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Automated vehicles and sustainability

How green are self-driving cars? Sou'dsr -Arivng carssta,
My : sustainable transportation?

Monday, July 27,2015 - 1:30am U\.l-e-:.l:n.e'.d a‘:,‘-.:J.ul;{.:. 3018+ 12:45am

ulien Tromeur
Environmental impacts of self-driving cars are evolving as automakers and tech firms get the vehicles closer to market. WI L L S E L F - D R IVI N G CA R S R E D U C E
EMISSIONS?

™ Posted on April 18, 2018 by Katrina Kazda [ [ vveet [ Piverest [ Emal G-

Audi's Aicon Concept autonomous, all-electric car has no
steering wheel or pedals with a range of close to 500 miles
per charge. Photo: Audi



OUR PROPOSAL

Anticipating the impacts of transformative transportation technologies
on greenhouse gases, air pollution, and health
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Integrated Transport and Health Impact Modelling Tool (ITHIM)

http://www.cedar.iph.cam.ac.uk/research/modelling/ithim/



http://www.cedar.iph.cam.ac.uk/research/modelling/ithim/

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Estimating the health benefits of planned public transit investments in
Montreal

Louis-Francois Tétreault™, Naveen Eluru, Marianne Hatzopoulou®, Patrick Morency”,
Celine Plante®, Catherine Morency’, Frederic Reynaud®, Maryam Shekarrizfard®,

Yasmin Shamsunnahar®, Ahmadreza Faghih Imani®, Louis Drouin®¢, Anne Pelletier”,
Sophie Goudreau”, Francois Tessier’, Lise Gauvin®, Audrey Smargiassi™™*

 Planned light rail transit system
@ Planned subway station
# Planned train station
Existing subway statlon
Enisting train station
Existing bus station
—— Planned transit line {Matro or Rail}
Exfsting transit line [Metro or Rall|
Regions of the Greater Montreal
Bl Central Montreal
Inner fing suburbs
| Duter ring suburbs
2 Wot available




Health impacts were computed in terms of
Disability Adjusted Life Years (DALY)

Table 3
Burden (in DALYs) linked to ransportation patterns between BAU and PT for regions of the greater Montreal in 2031°

Central Montreal Inmer suburhs Outer suburhs Greater Montreal
Population 1051,327 1716,288 1388,276 4155,801
Burden [DALYs)
Road Injuries 5.5 20.7 7.3 63.4

Air pollution 03 1.2 0.2 15

Gain
Active transportation 6.1 20.3 128 392

Predicted gain of 39.2 DALYs
in 2031 Transit Scenario
compared to 2031 BAU
=> 2.5 DALYs per 100,000 individuals
=>» very small effect

UTTRI



Developing air
pollution maps using
Sensors
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Maps
expressing daily
exposure of
Individuals
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Outcomes of models explaining daily exposure

= Transit pass has + and significant effect
= Driver has — and significant effect

= Transit users generally have highest
exposures followed by pedestrians/cyclists

= Important injustice in generation of air
pollution and exposure




OUR ACHIEVEMENTS TO DATE

Automated, electric, or both?

Anticipating the impacts of transformative transportation
technologies on energy consumption and greenhouse gas
emissions in the GTHA

UTTRI



GTHA: Two tales

= Regional effects of automation and
electrification

= | ocal effects of automation and electrification
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= Regional effects of automation and
electrification

= | ocal effects of automation and electrification
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Scenarios for Automated Vehicles (AVs)

s Adoption
¢ Households were assigned AV if :
1. Household income >80,000 CAD
2. Daily commute distance > 20km
3. Have at least one child
4. Have at least one private vehicle

UTTRI



|mpacts on road capacity

Effects on Driving Expected Benefits
Changes in: ¢ Increased road
» Acceleration/ capacity
deceleration * Improved fuel
behaviour Automated efficiency, traffic flow,
« Longitudinal following Vehicles & safety
behaviour * Reduction in traffic
(headways) congestion and GHG

emissions

e Lateral behaviour and
gap acceptance
thresholds

« Initially, it is expected that AVs may degrade road capacity due to
conservative driving characteristics

» Positive effects may not be noticed until >50% penetration and
with intermediate to aggressive driving characteristics

Road capacity effect

CapacitVpitial

Capacityyew =

[Avmtiu #(1— Efﬁf:fe“c}’ﬂ?j"‘!:l_ﬂvratiﬂ )]




What i1f AVs were electric?

 Ontario electricity generation mix obtained from the Independent
Electricity System Operator (IESO)

L)

% Four electricity generation scenarios:

L)

1. Current Ontario mix:
61% nuclear, 23.7% hydro, 8.4% gas/oill,
6.2% wind, 0.3% biofuel, 0.3% solar

2. All fossil mix: 100% natural gas
3. Only dispatchable source mix: 73% hydro, 26% gas/oil, and 1% biofuel

4. Solar and wind mix: 95.3% wind and 4.7% solar

UTTRI



Automated and Electric Vehicle Scenarios

Scenarios AV savings in road capacity | Conventional Automated Vehicles
vehicles
A0 (Base Case) 1 Gasoline Fueled None
Al Gasoline Fueled Gasoline Fueled
A2.1 50% Gasoline Fueled | Electric; Electricity Mix1
A2.2 Gasoline Fueled | Electric; Electricity Mix2
A2.3 Gasoline Fueled | Electric; Electricity Mix3
A2.4 Gasoline Fueled | Electric; Electricity Mix4
Bl Gasoline Gasoline Fueled
B2.1 Gasoline Fueled | Electric; Electricity Mix1
B2.2 10% Gasoline Fueled | Electric; Electricity Mix2
B2.3 Gasoline Fueled | Electric; Electricity Mix3
B2.4 Gasoline Fueled | Electric; Electricity Mix4

UTTRI



Base Case Results

¢ Daily operating GHG emissions for passenger transportation in the GTHA
were estimated at 29,000t CO.eq

¢ 96% are from private vehicles

\/
*

4% from public transit (buses and locomotives)

*

s AM peak (3 hours) and PM peak (4 hours) emissions are 59% of the total
daily operating emissions

L)

*%

Daily lifecycle emissions in the GTHA are estimated to be 36,200t

UTTRI
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% Assuming each private vehicle carries 1.15 passengers

% While sharing 4% of the total GHG emissions, public transit serves up to 32% of daily total PKT




TABLE 2 Lifecycle GHG Emissions for All Scenarios

Scenarios Efficiency Fuel Lifecycle VKT Emission
Options Emissions (millions) Intensity
(tonne) (g CO2eq/PKT)

A0 (Base Case) | Gasoline 36,200 112 282

Al Gasoline 37,000 118 273

A2.1 Electric AV 33,900 118 250
Mix1

A22 0.5 Electric AV 37.200 118 275
- Mix2

A23 Electric AV 34,600 118 255
Mix3

A24 Electric AV 33,600 118 248
Mix4

Bl Gasoline 36,800 116 276

B2.1 Electric AV 33,700 116 253
0.9 Mix|

B22 Electric AV 36,900 116 277
Mix2

B23 Electric AV 34.400 116 258
Mix3

B2.4 Electric AV 33,500 116 251

Mix4




TABLE 2 Lifecycle GHG Emissions for All Scenarios

Scenarios Efficiency Fuel Lifecycle
Options Emissions
tonne
A0 (Base Case) 1 Gasoline @
Al Gasoline 1 m
A2.1 Electric AV 33.900
Mix1
The Electric AV 37.200
additional Mix2
electricity Electric AV 34.600
needed to 3
support new A2.4 Electric AV 33.600
EVsis Mix4
supplied by Bl Gasoline 36.800
renewable _ . - —
SOUrces B2.1 0.9 Ele;;{rlmlA\r 33.700
: X
B2.2 Electric AV 36,900
Mix2
B23 Electric AV 34 400
Mix3
B24 Electric AV 33,500

Mix4

VKT
(millions)

==
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Intensity
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additional
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needed to
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new EVs is
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BUT EV CHARGING PATTERNS CAN AFFECT
GHG EMISSIONS

Introducing Marginal Emission Factors (MEF) for electricity
production

UTTRI



Marginal Emissions of Electricity Generation

Hourly Electricity Supply by Fuel Type

= To estimate GHG emissions due (Ontario June 9th — 15th 2017)
to EV charging: 25000
Marginal
® Traditional approach: using ,— — — = electricity
average emission factors 20000 I 2 : supply
(AEFs) _ y 4
< |
= New approach: using g 15000 l
marginal emission factors ]
(MEFs) that reflect the 3
marginal electricity supply ‘g 10000
I
5000
0

B NUCLEAR HYDRO W GAS WIND SOLAR m BIOFUEL




Marginal Emission Factors by system load and month
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Four charging scenarios

S1: Home Charging e ::’ac:::( g;‘::lgc:rp:gmg $3: Night Charging

e Charge once arrived e Charge at work place e Charge at 12am or
home or shopping mall only later
S4: Downtown Vs. Suburb
Charging
e Live in downtown charge at e Charge order based on the
work place; Live in suburb magnitude of hourly MEFs

charge at home

UTTRI



Comparison of Total Emission due to EV Charging
(5% penetration rate in GTHA)
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Hourly Emissions of EV Charging in GTHA
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GTHA: Two tales

= Regional effects of automation and
electrification

= | ocal effects of automation and electrification
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Traffic Microsimulation
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College Street
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Gardiner Expressway
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Gardiner Expressway

9 | High traffic scenario operating mode distribution
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Scenario Analysis: Gardiner Expressway
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Conclusion

= Automation can bring about positive benefits in
terms of GHG emissions but only if the effect of
“smoother” drive cycles is not offset by additional
demand

= Electrification will bring the highest benefit in
terms of GHG with or without automation

= Health effects are uncertain and the reason why we
need tools that can represent these relationships!

UTTRI
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