

iCity: A taxonomy of urban analytics and transportation tools

Application & Visualization

- Professor Jeremy Bowes (jbowes@ocadu.ca)
- Dr. Sara Diamond (sdiamond@ocadu.ca)
- Marcus Gordon (<u>mgordon@ocadu.ca</u>)
- Lee Balakrishnan (nbalakrishnan@faculty.ocadu.ca)

1

The iCity case stu

#CASCON2018

At the Visual Analytics Lab for the iCity project we are developing decision support tools combining social media and mobile data with GIS, demographic, socio-economic and transit data

What is a taxonomy?

A Taxonomy defines the **'laws of arrangement and division'**, a systematic arrangement of objects or concepts showing the relations between them.

Example: The system of arrangement of books in a library

A taxonomy provides researchers with a common language with which to categorize and review existing systems, classify new ones and address gaps towards further development. (Price, et al., 1993).

Research approach & process

- Literature Review / taxonomy
- Comparative Methodology in Urban Transportation software applications, tools and methods
- Expert Interviews

What are the applications and toolsets currently being used to serve groups of urban users and designers in the urban design and transportation areas?

What do visualization tools provide?

What could be improved?

How could this information be used to create a **usercentred taxonomy** to support urban transport design and decision making?

Image: Comparative Methodology, iCity process phases, Manpreet Juneja, Marcus Gordon, Jeremy Bowes

Comparative Methodology of Applications & Toolsets

 survey of the application landscape to understand the types of software, and toolsets that exist and the functions already being served.

Use Domains: Software Application Categories

User Stories & Narratives

Navigation, Route Mapping, User Generated Data, , Social Media Use

Urban Design & Built Environment

Neighborhood Planning, Complete Streets

Land Use

Agent-based Micro-simulation

Transportation *Traffic Movement, Parking Management* **Entertainment & Games** *Interactive & Location Based Games, Mixed Reality*

Mapping Cartography, Geo-Visualization

Data Analysis *Intelligent Predictive Analysis, Simulation*

Infrastructure Management

Signal & Transit Operations, Sustainability, Resilient Cities

Comparative Methodology Categories of Table

Comparative Analysis of Software

Type of Urban System Applica-	Software	Technology /	Description / application	User Type	Tasks (High Level)	Engagement Level	Interaction (Low lev-	Data Visualization	Data Attributes
Selected Toolset / Methods									
Built environment, geodata, multi-player urban planning.	Betaville	GL Three.JS, Postgres and Post GIS	new works of public art, architecture,		visualization, search / exploration, analysis (geometrical), simula-	expose (viewing), in- volve (interacting), analyze (finding trends), synthesis (testing hypothesis)	through non coroll	3D Bar charts, 3D Pie chart, 3D scatter plot, geo-data	nominal, ordinal, text, geo-spatial, periodic, dynamic geometry
Qualitative and quantitative Data Exploration and analysis and presentation Tool	StoryFacets	framework, Meteor, Mon-	Explore data through interaction, visua history, presentation, generate consum- able overviews, high level-search /brows er, visualization dashboard, visualizatio slide shows,	transportation engineers, citi	nnavigation, dataset visu- -alization, dataset histo-		zooming inset, brush- ing and linking, scrolling, panning, filter, pivot, compare	bar chart, pie chart, gather plot, markup language	categorical, ordinal, interval, provenance, audio, video, text, image
Transport, land use, demo- gr <mark>aphics</mark>	ILUTE (config- uration XTMF, ILUTE is a plugin (model)	NET, XTMF	Agent (person, business)-based mi- cro-simulation multiyears (over the course of year, scenario)	Planners, Re- searchers	simulation for multi	test hypothesis Re-	nased processing	(binary matrix) binary for- mat (mtx) files, Excel (tabu- lar data), csv data	relationships, all facets, cen- sus+transportationetwork+(in formation about business characteristics, formological: based on model for e.g. mar- riage rate, birth rate, etc)

This survey aided in aggregating **User Types**, **Use Domains**, **User Tasks**, and the **type of Data** being used for Urban Transportation applications, and we recorded the information into a large spreadsheet database.

The VAL research assistants Marcus Gordon, Davidson Zheng and Michael Carnevale, created a first iteration of a web based prototype. This allowed for the dataset modelled from the master spreadsheet, to be explored interactively.

Taxonomy Sketch showing essential aspects of visualizations

Research approach & process

- Use Case Survey
- Use Case Mapping
- Design Charrette, Priority identification / mapping

Thus, the challenge is to ensure diverse groups of users have **appropriate levels of accessibility** to data in usable forms, which in turn requires understanding the **visualization needs** of multiple user groups.

A well-developed taxonomy of visualization types can help designers understand which visualization techniques (or combinations of them) best serve the goals and needs of user and stakeholder groups (Chengzhi, 2013).

Use Case survey

User Type

Gender, Age, Nationality, Occupation **Application Scenario**

Description of Tasks

Preconditions

Technology

Software, Environments and Frameworks

Assets

Formats, Functions

Task interaction

How are you using this software/ tool?

Data Visualization

What is the visualization functionality of this software/ tool?

Improvements

How could the software/ tool be changed to support the required tasks?

URBAN INFORMATICS USE CASE PROFILE

Case Number: C3

Date: January 30th, 2017

User Type Gender: Male Age: 56 Nationality: Canadian Occupation: Architectural technician

Laz is a senior architectural technician working for city planning. His area of expertise is reviewing rezoning applications and new development projects

Application Scenario

Laz is processing an application for a building rezoning in the new West Don neighbourhood. The applicants have not provided any parking statistical information, and Laz needs to ascertain whether the existing street, and lot spaces will be overburdened by new users if the project proceeds. He must perform Quantitative Data Exploration and Analysis of existing parking resources, land use, and demographics, to evaluate current and proposed parking space inventory against policy/ regulations, as documented in the city's geodata/survey and 3D model resources.

He needs to provide two documents of his findings

- an explanatory presentation (slide show) for an upcoming community meeting;
- a formal record of the application's parking implications, context, applicable regulations
- recommended ruling based on the above items

Description of Tasks

Exploration of geodata & 3D model of existing conditions, record of parking inventory in defined area, calculation of requirements with/without proposed changes, export of tabular data and graphics, preparation of formal document and slide presentation for ruling recommendation decision support/justification/communication with decision-makers and stakeholders

Preconditions Knowledge of local study area, accessibility to platform, understanding of interface & functionality, availability of peak parking data, both on--street and private etc.

Technology Software ArcGIS, CityEngine, Insights

Environments & Frameworks html5, webGL, Javascript

Assets Formats online SHP, CSV, XLS, JSON, dwg, drng files

> Functions 3d Ear charts, Geo-Data, Ear chart, interactive digital maps with on/off information layer switching, call-out boxes

Task Interaction How are you using this software / tool?

Orbit, Walk/ fly--through, pan, scroll, zoom, select, annotate, measure, (annotate measurement?), zooming inset, scrolling, panning, compare, microsimulation etc

Data Visualization What is the visualization functionality of this software / tool?

Uses technological interface to visualize street segment, with displayed data of parking information per location as statistical comparison

Capture of generated scenario data in a form for presentation. Access of demographic community data to project potential local patrons to future establishments. Interface to select, analysis, and prepare a visual summary of queried data on parking locations.

Improvements How could the software / tool be changed to support the required tasks?

Real-time 3D infographics superimposed, 2D map, highlighted statistical charts, prep of visual narrative

Image: Use Case Surveys, iCity process phases, Manpreet Juneja, Carl Skelton, Jeremy Bowes

Use Case Mapping

Selected Integrated Use Domain Example

Image: Use Case Mapping - Users, Tasks and Data, Jeremy Bowes, Manpreet Juneja, iCity Team

Design Charrette

Test and Refine Taxonomy Sketch Concepts and to Establish priorities to build interface prototypes

Research approach & process

- User-Centred Taxonomy for Urban
 Transportation Applications
- Template prototype

Materialize and prototype

• Design a taxonomy prototype that qualifies **types of** users, use domains and detailed context of use, integrates user engagement goals with the essential components of visualization, and highlights the end user and their intended interactions with the visualization.

User-centred Taxonomy for Urban Transportation application visualization

User engagement goals

Use Domains	Traffic Transit Roadways Design Cartography Operations		
Users	Context for Us	ser Engagement	
	Engagements	Tasks	
Researcher Hardware/ Software vendor Designer,	(High Engag		
Planner, Operator	Decide (Deriving decisions)	share, distribute. publish	Feedback
Decision-maker/ proponent Politician	Synthesize (Testing hypothesis)	derive, simulate,	()
Real-estate -developer Advocate	Analyze (Finding Trends)	explore, compare, encode, infer, survey, etc.	
City staff Surveyor Statistician	Author (Adding content)	comment, querry, upload	
Engineer Business user Citizen/resident Home-owner	Involve (Interacting)	navigation, way finding, search, locate, games, etc	
Tenant Guest/tourist Driver Pedestrian Cyclist		information display Level gement)	

Visualization components

	Data Ty	pe					
Abstract (a) / Spatial (s) (Input<> Output) a<>s a<>a s<>s							
Data (Da/Ds)	Visual (V	a/Vs)	Navigation (Na/Ns)				
Da<>Ds Da<>Da Ds<>Da Ds<>Ds	Va<>Ds Va< Vs<>Da Vs<		Na<>Ds Na<>Da Ns<>Da Ns<>Ds				
Da<>Vs Da<>Va Ds<>Va Ds<>Vs	Va<>Vs Va< Vs<>Va Vs<		Na<>Vs Na<>Va Ns<>Va Ns<>Vs				
Da<>Ns Da<>Na Ds<>Na Ds<>Ns	Na<>Ns Na<>Na Ns<>Na Ns<>Ns						
Context for Interactive Controls in Visualizations							
	(High	Level)					
Represe Intent	ntation	Interaction Intent					
Identify,	Differentiate, Show Compare	Select, Explore, Reconfigure, Encode, Elaborate, Filter, Connect, Simulation, Authoring, Modelling					
Represer Techniqu		Interaction Technique					
	Graphs, ss, Treemaps, Coordinates	Selection, Brushing, Dynamic query, Pan/ Zoom,					
	(Low	Level)					

Testing the Taxonomy template

Use Case – the architectural technician

This use case from our user group research depicts the technician working on the review of a rezoning proposition for a new building. Two main tasks occupy this technician's work on such a project:

(1) the exploration of datasets, and

(2) analysis of land use, parking resources, and demographics. Using our template taxonomy chart, we can first classify our user engagement goals with the **technician as user** and **urban planning as use domain**.

Use Domain of the Architectural Technician tasks

Use Case – the architectural technician

- technician is required to perform quantitative data exploration and analysis in order to determine if the building application in question would create any issues with parking lot spaces being overwhelmed by new users.
- the taxonomy's user engagement context would classify this technicians' activity as analysis and the finding of trends, (to unravel the patterns that will help the technician to generate decision support data for synthesis.)

Architectural technician's User Engagement

Use Case – the architectural technician

- The technician's work in this use case involves geospatial data, (GIS) web, and graphic frameworks, making use of (a) abstract and (b) spatial data types.
- in this example, these include sheets, tables, maps and charts both as input source & output target domains.
- quantitative data sets of a neighborhood population, can be displayed as a table of data or a 3D geospatial plot to compare or simulate

Visualization Components

Use Case Example's Interaction Model

Suggested Visual representation options are added here

USER CENTRED TAXONOMY Use Case – the architectural technician

User Engagement Goals

Image: Based on Pike (2009), Mahyar (2015) and Sorger (2015), iCity process phases, Taxonomy, iCity Team

Visualization Components

The visualization landscape project (VIZLAND)

The ability to query keywords associated to these visualizations is to give the user quick access to matching keywords that relate to the visuals. This is done by the user typically matching functions that are prominent in selected visualizations.

Next steps: Research process

Keywords

Technology

Platform

User Type

File Types

Data Types

Definitions

USER CENTRED TAXONOMY FOR URBAN TRANSPORTATION APPLICATIONS

User engagement goals

Visualization components

	Data Ty	pe		
Abstract (a) / S a<>s a<>a	patial (s) <>a s<>:		Output)	
Data (Da/Ds)	Visual (V	a/Vs)	Navigation (Na/Ns)	
Da<>Ds Da<>Da Ds<>Da Ds<>Ds	Va<->Ds Va< Vs<>Da Vs<		Na<>Ds Na<>Da Ns<>Da Ns<>Ds	
Da<>Vs Da<>Va Ds<>Va Ds<>Vs	Va<->Vs Va< Vs<>Va Vs<		Na<>Vs Na<>Va Ns<>Va Ns<>Vs	
Da<>Ns Da<>Na Ds<>Na Ds<>Ns	Va<->Ns Va< Vs<>Na Vs<		Na<>Ns Na<>Na Ns<>Na Ns<>Ns	
Context for I	nteractive C	ontrols	in Visualizations	
	(High	Level)		
Represe Intent	entation	Interaction Intent		
Identify,	Differentiate, Show Compare	Select, Explore, Reconfigure, Encode, Elaborate, Filter, Connect, Simulation, Authoring, Modelling		
Represe Techniq		Interaction Technique		
	Graphs, <s, treemaps,<br="">Coordinates</s,>		tion, Brushing, mic query, Pan/ 1,	
	(Low	Level)		

O C A D U

USER CENTRED TAXONOMY FOR URBAN TRANSPORTATION APPLICATIONS

Image: iCity Visualization Templates; Jeremy Bowes, Manpreet Juneja

RESEARCH PATHWAY

Drawing from both Ontology & Taxonomy studies in iCity, the

Dashboard will incorporate elements that produces the most viable

visualization recommendation for applications hosted within the

platform.

WHY DASHBOARDS? - Contributions

Statistics

Engagement

Allows for Civic Engagement in the context of the City and its many affordances. The City stats creates rationale as well as proves plans for functional urban planning & management

Planning & decision support

Urban Planning based on insights that are crowd-sourced from residents of the City.

Summarizing

- These findings focused our approach to establishing a visualization taxonomy focused on three areas: User Task,
 Level of Interaction or Engagement and Data Type, and the detailed classification of interactive elements based on user tested needs for spatial and non-spatial data types within our research groups.
- The **taxonomy** prototype outlines a key framework to create a series of **interactive dashboards** that provide the integration of these functional user elements to provide visualization support for a variety of users.

Implementing the Taxonomy framework into the Dashboard Use Case – the **the traffic operator**

Dashboard

UTPL

NPUT

i	City	iTSoS Dashboard						8 Lee Balki
	Presets	User Type 🗸 🗸	Use [Domains 🗸 🗸	Date Ra	inge From	Το	Apply
Ī		User Types				<u>v</u>	ala.	
		Advocate	0			Use Domains	Traffic Transit Roadways Design Cartography Operations	Urban Planning Urban Planning Policy and Regulation Land Use Services Maintenance Capital Planning
		Business user				⊃ Users	Context for U	ser Engagement
	HISTORICA	Citizen/resident	01	PREDICTIV	Έ	Researcher Hardware/	Engagements	th Level
e la	🔵 Social M	City staff	0			Software vendor Designer Planner Operator	Enga Decide (Deriving decisions)	gements) share, distribute. publish
		Cyclist			11:58 am ps://	Decision-maker/ proponent Politician Real-estate developer Advocate City staff Surveyor Statistician Engineer Business user Citizen/resident Home-owner	Synthesize (Testing hypothesis)	derive, simulate
	#TrueNorth18 @	Decision-maker / proponent	•	0 #torontolife			Analyze (Finding Trends)	explore, compare, encod infer, survey, etc.
6	@CP24 Music vide www.cp24	Designer	•	police https://			Author (Adding content)	comment, querry, upload
		Driver		c-being-investi			Involve (Interacting)	navigation, way finding, search, locate, games, et
	gated-by-r					Tenant Guest/tourist	Expose (viewing)	information display
6	@TTCnotices	Engineer			11:56 am	Driver Pedestrian Cyclist		v Level gements)
	We're here and compl	Guest/tourist	0 0	omments, com	olaints		.7 pm	35°C

U

Ξ	iCity		iTSoS D	Dashboard Balki				
	Presets	Operator	✓ Traffic	Date Range 5-14-18 📅 5-20-18 🗰 Apply				
ш	🕒 Historic	al Data Applica	itions	Preview Royal Ontaria				
	Bottleneck Analysis Traffi Conges Live Da Route Calculator Incid Moni	Traffic Hotspots Data Type Abstract (a) / Spatial (s) Abstract (a) / Spatial (s) (Input <> Output) a<>s a<>a Data (Da/Ds) Visual (Va/Vs) Navigation (Na/Ns) Data (Da/Ds) Visual (Va/Vs) Navigation (Na/Ns) Data (Da/Ds) Va<->Ds Va<->Da Ds<->Da Ds Ds Va<->Vs Va<->Ds Na Data (Da/Ds) Va<->Ds Va<->Da Na Data (Da/Ds) Va<->Vs Va Data (Da/Ds) Va<->Ds Va<->Ds Na Data (Da/Ds) Va<->Sta Data (Da/Ds) Va<->Sta Data (Da/Ds) Va<->Sta Data (Da/Ds) Va<->Sta Na Data (Da/Ds) Va<->Na Data (Da/Ds) Data (Da/Ds) Na Data (Da/Ds) Va<->Na Na Data (Da/Ds) Va<->Na Data Da Da Da Da Da		Image: String of the series				
	Travel Time Indicator			framework (VIZLAND component) to choose the representation technique for a given dataset				
		(Low I	Level)	Image: iCity Dashboard Development; Lee Balki, Jeremy Bowes				

Find out more about research at OCAD U at:

http://www.ocadu.ca/research

Thank you Questions ?

Professor Jeremy Bowes Visual Analytics Lab, OCAD University Jbowes@faculty.ocadu.ca

Acknowledgements

The authors gratefully acknowledge the support of OCAD University and the Visual Analytics Lab, Canada Foundation for Innovation, the Ontario Ministry of Research & Innovation through the ORF-RE program for the iCity Urban Informatics for Sustainable Metropolitan Growth research consortium; IBM Canada and MITACS Elevate for support of post-doctoral research;, NSERC Canada CreateDAV, and Esri Canada and MITACS for support of graduate graduate internships.

Bibliography

Amar R., Eagan J., Stasko J.: Low-level components of analytic activity in information visualization. IEEE Symp. On Info. Vis. (2005), 111-117, 2, 3

Bertini E., Kennedy J. and Puppo E., 2015, **Task Taxonomy for Cartograms**, retrieved from https://www2.cs.arizona.edu/~kobourov/cartogram_taxonomy.pdf

Boy J., Detienne F., and Fekete J.D., (2015), **Storytelling in information visualizations**: Does it engage users to explore data? In proceedings of the 33rd ACM conference on Human Factors in Computing systems (CHI 2015), Pages 1449-1458. ACM, 2015.

Brehmer M., Munzner T.: **A multi-level typology of abstract visualization tasks.** IEEE Transaction on Visualization and Computer Graphics 19, 12 (2013), 2376-2385. 2, 3

Chengzhi, Q., Chenghu, Z. & Tao, P. (2003**), Taxonomy of Visualization Techniques and Systems**—Concerns between Users and Developers are Different, Asia GIS Conference 2003.

Chignell, M. H. (1990). **A taxonomy of user interface terminology**. ACM SIGCHI Bulletin, 21(4), 27. Fishkin, K. P. (2004). A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous Computing, 8(5), 347-358.

Mahyar N., S.-H. Kim and B. C. Kwon. (2015), **Towards a Taxonomy for Evaluating User Engagement in Information Visualization**, retrieved from <u>http://www.vis4me.com/personalvis15/papers/mahyar.pdf</u>

Pike W.A. et.al. (2009), **The Science of Interaction Information Visualization** - William A. Pike, John Stasko, Remco Chang, Theresa A. O'Connell, 2009. (2017). Information Visualization. Retrieved from <u>http://journals.sagepub.com/doi/abs/10.1057/ivs.2009.22?journalCode=ivia</u>

Bibliography

Simon, H.A. (1969). The sciences of Artificial, MIT Press.

Shneiderman, B. (1996) "The eyes have it: A task by data type taxonomy for information visualization" Proceedings of Australian symposium on information visualization" IEEE Symposium on Visual Language, 336-343.

Shrivathsan, M. (2017). Use Cases - Definition (Requirements Management Basics). Pmblog.accompa.com. Retrieved 11 August 2017, from <u>http://pmblog.accompa.com/2009/09/19/use-cases-definition-requirements-management-basics/</u>

Sorger J., et.al. (2015), **A Taxonomy of Integration Techniques for Spatial and Non-Spatial Visualizations**: Institut für Computergraphik und Algorithmen - Arbeitsgruppe für Computergraphik. (2017). Cg.tuwien.ac.at. Retrieved 21 August 2017, from <u>https://www.cg.tuwien.ac.at/research/publications/2015/sorger-2015-taxintec</u>

Tory M. and Moller T. (2002) **A Model Based Visualization Taxonomy**, <u>http://citeseer.nj.nec.com/564142.html</u> Valiati, E. R., Pimenta, M. S., & Freitas, C. M. (2006, May). A taxonomy of tasks for guiding the evaluation of multidimensional visualizations. In Proceedings of the 2006 AVI workshop on Beyond time and errors: novel evaluation methods for information visualization (pp. 1-6). ACM.

Wang, X., & Dunston, P. S. (2011). A user-centered taxonomy for specifying mixed reality systems for aec industry. Journal of Information Technology in Construction (ITcon), 16(29), 493-508.

Wehrend S: Appendix B: **Taxonomy of visualization goals.** In Visual cues: Practical data visualization (1993), Keller P.R., Keller M. M., (Eds.) IEEE Computer Society Press 1,3

Zhou M. X., Feiner S.K.: Visual task characterization for automated visual discourse synthesis. SIGCHI conference on Human Factors in computing systems 23, 18 (1998), 392-399. 1