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Presentation Outline:
A few provocative thoughts

= Disruptions challenging the travel demand
modelling field.

= The 4 pillars of modelling.

= Towards a next generation of travel demand
modelling.

— Theory.

— Data.

— Computing.
= Final words.
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Disruptions (1): AVs & MaaS

= The looming potential of autonomous
vehicles and the burgeoning of new
mobility services are disrupting
transportation in ways not seen since
the dawn of the automobile age.

= They also are similarly posing
unprecedented challenges to travel
demand models, which, it is generally
conceded, are not adequate for
analysmg these disruptive new services
& technologies.




Disruptions (2): ICT, IoT, Al & Big Data

At the same time, the technology that is
so disrupting transportation services is
also generating massive amounts of new
data about travel behaviour that
potentially will allow us to view travel in
new ways:

— Very large samples.
— Dynamic, time-series.
— But (usually) lacking socio-economics.

New analysis and computing methods
are enabling the analysis of these huge
new datasets (machine learning, etc.).

They are also challenging our standard
conceptions of models and model
estimation.
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Disruptions (3): Global Urbanization

= The challenge of modelling the world’s emerging cities &
mega-cities I1s enormous, but world stability, etc., etc.
depends on getting the 215t century urban world “right”.

= |f we can’t plan, we can’t get it right, and we can’t plan if
we can’t measure & model.

WORLD POPULATION DISTRIBUTION




The 4 Pillars of Modelling

m » Models are the operational
Implementation of theory,

DATA MEEORM i within the limitations
w of current data, methods &
computational capabilities.

f = |n this talk | would like to
METHODS focus on theory, as well as
how data & computing can
support the development of
better theory & models.
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Towards the next generation of travel behaviour
modelling

“We know a tremendous amount
about how the world works, but not
nearly enough. Our knowledge is
amazing; our ignorance even more
S0.”

Donella H. Meadows, Thinking in Systems: A
Primer, edited by Diana Wright.

“Find the beginning, the slight silver
key to unlock it, to dig it out. Here
then is a maze to begin, to be in.”

Michael Ondaatje, “The Collected Works of Billy
the Kid: Left-Handed Poems”




Provocation 1: Travel Behavior Theory

= Random utility theory has been a
mayjor success story for our field
(where would we be without it?).

= BUT, “arguably” it is largely a
framework describing “how” we

TN G, make decisions (maximize utility)

FAST . SLOW within which we still need to “pour”

r— our understanding of the “what and
DANIEL the “why” and the “when” underlying

these decisions (e.g., “What” defines
utility? “Why” do we travel?).
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Theory (2): Theory & Models

The complexity (heterogeneity) of
travel behaviour makes testable
generalized theory difficult to
construct.

As a result, we usually frame our
“theory” in terms of a specific model
for empirical testing.

But these models are themselves
extremely complicated constructs of
many hypotheses & assumptions,
many of which are very difficult to
independently test.

How you frame the problem,
however, constrains the solutions
found.

We need a much more open process
to encourage experimentation, new
ideas, the testing of multiple
specifications and hypotheses, and
the opportunity to fail.

ﬁﬂnrmm@nﬂ
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Theory (3): Models as Scientific Hypotheses

“There is a big difference between 30 years of
experience and 1 year’s experience repeated 30 times.”

= Getting modelling research “off-line” from operational
model development and planning study deadlines is
absolutely critical. Richard Soberman, UofT

= “Do you travel demand modellers ever reject a model?”

= We have to be prepared to fail (science also proceeds
through negative results). If we never reject a model,
how do we progress?

= | was once describing a typical RUM mode choice
model to Geoffrey West over lunch at a conference.

= | casually mentioned that such models might have 20,
30, 40 or (usually) more variables & parameters.

= The good Dr. West palpably turned white as a ghost,
almost dropped his fork, and exclaimed:

— “Good God! Do you call that science?”

Geoffrey West Santa Fe Instltute
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Theory (4): Some Propositions

= Myopic decision-making
— People are “rational” but not global optimizers.
= Maslow’s Hierarchy of Needs
— Projects.
— Utility.
= Take the activity-based approach seriously:
— Activity-scheduling; not tour-based.
= Take human agency seriously.
= Get context & structure right.
— Decomposition to manage complexity (object-orientation).
— Model implementations will follow.
— Model structure should be both behaviourally sound & feasible to implement.
= Build a flexible/extensible framework.
= Computing efficiency is critical (run times matter):
— Keep it simple, stupid.
— Detail where needed, not for detail’s sake.

= We must respect data (& computing) constraints, but design for what is needed,
not what is currently feasible.
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Provocation 2: Microsimulation

History, memory,
& learning, adaptation

= “We can microsimulate anything.” ©
" BUT ] ] o Interaction —

— Statistical validity? R B

— Proliferation of parameters. m»

. . Context / —
— Computing times. emvionment  autivty
— Complicatedness. g .,

— Still (predominately) static.

= The history of travel behaviour analysis & modelling has been
one of consistent disaggregation, leading inevitably to
microsimulation implementations.

= This approach is well justified and has produced important,
practical results.

= But, are more parsimonious, holistic approaches conceivable?

Kl UNIVERSITY OF TORONTO
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Microsimulation (2)

= Michael Wegener warns of the
“Spitfire syndrome” of the possible
perils of ever-increasing
disaggregation.

= For the past 50+ years we have
pursued a reductionist approach to
modelling travel demand. Does a
more holistic approach exist?

— Douglas Hofstadter, Gddel, Escher,
Bach: an Eternal Golden Braid:

— Do we model the ants or the
anthill?

£ GODEL, ESCHER,BACH:
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City Science / Complexity (1)

= [tis now clear that cities worldwide exhibit very strong, statistically
significant scaling laws, similar to those observed in nature:

log(Y) = a + flog(POP)
for a wide range of “output/performance” measures Y.

= All “economic” / “innovation” measures (GDP, patents, etc.) display
“super-linear” behaviour (>1.0):

— Larger cities exhibit greater agglomeration economies than smaller ones.

— This behaviour absolutely does not exist in nature: it is a human
“Invention”.

= What are the implications of this macro property of cities for
models/theories of travel behaviour?
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City Science/Complexity (2)

= Bettencourt argues that this super-linear behaviour is
the result of non-linear increases in social
networks/interactions as cities grow larger.

Conceptualization of individual ‘tubes’ as they travel around the city on a
network. When tubes cross, a social interaction occurs producing an average
social interaction outcome

Network Area (4,)

k
length traveled by
people, goods, and
information ™

The Tube

~

Scaling of GDP (Y) and Road Area (4,,) vs. population
for U.S. cities from 2000 to 2015.

Source: Sugar, L. & C.A. Kennedy, “Dynamics of Urban Scaling”, submitted to
Environment & Planning B: Urban Analytics and City Science, 2018.




City Science/Complexity (3)

= The accessibility <->

Initial location advantage Activity 1 attracted to agg|0merati0n “nexus” is not
(e.g., a natural port) this location as well understood as it should
be.
v = This surely ties into the
“Customers™ of Activity 1 transportation — land use
attracted to this location interaction as well, which also
Is still not as well understood
/ \ as It should be.
More of Activity2 |=  Agglomeration is clearly an
Infrastructure activity 1 *|  attracted example of feedback-driven,
Improvements attracted self-adaptive emergence of a
\\ / hierarchical system — a classic
complex system process.

More activities attracted | g It also clearly ties into the
“super-linear” scaling
behaviour asserted to exist in
cities worldwide.
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Bridging the Gap: From micro to macro (1)

= |n traffic flow theory, it can be shown that micro car-following
models can be integrated to yield steady-state, average macro speed-
density relationships.

%oy (LHAD) = Mg X (DM [5,(0) - % (D] ] V=1(K)
[Xn (t) — Xn+1(t)] L » v = avg. speed; k = avg. density

= This provides strong theoretical support for both the micro and
macro models and deeper insights into traffic flow behaviour at both
levels.

= Might something similar exist in travel behaviour?
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From micro to macro (2)

Martinez, for example, shows that under certain
assumptions his disaggregate bid-choice models of urban
housing models generates a super-linear scale law
relationship between rents and population:

log(Average Rent) = R, + B*log(POP) B>1.0

Martinez, F.J. (2016) “Cities’ Power Laws: The Stochastic Scaling Factor,
Environment & Planning B, 43(2) 257-275.
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From micro to macro (3)

i T T T
Ui = z Uimeior = z Vimeoe + z Eim(tllt

= Unlike logit models, probit
models can be
mathematically aggregated.

= With current computing
power, is it time to revisit

probit formulations as a way Drive Option for Chain ¢

of building more
parsimonious models?

= InToronto, for example, we STEIE
have been successfully using 3. Lunch-Mesting

4. Meeting-Wor

a probit formulation to
aggregate trip utilities into
tour utilities to build
operational tour-based
mode choice models.

Miller, E.J. and M.J. Roorda, “A Prototype Model of Household Activity/Travel Scheduling”,
the Transportation Research Board, No. 1831, 2003, pp. 114-121.
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Chainc:
1. Home-Work
2. Work-Lunch

3. Lunch-Meeting
4. Meeting-Work
5. Work-Home

Non-drive option for Chain c

m5

m3
m2
ml

mN = mode chosen for trip N

Transportation Research Record, Journal of




Provocation 3:
“Social Heisenberg Uncertainty Principle’:
What we can/cannot observe

= We are a very empirically driven field. No, not him!

Hi
= But we have always faced significant .
limitations on what we can & cannot

observe:
— Expensive, small-sample, one-day surveys.

— Static, cross-sectional data.

= This, however, Is changing.

ﬁi“"f.ﬁa.
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“Social Heisenberg Uncertainty Principle” (2)

= New, “big” datasets are providing the opportunity to observe massive
amounts of passive, revealed preference data concerning urban trip-
making.

= These data are:

— Potentially consistent across urban regions, since they are often
collected using common methods (e.g., a cellphone trace is — by
and large — a cellphone trace whether it is collected in Toronto or
Montevideo).

— Continuously collected, day after day, week after week.
— Potentially VERY large sample.

= BUT:
— Spatial precision is often problematic.

— Data are usually anonymized and so lacking in trip-maker
attrlbutes transportationtomorrow2.0

A UNIVERSITY OF TORONTO TRAVEL SURVEY STUD'

— Household information often/usually lacking.

Our app - City Logger
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“Social Heisenberg Uncertainty Principle” (3)

= HOWEVER:

— Is cellphone data (for example), fused with Census
& POI data, collected across very large segments
of the population over extended periods of time
“any worse” than what we have been working with
all these years? Might it not be much better?

— Might a “quantum” / “statistical” approached
Informed/quided by behavioural theory not be a
better framework for model-building?

Our app - City Logger
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The history of travel demand
modeling is tied directly to the
history of digital computing.

We are In the software business

as much as the travel behavior &

econometrics business.

Even in today’s computing
world, big urban models are
computationally big.

Computational efficiency
remains critical.

Many/most models still run
much too slowly: a week per run
simply isn’t good enough.

)
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Computing (2)

= The computer is our “lab” just as
much as, and in some ways
more so, than the city itself.

= As a field we arguably have not
exploited advances in High
Performance Computing (HPC)
capabilities that would greatly
assist us in dealing with the
large, messy, complex,
computationally-intensive
problems we are studying.

= We also have a proliferation of
software that often represents
expensive & inefficient
reinvention of wheels.

8 UNIVERSITY OF TORONTO
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Computing (3): Building the Virtual Lab

= Can/should we be
standardizing within a
common, open source
software “environment”
which everyone can use and
to which everyone can
contribute?

= = ThisIs not a new idea, but It
has not yet come to pass.

' " We see this in other fields,
why not ours?

Karl G. Jansky Very Large Array
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Technological Growth Curves

Most technologies follow growth curves in which:

1. Performance increases within a given technology come at exponentially increasing
costs.

2. At some point additional growth in performance is restricted by the highly non-linear
growth in cost (energy, etc.).

3. For further improvements to occur, innovation must occur tg replace the old

technology with a more efficient new technology.

The process of growth can then continue.

Travel demand modelling is subject to this same general principle (although arguabl

the “efficiency gains”|in shifts in modelling paradigms to Jate have been modest at

best).

[
—>

ok

Activity-scheduling?

Tour-based What's next?

4-Step

v

Model complicatedness, computational burden, ...

Behavioural representation, policy sensitivity, ...

A
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Towards the next generation (1)

= Massive, time-series databases represent a
“brave new world” of possibilities — we need
to aggressively & imaginatively exploit this
opportunity.
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Towards the next generation (2)

= HPC can provide the computational
environment needed to both exploit big
datasets and to “properly” deal with the
Inherently probabilistic nature of our
problem.
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Towards the next generation (3)

= Standardization of software “modelling
environments” (not models per se) would be
extremely helpful to create a common “virtual
laboratory” for experimentation, sharing of data and
convergence in theories & models.
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Towards the next generation (4)

= But we need to step back from “just building
better models” and be much more explicitly
trying to build generalized theories of travel
behaviour that can be robustly validated
empirically.
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Towards the next generation (5)

= |f travel behaviour science is to grow and be
practlcally useful, activities must include:

Replication of studies.
— Meta-analyses of results.
— Rejection of “weak models”.

— Seeking convergence/consensus in specifications (getting away from the “my model
syndrome”).

— Seeking transferability of parameters.
— Developing more robust, parsimonious, theory-based models.
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