TRUCK SAFETY IN ONTARIO: PAST, PRESENT AND FUTURE

Third Meeting of the Ontario Road Safety Forum March 6, 2018

Sarah Plonka
Josh Hanna
Road Safety Research Office
Ministry of Transportation of Ontario

TODAY'S PRESENTATION

- Road Safety Research Office An Overview
- Current Large Truck Collision Statistics
- Evaluation of Ontario's Speed Limiter Legislation
- Trucking Technology The Future
- Questions and Answers

ROAD SAFETY RESEARCH OFFICE - CORE ACTIVITIES

The Road Safety Research Office conducts applied research to support:

- Policy Making
- Enforcement
- Public Education

LARGE TRUCK COLLISIONS IN ONTARIO

- Large truck drivers are generally safe
 - In 2015, 69% of large truck drivers involved in a fatal collision were coded as "driving properly"
- In 2015, 18% of fatalities on Ontario's roads were due to collisions involving a large truck
 - Collisions involving a large truck are more dangerous than those involving only passenger vehicles

LARGE TRUCK COLLISION STATISTICS

LARGE TRUCK COLLISION STATISTICS

Outline

- Large truck size = severe collisions. The worst outcome:
 - Multiple fatalities
- Understanding large truck driver behaviour and the risk involved
 - Single motor vehicle collisions
- Who is most vulnerable?
 - Pedestrian in fatal and major injury large truck collisions

COLLISIONS RESULTING IN MULTIPLE FATALITIES

 Large trucks collisions are 38% more likely to result in more than one fatality

Compared to collisions involving "no large trucks"

*2015 data is preliminary

MULTIPLE FATALITIES: FACTORS

- 64% of all large truck collisions involving multiple fatalities occurred on a provincial highway.
 - Almost half of these collisions (46%) were head-on
 - Rear-end collisions were the second most common crash type (19%)
 - In the 10-year period (2006-2015), the largest number of fatalities recorded in a single large truck collision was eleven (2012)

Understanding large truck collisions: Single motor vehicle collisions

- Single motor vehicle (SMV) collisions offer an unambiguous view of driver fault in a collision
- Contributing factors in a collision: driver action + driver condition + vehicle manoeuvre

LARGE TRUCK SINGLE MOTOR VEHICLE COLLISIONS: DRIVER ACTION

*2015 data is preliminary

Proportion of all large truck driver actions in an SMVC - not "driving properly", 2006-2015*

LARGE TRUCK SMV COLLISIONS: DRIVER AND VEHICLE CONDITION

- If large truck drivers were coded as driver action "driving properly" in an SMV, how are driver condition and vehicle condition coded?
 - Driver condition*, top 3:
 - Inattentive 86%
 - Medical or physical disability 4%
 - Fatigue 3%
 - Vehicle condition**, top 2:
 - Tire puncture blowout 9%
 - Wheels/suspension defective 4%

^{*}excludes driver condition unknown or driving properly

^{**}excludes vehicle condition unknown or no defect

LARGE TRUCK SMVC ANALYSIS: FATIGUE

- SMV collisions at night can be used as a proxy for impaired/fatigue collisions (2006-2015):
 - 67% of large truck drivers in SMV crashes at night were coded with a driver error

PEDESTRIANS IN FATAL AND MAJOR INJURY* LARGE TRUCK COLLISIONS

 69% of all pedestrian fatalities and major injuries in large truck collisions occurred on municipal roads (31% on provincial highways)

 Top 3 large truck manouevres by drivers on municipal roads that resulted in a pedestrian fatality or major injury (2006-2015**):

*Involved an overnight hospital stay **2015 data is preliminary

EVALUATION OF THE ROAD SAFETY
IMPACT OF ONTARIO'S SPEED LIMITER
LEGISLATION FOR LARGE TRUCKS

SETTING THE CONTEXT

 2009 Ontario legislation mandates electronic speed limiters for most large trucks (>11,793 kg*) to be set to a maximum of 105 km/h

- We wanted to know:
 - What was the effect on the frequency of collisions involving speeding large trucks on 100 km/h highways?
 - Were there been unintended consequences in large truck driver behaviour?

TARGETED OUTCOME MEASURE

- Isolate the intended effect of speed limiters
 - Speed is the only "at-fault" collision measure we expect to be affected by speed limiters

 Control for changes in exposure before and after implementation

Outcome=Number of drivers at fault for speeding/Number of drivers at fault

What did we find? Speed collisions

 Large truck drivers produced fewer at-fault speed collisions relative to all at-fault driver actions, post 2009.

LARGE TRUCK DRIVER BEHAVIOUR

- Question: Do large truck drivers adjust their driving behaviour in an attempt to compensate for time lost?
 - Answer: No evidence to indicate worse collision outcomes for large truck drivers post 2009
- Question: Does the speed differential created between large trucks and the general flow of traffic lead to an increase in rear-end crashes?
 - Answer: No evidence of change in proportion of large truck drivers rear-ended post 2009 on 100 km/h roads
 - Percent of total collisions, Pre: 10.03; Post: 10.47

18

TRUCKING TECHNOLOGY — THE FUTURE

WHAT IS PLATOONING?

- Using V2V communication, advanced driver assistance tech, to automate some control of trucks to create a convoy or platoon of 2+ vehicles
 - E.g. local area networking, dedicated short range communication, cellular

WHY PLATOONING?

o Potential to:

- Improve vehicle efficiency, tests show fuel savings of 4.5-21%
- Improve truck safety, respond faster than human drivers
- Increase traffic density, and decreasing congestion

How does platooning work?

WHAT MAKES A PLATOON SAFE?

- Reliable equipment, fast communication, adequate spacing, human factors
- Theoretical safe gaps of 1.2-2m have been suggested
- Relies on
 - Approximately equal truck weights
 - Mid and rear, equal or better braking ability

How are platoons efficient?

- Largely reduced wind resistance
- Greater fuel savings for second and third vehicles in platoon, little savings for first vehicle.
- Greater fuel savings with closer distances (e.g.
 - 8 % avg. at 10 m
 - 15% at 4.7 m

ONTARIO'S PLATOONING PILOT

- Updating regulation to allow testing of truck platooning in Ontario
 - with a driver present in each vehicle
 - under strict conditions
 - at locations to be determined by MTO.
- MTO will evaluate:
 - Safety
 - Compatibility with other road users
 - Compatibility with infrastructure

INTERNATIONAL PLATOONING DEMONSTRATIONS

- PATH project, California, 2003-present
 - With drivers present
 - Tested close to off-the shelf tech
- Energy ITS, Japan, 2008-2012
 - Highly automated heavy and light trucks
- European Truck Platooning Challenge,
 Netherlands, North & South Germany, Sweden,
 Belguim, Denmark, 2016
 - Regulatory consistency highlighted

CANADIAN PLATOONING DEMOS

- In Blainville, Quebec, October 2016
- Used PATH Volvo vehicles, modified CACC systems
- Fuel savings greatest at shorter following distances, plateau around 22m at 5.2% across platoon
 - Aerodynamic trailers, 5.7% at 34m

THE FUTURE OF PLATOONING

- Longer term testing will help to clarify safety of platooning
- No unified regulatory approach across jurisdictions
- Ontario taking a conservative approach to testing regulations to minimize risk
- As technology converges, industry standards will emerge (e.g. 5.9 Ghz DSRC)

THANK YOU!

Sarah.Plonka @Ontario.ca Josh.Hanna@Ontario.ca

