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Presentation Outline:
A few provocative thoughts

 Disruptions challenging the travel demand 
modelling field.

 The 4 pillars of modelling.
 Towards a next generation of travel demand 

modelling.
– Theory.
– Data.
– Computing.

 Final words.



Disruptions (1): AVs & MaaS
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 The looming potential of autonomous 
vehicles and the burgeoning of new 
mobility services are disrupting 
transportation in ways not seen since 
the dawn of the automobile age.

 They also are similarly posing 
unprecedented challenges to travel 
demand models, which, it is generally 
conceded, are not adequate for 
analysing these disruptive new services 
& technologies.



Disruptions (2): ICT, IoT, AI & Big Data
 At the same time, the technology that is 

so disrupting transportation services is 
also generating massive amounts of new 
data about travel behaviour that 
potentially will allow us to view travel in 
new ways:
– Very large samples.
– Dynamic, time-series.
– But (usually) lacking socio-economics.

 New analysis and computing methods 
are enabling the analysis of these huge 
new datasets (machine learning, etc.).

 They are also challenging our standard 
conceptions of models and model 
estimation.
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Disruptions (3): Global Urbanization
 The challenge of modelling the world’s emerging cities & 

mega-cities is enormous, but world stability, etc., etc. 
depends on getting the 21st century urban world “right”.

 If we can’t plan, we can’t get it right, and we can’t plan if 
we can’t measure & model.
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The 4 Pillars of Modelling

 Models are the operational 
implementation of theory, 
built within the limitations 
of current data, methods & 
computational capabilities.

 In this talk I would like to 
focus on theory, as well as 
how data & computing can 
support the development of 
better theory & models.
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Towards the next generation of travel behaviour 
modelling

“We know a tremendous amount 
about how the world works, but not 
nearly enough. Our knowledge is 
amazing; our ignorance even more 
so.”

Donella H. Meadows, Thinking in Systems: A 
Primer, edited by Diana Wright.

“Find the beginning, the slight silver 
key to unlock it, to dig it out.  Here 
then is a maze to begin, to be in.”

Michael Ondaatje, “The Collected Works of Billy 
the Kid: Left-Handed Poems”



Provocation 1: Travel Behavior Theory

 Random utility theory has been a 
major success story for our field 
(where would we be without it?).

 BUT, “arguably” it is largely a 
framework describing “how” we 
make decisions (maximize utility) 
within which we still need to “pour” 
our understanding of the “what and 
the “why” and the “when” underlying 
these decisions (e.g., “What” defines 
utility? “Why” do we travel?).



Theory (2): Theory & Models

 The complexity (heterogeneity) of 
travel behaviour makes testable 
generalized theory difficult to 
construct.

 As a result, we usually frame our 
“theory” in terms of a specific model 
for empirical testing.

 But these models are themselves 
extremely complicated constructs of 
many hypotheses & assumptions, 
many of which are very difficult to 
independently test.

 How you frame the problem, 
however, constrains the solutions 
found.

 We need a much more open process 
to encourage experimentation, new 
ideas, the testing of multiple 
specifications and hypotheses, and 
the opportunity to fail.



Theory (3): Models as Scientific Hypotheses
 “There is a big difference between 30 years of 

experience and 1 year’s experience repeated 30 times.”
 Getting modelling research “off-line” from operational 

model development and planning study deadlines is 
absolutely critical.

 “Do you travel demand modellers ever reject a model?”
 We have to be prepared to fail (science also proceeds 

through negative results).  If we never reject a model, 
how do we progress?

 I was once describing a typical RUM mode choice 
model to Geoffrey West over lunch at a conference.

 I casually mentioned that such models might have 20, 
30, 40 or (usually) more variables & parameters.

 The good Dr. West palpably turned white as a ghost, 
almost dropped his fork, and exclaimed:
– “Good God!  Do you call that science?”

Richard Soberman, UofT

Ezra Hauer, UofT

Geoffrey West, Santa Fe Institute



Theory (4): Some Propositions
 Myopic decision-making

– People are “rational” but not global optimizers.
 Maslow’s Hierarchy of Needs

– Projects.
– Utility.

 Take the activity-based approach seriously:
– Activity-scheduling; not tour-based.

 Take human agency seriously.
 Get context & structure right.

– Decomposition to manage complexity (object-orientation).
– Model implementations will follow.
– Model structure should be both behaviourally sound & feasible to implement.

 Build a flexible/extensible framework.
 Computing efficiency is critical (run times matter):

– Keep it simple, stupid.
– Detail where needed, not for detail’s sake.

 We must respect data (& computing) constraints, but design for what is needed, 
not what is currently feasible.
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Provocation 2: Microsimulation

 “We can microsimulate anything.”
 BUT:

– Statistical validity?
– Proliferation of parameters.
– Computing times.
– Complicatedness.
– Still (predominately) static.
– …

 The history of travel behaviour analysis & modelling has been 
one of consistent disaggregation, leading inevitably to 
microsimulation implementations.

 This approach is well justified and has produced important, 
practical results.

 But, are more parsimonious, holistic approaches conceivable?

Interaction 
with other 

agents

History, memory, 
learning, adaptation

Complex 
tours / 
activity 
patterns

Context / 
environment



Microsimulation (2)

 Michael Wegener warns of the 
“Spitfire syndrome” of the possible 
perils of ever-increasing 
disaggregation.

 For the past 50+ years we have 
pursued a reductionist approach to 
modelling travel demand. Does a 
more holistic approach exist?
– Douglas Hofstadter, Gödel, Escher, 

Bach: an Eternal Golden Braid:
– Do we model the ants or the 

anthill? 



City Science / Complexity (1)
 It is now clear that cities worldwide exhibit very strong, statistically 

significant scaling laws, similar to those observed in nature:
log(Y) = α + βlog(POP)

for a wide range of “output/performance” measures Y.
 All “economic” / “innovation” measures (GDP, patents, etc.) display 

“super-linear” behaviour (β>1.0):
– Larger cities exhibit greater agglomeration economies than smaller ones.
– This behaviour absolutely does not exist in nature: it is a human 

“invention”.
 What are the implications of this macro property of cities for 

models/theories of travel behaviour?

Geoffrey West



City Science/Complexity (2)

 Bettencourt argues that this super-linear behaviour is 
the result of non-linear increases in social 
networks/interactions as cities grow larger.
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Luis Bettencourt

Conceptualization of individual ‘tubes’ as they travel around the city on a 
network. When tubes cross, a social interaction occurs producing an average 
social interaction outcome
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for U.S. cities from 2000 to 2015.

Source: Sugar, L. & C.A. Kennedy, “Dynamics of Urban Scaling”, submitted to 
Environment & Planning B: Urban Analytics and City Science, 2018.



City Science/Complexity (3)

 The accessibility <-> 
agglomeration “nexus” is not 
as well understood as it should 
be.

 This surely ties into the 
transportation – land use 
interaction as well, which also 
is still not as well understood 
as it should be.

 Agglomeration is clearly an 
example of feedback-driven, 
self-adaptive emergence of a 
hierarchical system – a classic 
complex system process.

 It also clearly ties into the 
“super-linear” scaling 
behaviour asserted to exist in 
cities worldwide.
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Bridging the Gap: From micro to macro (1)

 In traffic flow theory, it can be shown that micro car-following 
models can be integrated to yield steady-state, average macro speed-
density relationships.

ẍn+1(t+Δt) = λ0 ẋn+1(t)M [ẋn(t) - ẋn+1(t)] ∫ v = f(k)
[xn(t) – xn+1(t)]L v = avg. speed; k = avg. density

 This provides strong theoretical support for both the micro and 
macro models and deeper insights into traffic flow behaviour at both 
levels.

 Might something similar exist in travel behaviour?
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From micro to macro (2)

Martinez, for example, shows that under certain 
assumptions his disaggregate bid-choice models of urban 
housing models generates a super-linear scale law 
relationship between rents and population:

log(Average Rent) = R0 + β*log(POP) β > 1.0

Martinez, F.J. (2016) “Cities’ Power Laws: The Stochastic Scaling Factor, 
Environment & Planning B, 43(2) 257-275.
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From micro to macro (3)

 Unlike logit models, probit 
models can be 
mathematically aggregated.

 With current computing 
power, is it time to revisit 
probit formulations as a way 
of building more 
parsimonious models?

 In Toronto, for example, we 
have been successfully using 
a probit formulation to 
aggregate trip utilities into 
tour utilities to build 
operational tour-based 
mode choice models.
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Miller, E.J. and M.J. Roorda, “A Prototype Model of Household Activity/Travel Scheduling”, Transportation Research Record, Journal of
the Transportation Research Board, No. 1831, 2003, pp. 114-121.



 We are a very empirically driven field.
 But we have always faced significant 

limitations on what we can & cannot 
observe:
– Expensive, small-sample, one-day surveys.
– Static, cross-sectional data.
– ….

 This, however, is changing.

No, not him!
Him

Provocation 3:
“Social Heisenberg Uncertainty Principle”: 
What we can/cannot observe

σxσp ≥ ħ/2



“Social Heisenberg Uncertainty Principle” (2)

σxσp ≥ ħ/2

Time … 7:45 8:00 8:15 8:30 … 12:00 12:15 … 13:15 13:30 … 18:15 18:30 18:45 19:00 …

Zone … 221 230 229 218 … 212 … 212 218 … 218 236 230 221 …

Home Travel Activity 1 Activity 2 Activity 3 Travel Home

 New, “big” datasets are providing the opportunity to observe massive 
amounts of passive, revealed preference data concerning urban trip-
making.

 These data are:
– Potentially consistent across urban regions, since they are often 

collected using common methods (e.g., a cellphone trace is – by 
and large – a cellphone trace whether it is collected in Toronto or 
Montevideo).

– Continuously collected, day after day, week after week.
– Potentially VERY large sample.

 BUT:
– Spatial precision is often problematic.
– Data are usually anonymized and so lacking in trip-maker 

attributes.
– Household information often/usually lacking. 



“Social Heisenberg Uncertainty Principle” (3)

σxσp ≥ ħ/2

Time … 7:45 8:00 8:15 8:30 … 12:00 12:15 … 13:15 13:30 … 18:15 18:30 18:45 19:00 …

Zone … 221 230 229 218 … 212 … 212 218 … 218 236 230 221 …

Home Travel Activity 1 Activity 2 Activity 3 Travel Home

 HOWEVER:
– Is cellphone data (for example), fused with Census 

& POI data, collected across very large segments 
of the population over extended periods of time 
“any worse” than what we have been working with 
all these years?  Might it not be much better?

– Might a “quantum” / “statistical” approached 
informed/guided by behavioural theory not be a 
better framework for model-building? 



Provocation 4: Computing

 The history of travel demand 
modeling is tied directly to the 
history of digital computing.

 We are in the software business 
as much as the travel behavior & 
econometrics business.

 Even in today’s computing 
world, big urban models are 
computationally big.

 Computational efficiency 
remains critical.

 Many/most models still run 
much too slowly: a week per run 
simply isn’t good enough.

23

IBM 360/91
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24

 The computer is our “lab” just as 
much as, and in some ways 
more so, than the city itself.

 As a field we arguably have not 
exploited advances in High 
Performance Computing (HPC) 
capabilities that would greatly 
assist us in dealing with the 
large, messy, complex, 
computationally-intensive 
problems we are studying.

 We also have a proliferation of 
software that often represents 
expensive & inefficient 
reinvention of wheels.

Computing (2)



Computing (3): Building the Virtual Lab

 Can/should we be 
standardizing within a 
common, open source 
software “environment” 
which everyone can use and 
to which everyone can 
contribute?

 This is not a new idea, but it 
has not yet come to pass.

 We see this in other fields, 
why not ours?

Karl G. Jansky Very Large Array



Technological Growth Curves
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Most technologies follow growth curves in which:
1. Performance increases within a given technology come at exponentially increasing 

costs.
2. At some point additional growth in performance is restricted by the highly non-linear 

growth in cost (energy, etc.).
3. For further improvements to occur, innovation must occur to replace the old 

technology with a more efficient new technology.
4. The process of growth can then continue.
5. Travel demand modelling is subject to this same general principle (although arguably 

the “efficiency gains” in shifts in modelling paradigms to date have been modest at 
best).



Towards the next generation (1)

 Massive, time-series databases represent a 
“brave new world” of possibilities – we need 
to aggressively & imaginatively exploit this 
opportunity.
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Towards the next generation (2)

 HPC can provide the computational 
environment needed to both exploit big 
datasets and to “properly” deal with the 
inherently probabilistic nature of our 
problem.
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Towards the next generation (3)

 Standardization of software “modelling 
environments” (not models per se) would be 
extremely helpful to create a common “virtual 
laboratory” for experimentation, sharing of data and 
convergence in theories & models.
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Towards the next generation (4)

 But we need to step back from “just building 
better models” and be much more explicitly 
trying to build generalized theories of travel 
behaviour that can be robustly validated 
empirically.
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Towards the next generation (5)
 If travel behaviour science is to grow and be 

practically useful, activities must include:
– Replication of studies.
– Meta-analyses of results.
– Rejection of “weak models”.
– Seeking convergence/consensus in specifications (getting away from the “my model 

syndrome”).
– Seeking transferability of parameters.
– Developing more robust, parsimonious, theory-based models.
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