

Disruptions in railway/public transport networks

Francesco Corman

francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems

Those slides

- Bad models
- Good reality
- Interactions
- Understanding more
- Understanding even more

Bad Models

F Corman, Assessment of advanced dispatching measures for recovering disrupted railway situations. Transportation Research Record

Routing /scheduling: Interesting instances

- When things are constant, and nobody influences anybody else: relatively easy
- In reality, there is some influence
- Routing in time and space models explicitly changes over time

- Interesting case: When capacity of links or intersections is limited
- Opportunity: When vehicles/people can be "controlled"
- Issues: when things "interact"

GIHzürich

A space network in Toronto

An extended time space network

GIHzürich

Some disruption mans gement models

S.L. $\quad \iota_{j}-\iota_{i} \geqslant W_{i}$
$(i, j) \in F$

$$
\left(t_{i}-t_{i} \geqslant w_{i j}\right) \vee\left(t_{k}-t_{h} \geqslant w_{h k}\right)>((i, j),(h, k)) \in A
$$

Delay minimization via optimized traffic management

Distribution of delay propagation depending on traffic control algorithm

2700 block sections,
150 trains $/ \mathrm{h}$,
$\sim 300 \mathrm{~km}$

Disruption situation

$\square \square \sqrt{\square \text { Institut für Verkehrsplanune }}$
Situation \rightarrow Resolution \rightarrow Disposition

GIHzürich

A lot of resolution scenarios

Arnhem

$\square \square \sqrt{\square \text { Institut für Verkehrsplanune }}$
Situation \rightarrow Resolution \rightarrow Disposition

A lot of performance indicators

Alternative	Gener Traveltime $\mathrm{Ht} \rightarrow \mathrm{Aco}$	Freq Services $\mathrm{Ht} \rightarrow \mathrm{Aco}$	Freq Services $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener TravelTime $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener Traveltime Ut \rightarrow Aco	Freq Services Ut \rightarrow Aco	Gener TravelTime Aco \rightarrow Ut	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ut}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$
12_0_0	3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8 _0_4	3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

A lot of performance indicators

Alternative	Average Total Delay (s)	Max Total Delay (s)	Average Consecutive Delay (s)	Max Consecutive Delay (s)	Punctuality 5 min (\% of running trains)	Canceled trains (absolute number)	Capacity occupation, $\mathrm{Ht} \leftarrow \rightarrow \mathrm{Ut}$	Extra Units compared to plan	
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0	
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0	1.242	8	
8_4_0	98.8813	1739	67.4402	1206	88.88889	0	1.143	4	
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667	0	1.154	8	
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4	
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4	0.948	0	
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4	0.948	4	
4_4_4	56.6107	1739	24.9972	1206	92.79279	4	0.948	0	
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4	0.948	4	
4_0_8	28.668	510	6.70236	510	100	8	0.959	-4	
4_0_8+shuttle	29.3327	510	6.78802	510	100	8	0.959	0	
TIMETABLE REF	26.8934	510	5.81801	510	100	0		0	
	Situation	\rightarrow Resolution	\rightarrow Disposit	ion				\| 30.03.2019	18

캐zürich

Comparing them

$?$

Alternative	Average Total Delay (s)	Max Total Delay (s)	Average Consecutive Delay (s)	Max Consecutive Delay (s)	$\left\|\begin{array}{ll}\text { Punctuality } & 5 \\ \text { min } & \text { (\% } \\ \text { running trains) }\end{array}\right\|$	Canceled trains (absolute number)	Capacity occupation, $\mathrm{Ht} \leftrightarrow \rightarrow \mathrm{Ut}$	Extra compared plan		Gener Traveltime $\mathrm{Ht} \rightarrow$ Aco	Freq Services $\mathrm{Ht} \rightarrow \mathrm{Aco}$	Freq Services $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener TravelTime $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener Traveltime Ut \rightarrow Aco	Freq Services Ut \rightarrow Aco	Gener TravelTime $\mathrm{Aco} \rightarrow \mathrm{Ut}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ut}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0		3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0	1.242	8		3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	98.8813	1739	67.4402	1206	88.88889	0	1.143	4		3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+5huttle_4_0	96.73	1739	65.6454	1206	89.16667	0	1.154	8		3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4		3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4	0.948	0		3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4	0.948	4		3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	56.6107	1739	24.9972	1206	92.79279	4	0.948	0		3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4	0.948	4		3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	28.668	510	6.70236	510	100		0.959	-4		4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	29.3327	510	6.78802	510	100		0.959	0		3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
timetable ref	26.8934	510	5.81801	510	100			0		3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5
$\square \sqrt{Z_{\text {Insti }}}$	ffür Verkehrsp for Transport	lanung und Tra Planning and Sys	nsportsysteme Systems															F. Corman	n \| 30.03	03.2019	19

GIHzürich

Disruption management is complex

- Models can help, ...
- if you know which solutions would be acceptable (automatic scenario generation?)
- if you know which constraints exist (better model, more integration)

If you know how dispatcher would take decisions (?)

- If you know how passengers would react
- Statistics cannot help
- More integration/optimization make smaller problems disappear, bigger problems arise

Rastatt

- Disruption for about two months, 15.08 to 02.10 2018. No traffic.

Rastatt

- European corridor Rotterdam Genoa

Cancellations; delays

- Cancel train
- Buses, passengers
- Freight? (not counted)

Figure 7: Numbers of extra and cancelled trains arriving at Zurich HB and Olten

Glizürich
 Primary delays

- Trains coming from Germany

Figure 19: Yearly pattern of average delays of all trains from Germany arriving at Basel SBB

Figure 21: Delays of all trains from Germany arriving at Liestal and Zurich HB, which non stop came from Basel SBB

GIHzürich

Secondary delays

- (delays at other stations have been checked and are not relevantly changed)

Figure 15: Yearly pattern of median delays in Liestal, Laufen and Rheinfelden including its moving average

Disruptions are good (?)

$25^{\text {th }}$ percentile

- Clear effect of isolation of network, \rightarrow less delays
- Possibility to understand the degree of interconnection of networks

$75^{\text {th }}$ percentile

$50^{\text {th }}$ percentile

Number of daily trains

Passengers Routing in public transport networks

- Divide hierarchically into layers post process, simulate, adjust
- Equal importance given to problem: iterate coordinate, converge

Schedule-based Transit assignment

Knowing passengers demand per time
Routing of passengers is based on shortest travel time
Vehicles (trains) have infinite passengers capacity
(relatively strong assumptions!)

Schedule-based assignment \rightarrow min cost flow problem

Possible solutions -who does what, why?

- Optimize everything (integrated model)
~System optimum
- Minimize delay weighted by passengers; Passengers react to schedule, trains react to passengers choice
~Nash
- Keep the timetable order; or optimize schedule Passengers adjust route choices ~Inv. Stackelberg
- Passengers publish their choices / cost functions; optimize schedule to minimize travel time \sim Stackelberg

Upper bound to optimum

Larger/better models

N. Leng, Agent-based simulation approach for disruption management in rail schedule, CASPT
flickr

Operations are not terribly good

- Example delay in Zurich
- Very dense network

A larger perspective onto activities - MATSim

Example disruption, Zurich

Oerlikon
~ 300 trains/ day
~ 85000 pax/day

GIHzürich

Adjusted activity chain

Original

I know things in advance "Vision of God"

I never update my plan; Pessimistic

Lessons learnt

- Large simulation models are complex
- The realistic behavior of people is complex to attain
- Interplay between operations, passengers decisions and (limited) information is crucial, but hard to model
- New developments possible soon

More understanding

A, Marra, Multimodal passive tracking of passengers to analyse public transport use, STRC

Study mobility in-vivo

- Typically user interaction-intensive
- Typically battery intensive
- Own developed
- Tested on ~50 students

Cleaning of data

Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have the same color, that goes from red to yellow according to the time spent in the activity. A white space indicates absence of signal.

This is different!

Lessons learnt

- Disruptions are gray
- Large samples might help; data must be complemented with annotations
- Choice models can be estimated
- Mobility providers might know about us than we know

Disruptions in railway/public transport networks

Francesco Corman

francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems

