hospital for Sick Children, 555 University Ave., Toronto MSG 188, Canada

REPEAT (2015): CASE/CONTROL (Log Reg)

	Variable	Odds (95% CI) of being a higher collision school
Exposure	Walking to School	0.49 (0.02, 13.72)
Built Environment Density	Residential Land Use km ² /10km ²	0.56 (0.37, 0.86)
Design	Traffic lights/km roads	1.59 (1.17, 2.15)
	One way streets/10 km roads	4.00 (1.76, 9.08)
	Traffic calming/10 km roads	3.56 (1.03, 12.26)
	School crossing guard	3.65 (1.10, 12.20)
Non-built environment	Lower school SES	1.37 (1.11, 1.70)


PROBLEMS WITH CROSS-SECTIONAL STUDIES

- Associated with higher collision rates ??
 - School crossing guard
 - More traffic calming

- Traffic calming may have not been present when collision occurred
- Pre-post studies

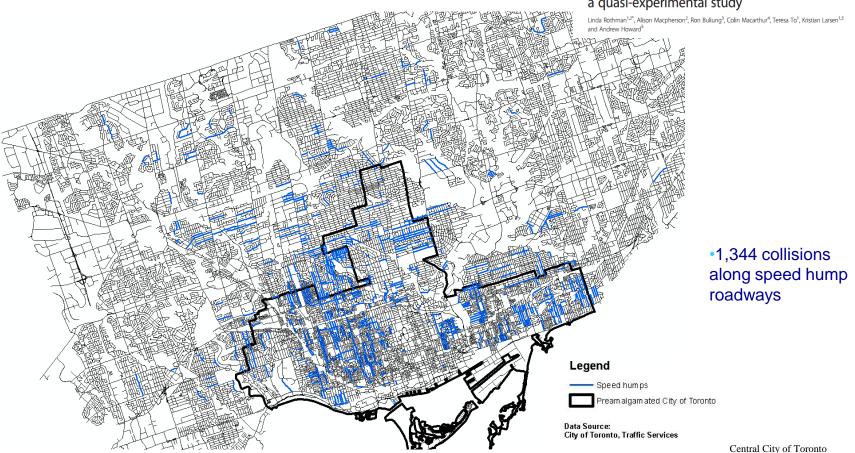
CORRELATION OR CAUSATION ?

METHODOLOGIC OVERVIEW

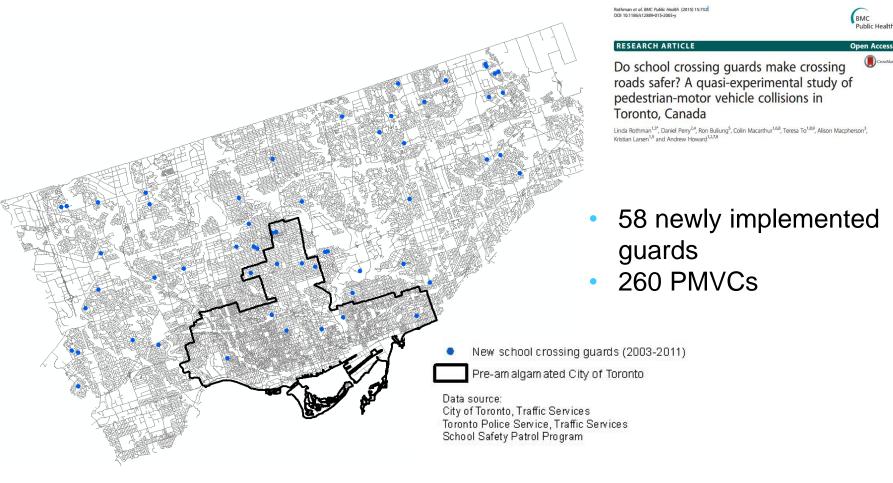
- Cross Sectional Studies
- Case Control Studies
- Quasi Experimental Studies (Natural Experiments)

GENERAL METHODS

- Quasi-experimental, pre-post repeated measures
 - Repeated measure by traffic feature
 - Limited by lack of exposure data design uses time as the denominator
- Regression analyses for count data
 - Incidence rate ratios with 95% CI
- Mapping
 - Locate collisions and assign to traffic features
 - Map features of the built environment
 - Conduct spatial analysis of collisions pre/post installation


SPEED HUMPS

Open Access


RESEARCH ARTICLE

Installation of speed humps and pedestrianmotor vehicle collisions in Toronto, Canada: a quasi-experimental study

 Installation associated with a 22% decrease overall (296 PMVCs prevented) and 45% decrease in collision rates in children

SCHOOL CROSSING GUARDS

- Collision rates unchanged after implementation
- ?? More children walking at these locations, future study
- Guards are a simple roadway modification to increase walking to school without detrimental safety effects

City Wide Guards: 568

Proportion of collisions (n = 1850) occurring at a guard location

	Non-school travel time				School travel time			
	N	SCG location	Not at SCG location	N	SCG location	Not at SCG location	Chi-square P-value	
Children (4 – 12)	1155 (62%)	138 (12%)	1017 (88%)	695 (38%)	95 (13.7%)	600 (86.3%)	0.28	

 High burden of child PMVC outside school travel times and not at crossing guard locations

PEDESTRIAN COUNTDOWN SIGNALS

The impact of pedestrian countdown signals on pedestrian-motor vehicle collisions: a reanalysis of data from a quasi-experimental study © orenAccess

Sarah A Richmond¹, Andrew R Willan^{1,2}, Linda Rothman¹, Andi Camden¹, Ron Bullung³, Colin Macarthur^{1,4}, Andrew Howard^{1,5,6,7}

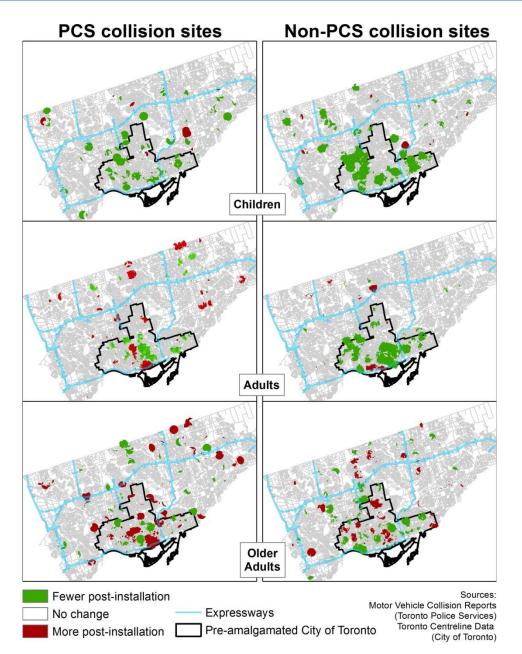
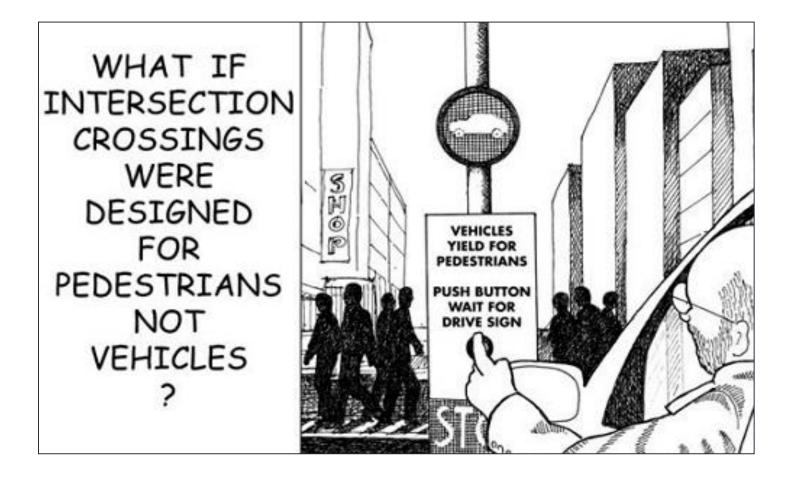

 Spatial pre-post study of pedestrian countdown timers at 1965 traffic light controlled intersections

Table 1 Frequency and incidence rate ratios of all collisions by pedestrian countdownsignal (PCS) (pre, post) and by season (summer, winter)


Collision	Total I-M ^a	I-M	# of	IRR ^b (95% CI)†	p-value
type		(≥1 collision)	collisions	(adjusted for covariates)††	
All collisions					
Pre PCS	42904	935	1023	1	
Post PCS	29619	1548	1737	1.26 (1.11 – 1.42)	< 0.001
Summer	36406	1041	1142	1	
Winter	36117	1442	1618	1.19 (1.09 – 1.31)	< 0.001

Spatial Analysis

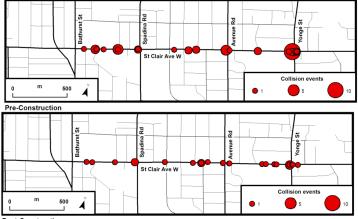
- Effects varied by age and location
- Installation may result in increased PMVC; non-PCS locations showed more consistent reductions
- Effectiveness varies within a city, therefore, likely to vary across cities
- Pedestrians may misuse the information to cross quickly, rather than to cross safely
- Could changes in signal timing, or vehicle turning restrictions, yield desired safety benefits?

STREETCAR RIGHT OF WAY

TABLE 1. Incidence rates and incidence rate ratios, comparing pre and post right- of-way on pedestrian motor vehicle collisions

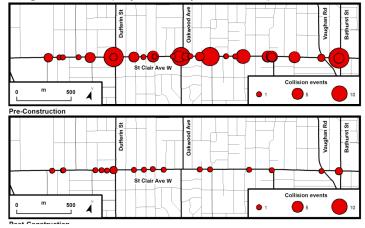
	Collisions (pre)	Collisions (post)	IR ^ª (pre)	IR (post)	IRR ^b (95%CI) ^c
St. Clair	100	53	113.7	60.2	0.52 (0.37 – 0.74)
Age (years)					
Child (0-15)	23	3	26.2	3.40	0.13 (0.04 – 0.44)
Adult (16-59)	59	34	67.1	38.6	0.61 (0.38 – 0.97)
Older adult (60+)	16	12	18.2	13.6	0.75 (0.34 – 1.64)
Injury status					
No injury	3	2	3.4	2.3	0.67 (0.11 – 3.98)
Minor injury	87	49	98.9	55.6	0.56 (0.40 – 0.80)
Major injury	9	2	10.2	2.3	0.23 (0.05 – 1.15)
Fatal injury	1	0	1.1	0	_d

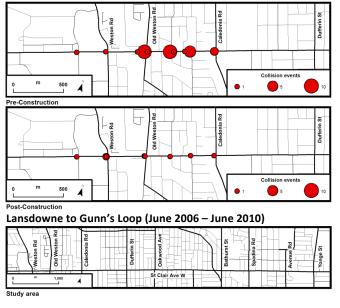
Contents lists available at ScienceDirect


Accident Analysis and Prevention

journal homepage: www.elsevier.com/locate/aap

SPATIAL ANALYSIS


Exploring the impact of a dedicated streetcar right-of-way on pedestrian motor vehicle collisions: A quasi experimental design


Sarah A. Richmond^{a,*}, Linda Rothman^{a,c,1}, Ron Buliung^d, Naomi Schwartz^{a,b,2}, Kristian Larsen^d, Andrew Howard^{a,e,f,g,3}

Post-Construction

Yonge to Bathurst (July 2005 – September 2007)

 Increased dispersion of collision events post installation

Bathurst to Lansdowne (June 2006 – December 2009)

BIKE LANES



Examining the impact of cycle lanes on cyclist-motor vehicle collisions in the city of Toronto

Deepit Bhatia ^{a, c}, Sarah A. Richmond ^a A ^{a,}, C.K. Jennifer Loo ^c, Linda Rothman ^b, Colin Macarthur ^d, Andrew Howard ^a

Show more

Downtown Toronto cycle lanes and CMVCs (1991-2010) (n=23,959)

1:45,000

Data Sources: City of Toronto, Toronto Police Service, Jennifer Loo

Changes in collision frequency pre- and post-installation

	IR per 100 segment- months (pre)	IR per 100 segment- months (post)	Model	IRR
All lanes	65.22	53.99	0.8109	(0.65, 1.01)
Beverley-St. George	91.7	62.5	req.	-16 (-34, 2.0)
Sherbourne	61.7	63.3	n fi	-13 (-27, 1.0)
Davenport	85.8	64.2	isio s:	-16 (-34, 12)
Harbord- Hoskin	33.3	28.3	in collision freq months:	-6.0 (-13, 1.0)
Wellesley	58.3	33.3	ge i 00 r	-10 (-21, 1.0)
College	179.2	145.8	Change per 100 I	-32 (-66, 2.0)
Gerrard	31.25	29.2	De De	<u>-6.0 (-13, 1)</u>
No injury	1.087	5.435 🤇	5.00 (1.	44, 17.28)
Minimal/minor	24.28	20.29	0.84 (0.	58, 1.20)
Major/fatal	28.98	21.74	0.72 (0.	51, 1.01)

QUASI-EXPERIMENTAL STUDIES

Limitations

- Collisions are rare
- Lack of traffic and pedestrian exposure data
- Lack of traffic speed data
- Non-randomized
- Police-reported data
- Small numbers

Strengths

- Pre-post design allows for control of non-time dependent covariates, temporal and seasonal effects
- Study generalizability
- Multidisciplinary collaborations
- Active involvement of stakeholders
- Real-world policy implications

EMPHASIS AREA 2: SCHOOL CHILDREN

A child is seriously injured or killed every 17 weeks on their way to or from school on Toronto's roads.

5-year-old girl dead after becoming pinned between two vehicles in school pick-up area

September 3, 2013 12:30 pm

Teenage girl struck and killed by truck in Toronto's west-end

Updated: September 3, 2013 5:19 pm

Rachael D'Amore, CTV Toronto Published Friday, April 21, 2017 3:53PM EDT Last Updated Friday, April 21, 2017 6:59PM EDT

By David Shum and James Armstrong Global News

Boy, 6, struck and killed by vehicle was on his way home from Scarborough school

8-year-old boy dies after being hit by vehicle on St. Anne's Road

By Logan Caswell and Tamara Forlanski Global News

Google

All

News

children hit by car near school

Images Videos Maps More Settings Tools

About 46,500,000 results (0.54 seconds)

Toronto girl, 5, struck and killed by unoccupied vehicle was cancer ... https://globalnews.ca/news/3967252/school-mourns-death-of-girl/ •

Jan 16, 2018 - A 5-year-old girl fatally struck by an empty SUV that police say somehow rolled away and pinned her against another vehicle outside a school in Toronto's north end had previously survived a cancer diagnosis, a family friend told Global News. Ana Paula Carrera said she has known the little girl's mother for ...

17-year-old girl hit by car near Sir John A. Macdonald Secondary School

www.cbc.ca/.../17-year-old-girl-hit-by-car-near-sir-john-a-macdonald-secondary-school... A girl, a 17-year-old student, was hit by a car early Wednesday morning, police say, outside Sir John A. Macdonald Secondary School in Hamilton. ... CBC News Posted: Nov 08, 2017 10:09 AM ET Last Updated: Nov 08, 2017 12:36 PM ET. A female student has been injured after she was hit, police say, by a car near Sir ...

Toronto police to examine SUV, seek witnesses after girl pinned ... www.cbc.ca/.../fatal-collision-girl-killed-five-makeshift-memorial-witnesses-1.4489110

Jan 16, 2018 - Toronto police will examine an SUV and are seeking witnesses to a collision outside a school on Monday in which a five-year-old girl was pinned between two ... Child struck by vehicle near Keele and Wilson. A police spokesperson said 'the vehicle that was set in motion struck the man and the child.

11-year-old girl hit by car, seriously injured near Auburn school | KOMO

komonews.com/.../12-year-old-girl-airlifted-after-being-hit-by-car-near-auburn-schoo... ▼ AUBURN, Wash. - An 11-year-old girl was airlifted to the hospital with life-threatening injuries Wednesday morning after she was hit by a minivan near an Auburn elementary school, emergency officials report.Police and medics responded to the scene, near Ca.

Child, woman hit by car near Bill Williams Elementary - turnto23.com ...

https://www.turnto23.com/.../child-woman-hit-by-car-near-bill-williams-elementary ▼ Dec 6, 2017 - UPDATE (12/7/17 8:22 a.m.): The Kern County Coroner's Office has identified the 5-yearold hit and killed on Wednesday as Emily Guillen-Casillas.

12-year-old girl hit by minivan near Auburn school in critical condition ... https://www.seattletimes.com/.../12-year-old-girl-struck-by-car-near-school-in-auburn/

Sep 14, 2016 - Authorities say a **12-year-old girl** was seriously injured and airlifted to Harborview Medical Center in Seattle.

12-year-old girl 'critical' after being hit by a car in Leeds - Yorkshire Post

FURTHER SCHOOL BASED STUDIES

- Parent Perceptions of Traffic Danger
- Risky Driver Behaviour
- Vision Zero Intervention Project

Associations between parents' perception of traffic danger, the built environment and walking to school

Linda Rothman a,b,* , Ron Buliung c , Teresa To a , Colin Macarthur a , Alison Macpherson b , Andrew Howard a

PARENT PERCEPTIONS OF TRAFFIC DANGER

- Are parent perceptions of traffic danger *en route* to school and/or at the *school site* during morning drop-off related to walking to school?
- 2. What are the relationships between features of the built environment and parent-perceived traffic danger?
- Caregiver questionnaire
- 20 schools subsample
- Grades 4-6
- 733 surveys returned

Associations between parents' perception of traffic danger, the built environment and walking to school

Linda Rothman ^{a,b,*}, Ron Buliung ^c, Teresa To ^a, Colin Macarthur ^a, Alison Macpherson ^b, Andrew Howard ^a

- High route danger perception was related to:
 - Less frequent walking
 - Dangerous midblock crossing
 - Higher speed roadways
 - But not actual collision rates
- To influence walking, the safety of the route must be considered, however, must also address safety directly around school sites

FURTHER SCHOOL-BASED STUDIES

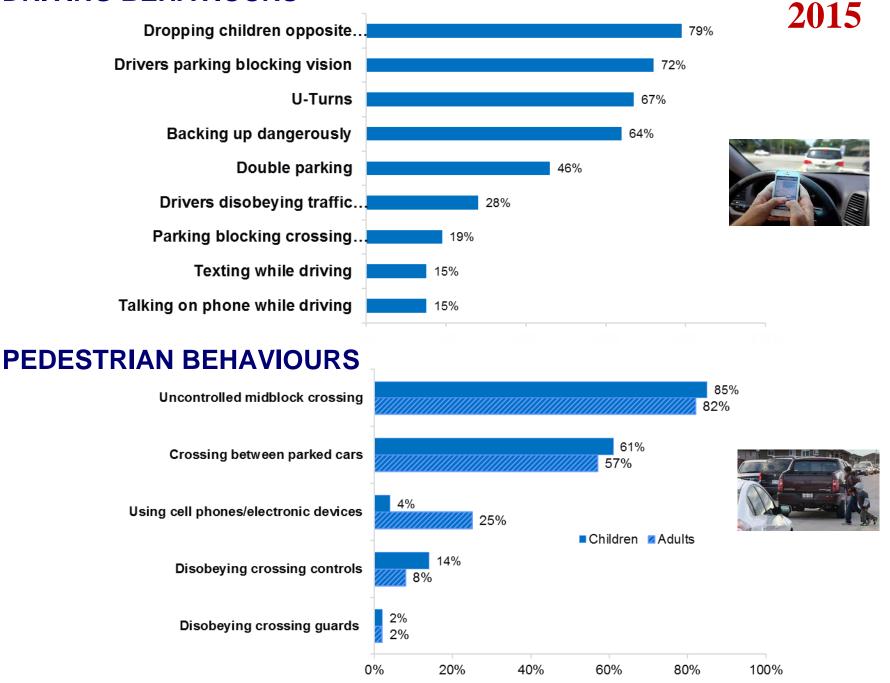
- Parent Perceptions of Traffic Danger
- Risky Driver and Pedestrian Behaviours
- Vision Zero Intervention Project

Traffic Injury Prevention

Dangerous student car drop-off behaviours and child pedestrian-motor vehicle collisions: an observational study

ISSN: 1538-9588 (Print) 1538-957X (Online) Journal homepage: http://www.tandfonline.com/loi/gcpi20

Linda Rothman MHSCPhD , Andrew Howard MSCFRCSC , Ron Buliung PhD, Colin Macarthur MBChBPhD & Alison Macpherson PhD



Travel Behaviour and Society

journal homepage: www.elsevier.com/locate/tbs

The school environment and student car drop-off at elementary schools Linda Rothman^{a,b,*}, Ron Buliung^c, Andrew Howard^{b,d}, Colin Macarthur^b, Alison Macpherson^a

DRIVING BEHAVIOURS

Risky driving behaviours and child PMVC (200 m) during school travel times (n =45)

	Unadjusted IRR (95% CI)	Adjusted IRR (95% CI)
Total dangerous driving	1.36	1.45
behaviours	(1.04, 1.80)	(1.02, 2.07)
Major and minor arterials	1.29	1.27
	(1.14, 1.46)	(1.13, 1.44)
LOI (social disadvantage)	4.19	2.99
	(1.36, 12.92)	(1.03, 8.68)

- Traffic congestion –*risk*
- Designated drop off areas-protective
- School crossing guards-protective

- Last day of observational data collection, 2015
- In front of a school at 8:10 a.m.

SCHOOLS' RESPONSE....

Knowledge users:

- Parent council
- School staff
- School advisory council
- Crossing guard
- Community liaise officer
- Toronto public health

Actions taken:

- Developed a pedestrian/parking safety committee
- New crosswalk installed
- Used info for establishment of Kiss' N Ride
- Used for proposal to City of Toronto for new

 crossing guard
- Walking school bus implemented
- Contacted police re: excessive speeding
- Assigned more staff to monitor drop off
- "No stopping, buses only" signs posted along curb
- Started Walking Wednesdays
- New lines painted on driveway

- Caretaker
- School superintendent
- Caring and safe schools committee
- Toronto Police Services
- School newsletter

- Purchased bike rack
- Planned 3 walk to school days
- Registered on the Safe Routes to School website
- Changed bus loading, legal parking and drop-off zones
- Investigated changes to speed limit and signage (e.g. curve ahead)
- Invited Manager of Traffic Operations for City of Toronto to do student talk about traffic safety
- Traffic safety incorporated into health class discussions
- Established walking goals for school

FURTHER SCHOOL-BASED STUDIES

- Parent Perceptions of Traffic
 Danger
- Risky Driver Behaviour
- Vision Zero Intervention Project

- School safety zones: physical environment changes, enforcement activities, education and school traffic facilitators
- Evidence-based and data-driven

Our Project

- Policy makers and academics working together to develop appropriate evaluation strategies
- Developing step-up pre-post evaluation

PARTICIPATING SCHOOLS

Priority setting exercise

1/3

- Weighted score of school
 - # of collisions involving killed/severely injured children
 - # of other collisions
 - % of children living within walking distance of the school (i.e. 1.6 km)

PROJECT 1: SCHOOL ZONE (150 M)

- To examine the impact of Vision Zero built environment interventions related to the school safety zone strategy
 - Primary Outcomes
 - Active School Transport (surrogate health outcome)
 - Vehicle Speeds (surrogate safety)
 - PMVC as rare outcomes
 - Secondary Outcomes
 - Traffic Volume
 - Risky Driving and Pedestrian Behaviour

PROJECT 2: SCHOOL ROUTES

- Process evaluation, introduction of road safety improvements along specified routes at two schools
- Bloomberg, Partnership for Healthy Cities

Outcomes

- Facilitators and the barriers to implementation
- Parent's perceptions of traffic dangers before and after the interventions (survey)
- Change of walking routes
- Feasibility/usefulness of measuring the proposed outcomes

BUILT ENVIRONMENT INTERVENTIONS

Speed

- Traffic calming
- Speed signage reductions
- Radar speed boards

Time

 Traffic signals (including installation of and leading pedestrian intervals)

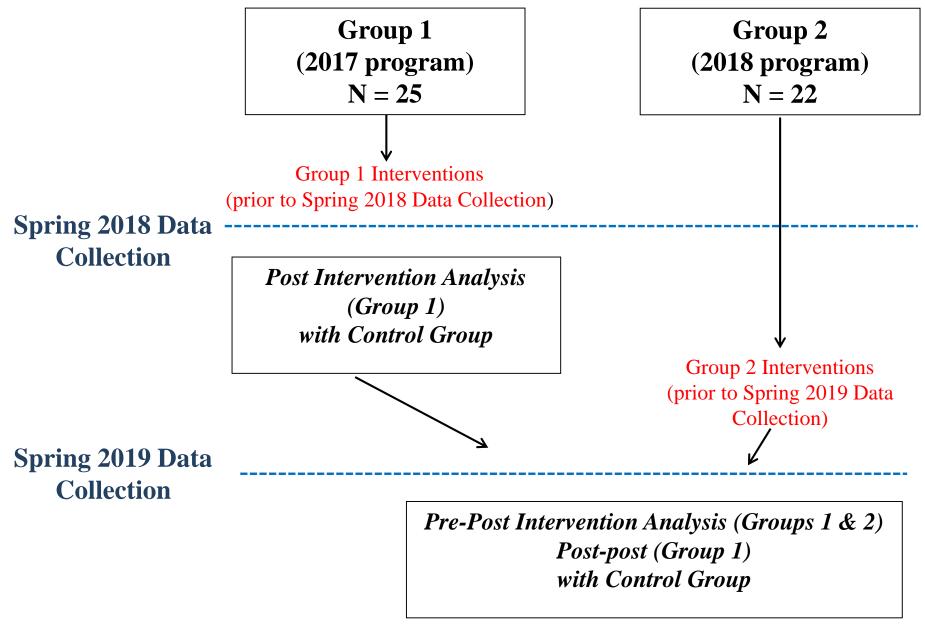
Midblock crossings

School crossing guards

Space

- Signs/pavement
- Designated drop- off areas

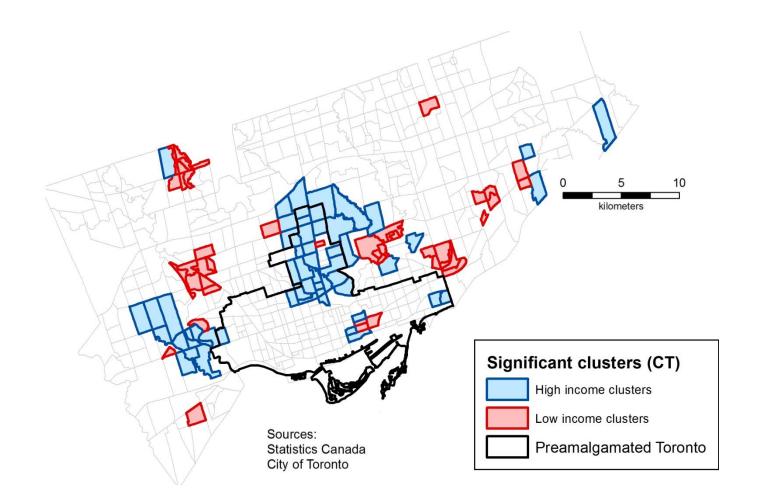
Pedestrian Visibility


Increased lighting

Personnel/Programming

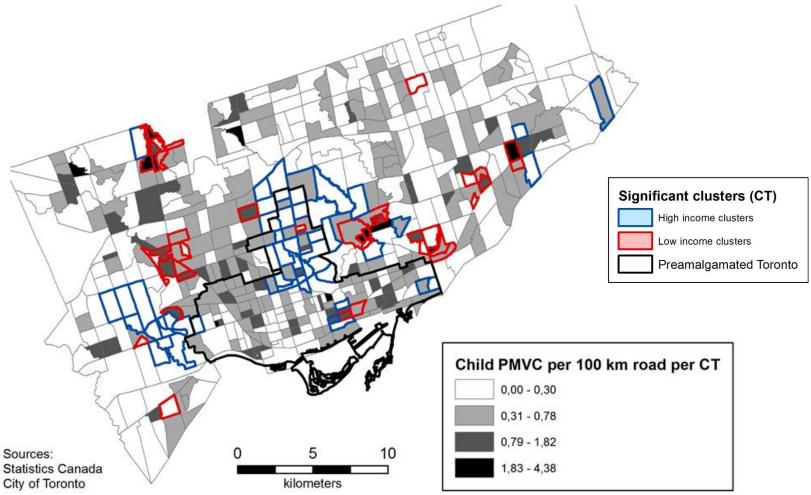
- School traffic management coordinator
- School travel planning

PROJECT 1



FURTHER CITY WIDE STUDIES

- Social Inequities in the Roadway BE
- Child Active Transportation Safety and the Environment (CHASE) study


Greater School Social Disadvantage (2011, 2015)

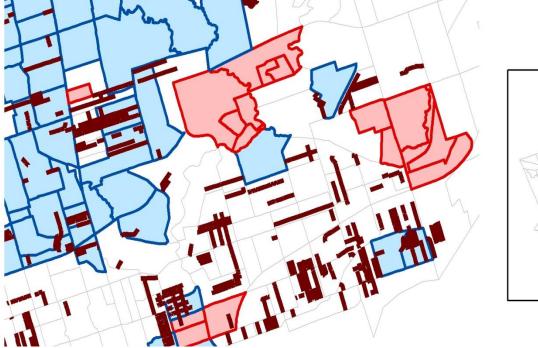
- Higher collision rates
- Higher density multifamily housing
- Fewer crossing guards
- Higher speed roadways
- Less traffic calming
- More traffic congestion

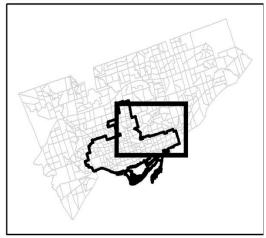
- 524 census tracts
 - 58 (11%) high, 44 (8%) significant low income clusters (2006 Census)

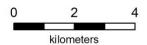
Spatial distribution of child (5-14) PMVC/per 100 km per CT, 2001-2010

Collision rates almost 6 times higher in low income clusters

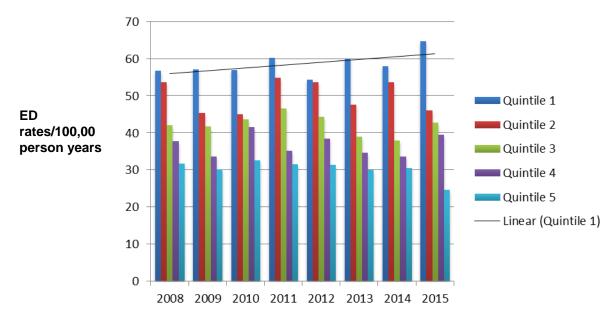
Multivariate analysis: Odds (95% CI) of being in a low income cluster


Roadway Environment	Adjusted Odds Ratios (95% CI)
Speed humps	0.35 (0.15, 0.80)
Local road	0.62 (0.47, 0.82)
Crossing guard	1.43 (1.03, 1.99)




Spatial Distribution of Speed Humps

Significant clusters (CT)



Sources: Statistics Canada City of Toronto

TRENDS IN CHILD PMVC EMERGENCY DEPARTMENT VISITS AND SES

- 0-19 years (2008-2015), Ontario
- 2015 socioeconomic quintiles (1 = lowest, 5 = highest)

 Rates 2 times higher in lowest versus highest SES quintile; differential increasing over time

FURTHER CITY WIDE STUDIES

- Social Inequities in the Roadway BE
- Child Active Transportation Safety and the Environment (CHASE) study

CHILD ACTIVE TRANSPORTATION SAFETY AND THE ENVIRONMENT (CHASE)

- 5 year (2017-21)Intersectoral Research Grant from CIHR
- To examine within and across large Canadian urban centres the built environment and
 - Child and adolescent active school transportation
 - Pedestrian and cycling injuries
- To identify implementation strategies for BE change at the municipal level to encourage AT

CHILD ACTIVE TRANSPORTATION SAFETY AND THE ENVIRONMENT (CHASE)

Brent E. Hagel¹, Andrew Howard², Alison Macpherson³ Pamela Fuselli⁴ ¹University of Calgary, ²University of Toronto, ³York University, ⁴Parachute

CO-INVESTIGATORS

Kathy Belton, University of Alberta Dr. Ron Buliung, University of Toronto Dr. Marie-Soleil Cloutier, INRS – Urbanisation Culture Sociéte (Montréal, QC)

Dr. Carolyn Emery, University of Calgary **Jacky Kennedy**, Green Communities Canada; **Tracey Ma**, Ministry of Transportation of Ontario (Toronto)

Dr. Colin Macarthur, Hospital for Sick Children (Toronto)

Dr. Alison Macpherson, York University (Toronto)

Dr. Gavin McCormack, University of Calgary; **Dr. Alberto Nettel-Aguirre**, University of Calgary;

Jennifer McGowan, Metrolinx;

Liz Owens, Alberta Transportation

Dr. Ian Pike, University of British Columbia;

Dr. Juan Torres Michel, Université de Montréal

Dr. Donald Voaklander, University of Alberta; **Dr. Meghan Winters**, Simon Fraser University (Burnaby, British Columbia)

COLLABORATORS

- City of Montreal, Transportation Safety
- City of Toronto, Traffic Safety Unit
- City of Edmonton, Office of Traffic Safety
- The City of Calgary, Traffic Safety Roads
- Canadian Cancer Society, Quebec Division
- Vélo Quebec, Research
- Canadian Association for Road Safety Professionals
- Green Communities Canada
- Metrolinx, Planning and Policy
- University of British Columbia, School
 of Population and Public Health

- Hub for Active School Travel (HASTE)
- Alberta Health Services, Office of the Medical Officer
- Transport Canada, Road Safety Directorate
- Region of Peel, Sustainable
 Transportation
- Alberta Health Services, Pediatric Emergency Medicine
- Hospital for Sick Children, Pediatric Emergency Medicine
- University of British Columbia, Pediatric Emergency Medicine
- Alberta Children's Hospital (Calgary), Emergency Medicine.
- Alberta Health Services, Office of the Medical Officer
- Eco-Counter

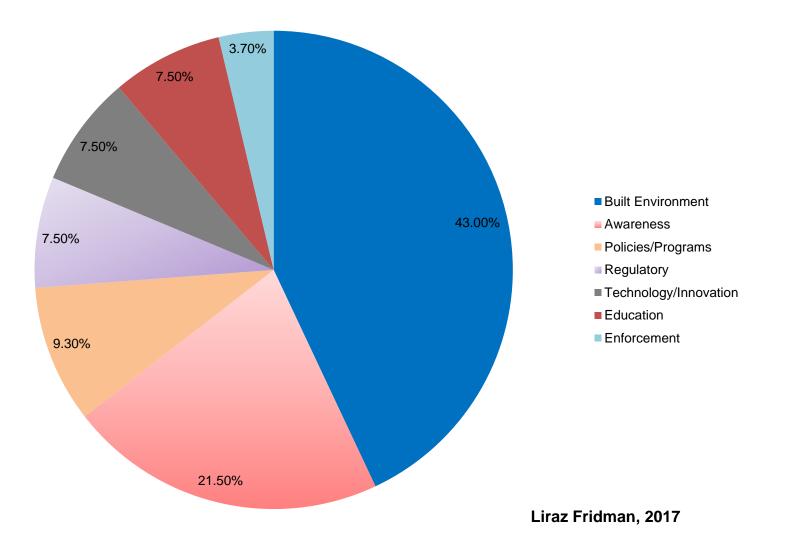
CHASE: STUDY ACTIVITIES (2017-21)

- School observational data collection
- Geographic analyses to examine space-time distribution of collisions city-wide
- Pre-post quasi-experimental studies to estimate effects of BE traffic features
- Case-crossover study to compare BE characteristics of cyclist injury site and random sites along route
- Literature reviews, focus groups, national survey to identify facilitators and barriers for implementing BE change at municipal level
- BE implementation toolkit

FURTHER QUESTIONS....

- What are our next 'natural experiments' from your perspective
- How do we get exposure data?
- The 'big picture' is healthy transportation but the effective interventions are built environment

Andrew Howard, andrew.howard@sickkids.ca Linda Rothman, linda.rothman@sickkids.ca


CONCLUSION AND DISCUSSION

- More walking does not have to result in more collisions.
- Safety must be considered with the promotion of children's active transportation
- > We need to get the built environment right!

Extra slides

Breakdown of Intervention Types outlined in Road Traffic Policy Documents in Toronto

Breakdown of Intervention Types outlined in Road Traffic Policy Documents in Peel

