

Implications of Automated Vehicles on Urban Sustainability

Marianne Hatzopoulou

iCity-CATTS Symposium June 28, 2018

Automated vehicles and sustainability

Sensemaking / What will autonomous vehicles mean for sustainability?

Driverless vehicles are poised to remake transportation, the urban landscape and employment. What else might their mainstreaming bring?

BY JACOB PARK / 27 FEB 2017

WILL SELF-DRIVING CARS REDUCE EMISSIONS?

Posted on April 18, 2018 by Katrina Kazda

📫 Like 3 🔽 Tweet 👩 Pinterest 🔄 Email 🚱

Audi's Aicon Concept autonomous, all-electric car has no steering wheel or pedals with a range of close to 500 miles per charge. Photo: Audi

OUR PROPOSAL

Anticipating the impacts of transformative transportation technologies on greenhouse gases, air pollution, and health

ŪTTRI

Integrated Transport and Health Impact Modelling Tool (ITHIM)

http://www.cedar.iph.cam.ac.uk/research/modelling/ithim/

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Estimating the health benefits of planned public transit investments in Montreal

Louis-François Tétreault^{a,b}, Naveen Eluru^c, Marianne Hatzopoulou^d, Patrick Morency^{b,e}, Celine Plante^b, Catherine Morency^f, Frederic Reynaud^g, Maryam Shekarrizfard^d, Yasmin Shamsunnahar^c, Ahmadreza Faghih Imani^g, Louis Drouin^{b,e}, Anne Pelletier^b, Sophie Goudreau^b, Francois Tessier^b, Lise Gauvin^e, Audrey Smargiassi^{a,h,*}

Health impacts were computed in terms of Disability Adjusted Life Years (DALY)

Table 3

Burden (in DALYs) linked to transportation patterns between BAU and PT for regions of the greater Montreal in 2031^a.

		Central Montreal	Inner suburbs	Outer suburbs	Greater Montreal
Population Burden (DALYs)		1051,327	1716,288	1388,276	4155,891
	Road Injuries	35.5	20.7	7.3	63.4
	Air pollution	0.5	1.2	0.2	1.5
Gain	Active transportation	6.1	20.3	12.8	39.2

Predicted gain of 39.2 DALYs in 2031 Transit Scenario compared to 2031 BAU
→ 2.5 DALYs per 100,000 individuals
→ very small effect

Developing air pollution maps using sensors

Maps expressing daily exposure of individuals

Home

Mobility

Outcomes of models explaining daily exposure

- Transit pass has + and significant effect
- Driver has and significant effect
- Transit users generally have highest exposures followed by pedestrians/cyclists
- Important injustice in generation of air pollution and exposure

OUR ACHIEVEMENTS TO DATE

Automated, electric, or both?

Anticipating the impacts of transformative transportation technologies on energy consumption and greenhouse gas emissions in the GTHA

GTHA: Two tales

- Regional effects of automation and electrification
- Local effects of automation and electrification

GTHA: Two tales

- Regional effects of automation and electrification
- Local effects of automation and electrification

Extending the GTAModel

Scenarios for Automated Vehicles (AVs)

Adoption

- Households were assigned AVs if :
 - 1. Household income >80,000 CAD
 - 2. Daily commute distance > 20km
 - 3. Have at least one child
 - 4. Have at least one private vehicle

Impacts on road capacity

Road capacity effect

$$Capacity_{New} = \frac{Capacity_{Initial}}{[AV_{ratio} * (1 - efficiency_{AV}) + (1 - AV_{ratio})]}$$

What if AVs were electric?

 Ontario electricity generation mix obtained from the Independent Electricity System Operator (IESO)

***** Four electricity generation scenarios:

Current Ontario mix:
 61% nuclear, 23.7% hydro, 8.4% gas/oil,
 6.2% wind, 0.3% biofuel, 0.3% solar

- 2. All fossil mix: 100% natural gas
- 3. Only dispatchable source mix: 73% hydro, 26% gas/oil, and 1% biofuel
- 4. Solar and wind mix: 95.3% wind and 4.7% solar

Automated and Electric Vehicle Scenarios

Scenarios	AV savings in road capacity	Conventional	Automated Vehicles
		vehicles	
A0 (Base Case)	1	Gasoline Fueled	None
A1		Gasoline Fueled	Gasoline Fueled
A2.1	50%	Gasoline Fueled	Electric; Electricity Mix1
A2.2		Gasoline Fueled	Electric; Electricity Mix2
A2.3		Gasoline Fueled	Electric; Electricity Mix3
A2.4		Gasoline Fueled	Electric; Electricity Mix4
B1		Gasoline	Gasoline Fueled
B2.1		Gasoline Fueled	Electric; Electricity Mix1
B2.2	10%	Gasoline Fueled	Electric; Electricity Mix2
B2.3		Gasoline Fueled	Electric; Electricity Mix3
B2.4		Gasoline Fueled	Electric; Electricity Mix4

Base Case Results

- Daily operating GHG emissions for passenger transportation in the GTHA were estimated at 29,000t CO₂eq
- ✤ 96% are from private vehicles
- 4% from public transit (buses and locomotives)
- AM peak (3 hours) and PM peak (4 hours) emissions are 59% of the total daily operating emissions
- Daily lifecycle emissions in the GTHA are estimated to be 36,200t

- ✤ Assuming each private vehicle carries 1.15 passengers
- ◆ While sharing 4% of the total GHG emissions, public transit serves up to 32% of daily total PKT

Scenarios	Efficiency	Fuel	Lifecycle	VKT	Emission
		Options	Emissions (tonne)	(millions)	Intensity (g CO2eg/PKT)
A0 (Base Case)	1	Gasoline	36,200	112	282
A1		Gasoline	37,000	118	273
A2.1		Electric AV Mix1	33,900	118	250
A2.2	0.5	Electric AV Mix2	37,200	118	275
A2.3		Electric AV Mix3	34,600	118	255
A2.4		Electric AV Mix4	33,600	118	248
B1		Gasoline	36,800	116	276
B2.1	0.9	Electric AV Mix1	33,700	116	253
B2.2		Electric AV Mix2	36,900	116	277
B2.3		Electric AV Mix3	34,400	116	258
B2.4		Electric AV Mix4	33,500	116	251

TABLE 2 Lifecycle GHG Emissions for All Scenarios

	Scenarios	Efficiency	Fuel Options	Lifecycle Emissions (tonne)	VKT (millions)	Emission Intensity (g CO2ea/PKT)	
	A0 (Base Case)	1	Gasoline	36,200	112	282	The additional electricity needed to support new EVs is supplied by Natural Gas
	A1	0.5	Gasoline	37,000	118	273	
The	A2.1		Electric AV Mix1	33,900	118	250	
additional	A2.2		Electric AV Mix2	37,200	118	275	
needed to	A2.3		Electric AV Mix3	34,600	118	255	
support new EVs is	A2.4		Electric AV Mix4	33,600	118	248	
supplied by	B1	0.9	Gasoline	36,800	116	276	
sources	B2.1		Electric AV Mix1	33,700	116	253	
	B2.2		Electric AV Mix2	36,900	116	277	
	B2.3		Electric AV Mix3	34,400	116	258	
	B2.4		Electric AV Mix4	33,500	116	251	

TABLE 2 Lifecycle GHG Emissions for All Scenarios

BUT EV CHARGING PATTERNS CAN AFFECT GHG EMISSIONS

Introducing Marginal Emission Factors (MEF) for electricity production

Marginal Emissions of Electricity Generation

- To estimate GHG emissions due to EV charging:
 - <u>Traditional approach</u>: using average emission factors (AEFs)
 - <u>New approach</u>: using marginal emission factors (**MEFs**) that reflect the marginal electricity supply

Marginal Emission Factors by system load and month

$$\Delta E = \beta_0 + \frac{\beta_{0*}}{(\beta_{0*} + \beta_{1*}G + \beta_{2*}\Delta G)} D_{Month} D_{\Delta G} \Delta G$$

Boxplots of Marginal Emission Factors by Month (Ontario 2017)

Four charging scenarios

Comparison of Total Emission due to EV Charging (5% penetration rate in GTHA)

Hourly Emissions of EV Charging in GTHA

GTHA: Two tales

- Regional effects of automation and electrification
- Local effects of automation and electrification

Traffic Microsimulation

Gardiner Expressway

- Uninterrupted flow
- On/off-ramps
- Merging/diverging
- Lane drops

College Street

- Interrupted flow
- Signalized intersections
- Turning movements

College Street

Gardiner Expressway

Gardiner Expressway

Scenario Analysis: Gardiner Expressway

Conclusion

- Automation can bring about positive benefits in terms of GHG emissions but only if the effect of "smoother" drive cycles is not offset by additional demand
- Electrification will bring the highest benefit in terms of GHG with or without automation
- Health effects are uncertain and the reason why we need tools that can represent these relationships!