EHzürich

Disruptions in railway/public transport networks

Francesco Corman francesco.corman@ivt.baug.ethz.ch Chair for Transport Systems

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Those slides

- Bad models
- Good reality
- Interactions
- Understanding more
- Understanding even more

Bad Models

F Corman, Assessment of advanced dispatching measures for recovering disrupted railway situations. Transportation Research Record

ProRail WI ZORGEN DAT 'T SPOORT

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Routing /scheduling: Interesting instances

- When things are constant, and nobody influences anybody else: relatively easy
- In reality, there is some influence

 Routing in time and space models explicitly changes over time

- Interesting case: When capacity of links or intersections is limited
- Opportunity: When vehicles/people can be "controlled"
- Issues: when things "interact"

A space network in Toronto

An extended time space network

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

ETH zürich

Delay minimization via optimized traffic management

Distribution of delay propagation depending on traffic control algorithm

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Delay Propagation in the systems, [s] average over all traffic

Disruption situation

 $\nabla \mathcal{T}^{\text{Institut für Verkehrsplanun}}_{\text{Institute for Transport Plann}} \overset{\text{Situation}}{\rightarrow} \text{Resolution} \rightarrow \text{Disposition}$

A lot of resolution scenarios

A lot of performance indicators

	Gener	Freq	Freq	Gener	Gener	Freq	Gener	Freq	Gener	Freq	Gener	Freq
Alternative	Traveltime	Services	Services	TravelTime	Traveltime	Services	TravelTime	Services	Traveltime	Services	Traveltime	Services
	Ht→Aco	Ht→Aco	Ht→Ut	Ht→Ut	Ut→Aco	Ut→Aco	Aco→Ut	Aco→Ut	Aco→Ht	Aco→Ht	Aco→Ht	Aco→Ht
12_0_0	3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8_0_4	3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

 $\mathcal{T}_{Institut für Verkehrsplanun}^{Institut für Verkehrsplanun}$ Situation \rightarrow Resolution \rightarrow Disposition

A lot of performance indicators

Alternative	Average Total	IMax Intal Delay	0	Max	Punctuality 5	Canceled trains	Capacity	Extra Units
	Delay (s)	· · · · · · · · · · · · · · · · · · ·	Consecutive	Consecutive	min (% of	(absolute	occupation,	compared to
	Delay (S)	(s)	Delay (s)	Delay (s)	running trains)	number)	Ht←→Ut	plan
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0	1.242	8
8_4_0	98.8813	1739	67.4402	1206	88.8889	0	1.143	4
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667	0	1.154	8
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4	0.948	0
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4	0.948	4
4_4_4	56.6107	1739	24.9972	1206	92.79279	4	0.948	0
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4	0.948	4
4_0_8	28.668	510	6.70236	510	100	8	0.959	-4
4_0_8+shuttle	29.3327	510	6.78802	510	100	8	0.959	0
TIMETABLE REF	26.8934	510	5.81801	510	100	0		0

 $\mathcal{T}^{Institut für Verkehrsplanun}$ Situation \rightarrow Resolution \rightarrow Disposition

Comparing them

?

Alternative	Average Total Delay (s)	Max Total Delay	Average	Max	Punctuality 5	Canceled trains Cap	acity Extr	a Units Ge	ener	Freq	Freq	Gener	Gener	Freq	Gener	Freq	Gener	Freq	Gener	Freq
			Consecutive	Consecutive	min (% of	(absolute occi	upation, com	pared to Tr	raveltime	Services	Services	TravelTime	Traveltime	Services	TravelTime	Services	Traveltime	Services	Traveltime	Services
		(5)	Delay (s)	Delay (s)	running trains)	number) Ht 🗲	⊖ Ut plan	n Ht	t→Aco	Ht→Aco	Ht→Ut	Ht→Ut	Ut→Aco	Ut→Aco	Aco→Ut	Aco→Ut	Aco→Ht	Aco→Ht	Aco→Ht	Aco→Ht
12_0_0	43.8998	510	21.2463	510	94.73684	0 1.23	31 0		3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0 1.24	42 8		3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	98.8813	1739	67.4402	1206	88.88889	0 1.14	43 4		3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667	0 1.15	54 8		3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8_0_4	37.2391	510	14.6082	510	97.22222	4 0.95	59 -4		3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4 0.94	48 <mark>0</mark>		3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4 0.94	48 4		3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	56.6107	1739	24.9972	1206	92.79279	4 0.94	48 <mark>0</mark>		3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4 0.94	48 <mark>4</mark>		3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	28.668	510	6.70236	510	100	8 0.95	59 -4		4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	29.3327	510	6.78802	510	100	8 0.95	59 0		3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	26.8934	510	5.81801	510	100	0	0		3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems \square

Disruption management is complex

- Models can help, ...
- if you know which solutions would be acceptable (automatic scenario generation?)
- if you know which constraints exist (better model, more integration)
 If you know how dispatcher would take decisions (?)
- If you know how passengers would react
- Statistics cannot help
- More integration/optimization make smaller problems disappear, bigger problems arise

ETH zürich

Some positive thoughts

T Partl, Master Thesis ETH

Rastatt

• Disruption for about two months, 15.08 to 02.10 2018. No traffic.

DB

Cancellations; delays

- Cancel train
- Buses, passengers
- Freight? (not counted)

Figure 7: Numbers of extra and cancelled trains arriving at Zurich HB and Olten

ETH zürich

Primary delays

Trains coming from Germany

Figure 19: Yearly pattern of average delays of all trains from Germany arriving at Basel SBB

Figure 21: Delays of all trains from Germany arriving at Liestal and Zurich HB, which nonstop came from Basel SBB

ETH zürich

Secondary delays

Figure 15: Yearly pattern of median delays in Liestal, Laufen and Rheinfelden including its moving average

 (delays at other stations have been checked and are not relevantly changed)

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Figure 17: Yearly pattern of median delays in Zurich HB and Olten includingaits moving average

Disruptions are good (?)

- Clear effect of isolation of network, → less delays
- Possibility to understand the degree of interconnection of networks
- Lessons learnt for internal dynamics/ external dynamics
- Never again!

Interaction modelling

Passengers Routing in public transport networks

- Divide hierarchically into layers post process, simulate, adjust
- Equal importance given to problem: iterate coordinate, converge

29

Schedule-based Transit assignment

Knowing passengers demand per time Routing of passengers is based on shortest travel time Vehicles (trains) have infinite passengers capacity

(relatively strong assumptions!)

Schedule-based assignment \rightarrow min cost flow problem

ETH zürich

Possible solutions –who does what, why?

- Optimize everything (integrated model) ~
- ~System optimum
- Minimize delay weighted by passengers; Passengers react to schedule, trains react to passengers choice ~Nash
- Keep the timetable order; or optimize schedule
 Passengers adjust route choices ~Inv. Stackelberg
- Passengers publish their choices / cost functions; optimize schedule to minimize travel time ~Stackelberg

Upper bound to optimum

Larger/better models

N. Leng, Agent-based simulation approach for disruption management in rail schedule , CASPT

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Operations are not terribly good

- Example delay in Zurich
- Very dense network

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

ETH zürich

A larger perspective onto activities - MATSim

ETH zürich

Adjusted activity chain

Time (hh:mm)

19:00

Time (hh:mm)

20:00

** C 3

* *

21:00

22:00

23:00

Lessons learnt

- Large simulation models are complex
- The realistic behavior of people is complex to attain
- Interplay between operations, passengers decisions and (limited) information is crucial, but hard to model
- New developments possible soon

More understanding

A, Marra, Multimodal passive tracking of passengers to analyse public transport use, STRC

Study mobility in-vivo

- Typically user interaction-intensive
- Typically battery intensive
- Own developed
- Tested on ~50 students

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Sign in

Cleaning of data

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

EHzürich

Diary

Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have the same color, that goes from red to yellow according to the time spent in the activity. A white space indicates absence of signal.

Lessons learnt

- Disruptions are gray
- Large samples might help; data must be complemented with annotations
- Choice models can be estimated
- Mobility providers might know about us than we know

EHzürich

Disruptions in railway/public transport networks

Francesco Corman francesco.corman@ivt.baug.ethz.ch Chair for Transport Systems

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems