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Motivation

= VACS are focused on the individual vehicle (convenlence & safety)

= Maybe myopic to the overall traffic system.

= Why?

= Opportunities and challenges

= \What iIs needed?
1. Modelling VACS
2. Control with VACS
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Traffic Management (TM) Components with
VACS

1. Adaptive Cruise Control
(ACC).

2. Cooperative Adaptive
Cruise Control (CACC).

3. Cooperative merging and
lane changing (CM & LC)
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Project Scope and Objectives

1. What are the effects of automation on the current transportation
network (quantification)?
« ACCand CACC
«  Automated lane change

2. Can we exploit these technologies to improve the network
performance and increase capacity (exploitation)

« Exploitation of ACC and V2I technologies to introduce a dynamic traffic-state-
specific control system

 Using Cooperative lane change and merging, equipped with V21 technologies, to
Improve network performance under automation
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Modeling Automated Cruise Control
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Modelling ACC systems

without preceding vehicle maintain constant speed
1- How they operate? ™™
= Speed control mode. - e
with preceding vehicle maintain safe distance

= Gap control mode. ;
Rajamani, R. (2012). radar

= Transitions between the two objectives should be as smooth as
possible, in order not to cause discomfort to the passengers.
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2- Spacing selection policies

= Two main headway selection policies for ACC systems have been
used in the literature:

- Constant Space-Headway (CSH): the inter-vehicle spacing is
constant for the whole speed range. However, it has been proven
(Rajamani, 2012), that this type of spacing policy is not string
stable

- Constant Time-Headway (CTH): most common spacing policy
used in ACC systems by researchers as well as automotive
manufacturers where the inter-vehicle spacing is a linear function
of the vehicle's speed.

General form | Lges = hgX; + 5¢
for desired spacmg / Time V4 \\/Ehicle Jam distance
Desired Spacing  peadwa Speed
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3- ACC Control Laws

= The control objective

—to eliminate the range error (error between actual and desired inter-
vehicle distance) and the velocity error (difference between the
speeds of leader and follower).

= The CTH policy is the most common spacing policy used in ACC
systems nowadays.

= Surveyed existing control laws, used to control the velocities of ACC-
equipped vehicles by implementing the CTH policy.
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AIMSUN Default Car Following

= Gipps Model- Free flow component (Acceleration component)

This model states that, the maximum speed to which a vehicle (n) can
accelerate during a time period (t, t+T) IS given by

x(n 1) x(n 1)

xa(n t+1)= x(n 1)+2. 5x(n)® 1— 0.025+

x*(n) x*(n)

x (n,t) 1s the speed of vehicle n at time t;
x *(n) 1s the desired speed of the vehicle (n) for the current section;

x (n) 1s the maximum acceleration for vehicle n;

1’ 1s the reaction time of the vehicle.
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AIMSUN Default Car Following

= Gipps Model- Car following component (Deceleration component)

The maximum speed that the same vehicle (n) can reach during the same
time interval (t, t+T), according to its own characteristics and the

limitations imposed by the presence of the leader vehicle is

x'b(n, t + T)

= d(n@+ \/d(n)@ d(n) IZ{x(n —1,t) —s(n—1,t) —x(n,t)} — x(n, t)@— xc(;(;_l,ltizl

d(n) (< 0) 1s the maximum deceleration desired by vehicle n;

x(n,t) 1s position of vehicle n at time t;
x(n-1,t) 1s position of preceding vehicle (n-1) at time t;
s(n-1) 1s the effective length of vehicle (n-1);

d'(n-1) 1s an estimation of vehicle (n-1) desired deceleration.
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Intelligent Driver Model

= Kesting et al., (2007) suggested that the Intelligent Driver Model
(IDM) is suitable for modelling ACC-equipped vehicles.

Vehicle Speed  Desired Spacing

b(s, v.hm)’/=f{' —{%J “(; (‘:i)‘ﬂ

Acceleration  Free flow speed  Actual Spacing

Desired Spacing _~Speed Error
s (L’,ﬂ'le’) =S, + vk vAY Ldes — hdfcl- + So
2 Hh\
I Comfortable deceleration
des
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Lane Change under ACC operation
(Automated Lane Change)

= The lane change algorithm

Virtual Follower
is based on IDM (i.e.  « [ o T virwal eader
accelerations are calculated -
according to IDM). o R e eaer
* Feasibility of lane change
and gap acceptance are
based %npmM P k -a ------------- P Actual Leader
\\\a’kv
» [N [ ]

* Dual-leader lane change .
algorithm_ Virtual Leader
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Aimsun MicroSDK

Activate external behavioral models in Aimsun- on the experiment

I eve I Q Dynamic Experiment: 250, Name: Experiment 250 {a84f1d1c-e699-48e4-b356-53259504ccbc} ? x

Main Behaviour Reaction Time Arrivals Dynamic Traffic Assignment Variables Policies Legion Pedestrians
Car Following

|:| Two-Lane Car-Following Model

Number of Vehicles: 4 = Maximum Speed Difference: 50.00 km/h =
Maximum Distance: 100.00 m s Maximum Speed Difference on Ramp: 70.00 km/h s
Speed Difference Setting: Relative

D Apply Slope Model

Lane Changing

a

Distance Zone Variability: 40 % >
D Two-Way Two-Lane Overtaking Model

Delay Time Threshold: 60.00 sec ~ Number of Simultaneous Overtakings Allowed: 1 <
Minimum Speed Difference Threshold: 10.00 km/h + Delay Between Simultaneous Overtakings: 10.00 sec =
Maximum Speed Difference Threshold: 35.00 km/h + Sensitivity Factor for Reduced Car Following 0.65 =
Maximum Rank: 2 + Overtaking Speed Enhancement Factor: 1.10 v
Remaining Travel Time Threshold: 0.00 sec + Speed Difference Threshold for Enhanced Overtaking Speed: 15.00 km/h s

Queue Speeds

Queue Entry Speed: 1.00 m/s = Queue Exit Speed: 4.00 m/s s
ehavioural Models
Activate External Behavioural Model
Help Cancel
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Aimsun MicroSDK

bool UseIDM=true;

double behavioralModelParticular::computeCarFollowingAccelerationComponentSpeed(A2SimVehicle
*vehicle,double VelActual,double VelDeseada, double RestoCiclo){

double VelPropia = 0;

if (UseIDM){

VelPropia = getIDMAccelerationSpeed((simVehicleParticular*)vehicle,VelActual,VelDeseada,RestoCiclo);
telse{

VelPropia =
getGippsAccelerationSpeed((simVehicleParticular*)vehicle,VelActual,VelDeseada,RestoCiclo);

}

return VelPropia;}

double behavioralModelParticular::computeCarFollowingDecelerationComponentSpeedCore(A2SimVehicle
*vehicle, double VelAnterior, A2SimVehicle *vehicleleader, double VelPreAnterior, double
GapAnterior, double DecelEstimadaleader){

double VelImpuesta = 0;
if (UseIDM) {

VelImpuesta = getIDMDecelerationSpeed((simVehicleParticular*)vehicle, VelAnterior,
(simVehicleParticular*)vehiclelLeader, VelPreAnterior, GapAnterior);

}

else {

VelImpuesta = getGippsDecelerationSpeed((simVehicleParticular*)vehicle, VelAnterior,
(simVehicleParticular*)vehiclelLeader, VelPreAnterior, GapAnterior, DecelEstimadaleader);

}

return VelImpuesta;}
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Preliminary Results

= Testing on a sample network:

A
— Base case: conventional SE— 5

driving @/*

— 100% penetration of
ACC-vehicles with 2.0
second headway

— 100% penetration of \
ACC-vehicles with 0.8 ) |
seconds headway
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Preliminary Results
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Preliminary Results

Average Queue Length
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Total Network Delay § 50
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Next Steps

* Implement the IDM in the QEW network.

Using different penetration rates and different time-gap values.

= Add a communication layer to model CACC.

| ACC-based C-antrcuIStrateg\r |
. - Tigg,i - | Viy i
Exploitation of ACC. ACC-equipped
Le==="" vehicles \

|
= o
| | T - S
= Cooperative lane changing and merging. I o & G-o
| | 6—> —> |
Cooperation Area \ ) Section |




Building the road network in
AIMSUN
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Building the Road Network in AIMSUN

Network  Boundaries and more

Size

Demand

» Extracted from a

and Traffic larger model

Zones

_ B - Real data
MICroscopiC EEEE

Calibration RN
adjustment
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QEW Subnetwork — Size and Boundaries

= Mainline sections and on/off
ramps. Not sufficient!
— Including some arterials for
demand generation/attraction
* From the interchange at HWY 2
(North Shore Blvd) until the end
of QEW at HWY 427 and the

Gardiner
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QEW Subnetwork of a larger GTA Mesoscopic Model

= Used in various applications (TTS 2011 demand):
— Evaluating/optimizing time-based transit fares

— Measuring emissions
= 1497 traffic zones

= Various features are available, e.g. TTC busi
streetcar routes (for traffic assignment), ’\ X i
possibility to apply road toll to any sectiofr§
network, etc.

= Upgraded to TTS 2016 demand: ol i

— 2.16 million trips (1.6 million SOV + o. ,
HOV) during morning peak (6-10 a.m.){ 4
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Demand and Traffic Zones
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'\full model’s demand

Full GTA Demand + Background
Demand
800

*30-minute demand
ljustment
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Demand and Traffic Zones

= 16 multiclass OD matrices

= 142 traffic zones (centroids) /

= Centroid connections to

arterials and ramps (not

freeways)
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Calibration — Real Dat

a Set
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Location  403-0R - $03EB-QFWSE
L.oop detectors: e e e o
u eed and counts (tlow) eackk:20: @ : : : : o
0:05:20 0 o 2 a 0 o 0 1 1 2 1 1
L] L] [ ] L5 e 2 o o 1 1 1 1 1 3 o 1 3
= Data processing (filtration, filling : = @ @
p g , 11 A O T T R B S
L] L] i 748 0 o 2 1 2 1 1 2 0 1 2
aps, averaging, and verification) : : : oo L
4 L4 0:10:00 o 3 1 o L] o [] 2 L] o a 2
] 5 ¥ s ' 1 o 2 o o 1 2 3 o 1 1
1401
GOO le Ma S.
Centennial
L4 Park
,\N\'\"\g
R
° ° O
= Speeds and travel times usin ‘
(a27)
E
° ° %
Google Directions API
Playdium
Amuseme
Mississauga
k
&
\\C\“
oUniversity of

Py
;;‘.
«LX

E® UNIVERSITY OF TORONTO
FACULTY orF APPLIED SCIENCE « ENGINEERING

Research Institute

Transportatio

Toronto Mississauga

20 15-0ct

20 16-0ct-20 17-06t-20 18-0ct-20 19-0c4-20 20-Oct
0 1

[ 2 1
5 10 ] 1 2
1 [ 0 2 1
1 2 2 0 [
2 3 [l 3 1
o 0 0 2 0
2 1 [ a 1
o a [l 2 1
1 1 1 3 0
1 1 [ 0 1
o [} 1 2 1
o 2 0 1 2
1 3 [ a 3
1 1 1 3 [l
3 2 1 1 2
o 1 1 2 2
0 3 [] 1 2
1 3 1 0 1
1 2 [ [ 2
Fl a 1 2 2
a 2 1 1 2
o 1 2 [] 1
2 1 3 0 2
5 1 o 0 1
4 2 2 2 [
2 5 [ 2 0
o 3 [ 0 0
3 3 [ 1 0
2 a 2 0 0
1 2 1 0 1
2 a 1 2 1
2 [ 1 0 0
o 2 o 1 2
2 [ 1 1 0
2 2 1 7 0
o 1 1 a 0
1 1 2 [] 2

1 1 2 0

= 45 min - 1 h 40 min
29.4km

High Park

O e

20 2106120 22-0ct-20 23-0ct-20 24-0¢t

[
1
o
2
[
1
[l
2
2
[l
1
2
2
H
2
2
z
0
2
[
2
1
4
1
.
a
[
[
2
[
0
2
4
1
2
1

~w

M= 50min-1h40m
30.7 km

20 25-0ct-20 26-0ct-20 27-0ct-20
1 3




Microscopic Calibration — Parameters

Global vs. local
= Behaviour vs. assignment

= Manually vs. GA optimization

= What to adjust
— Reaction time — Road attractiveness
— Merging behaviour — Attractiveness weight
— Changing lanes zones — Warm-up period
— Drivers’ cooperation and — Experienced vs.
aggressiveness instantaneous
— Stop lines
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Validation — Comparing with Real Data

= GEH Statistic
s Relative difference
= R2

= Heatmaps
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— Latest Results
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Next Steps

= Finalize the model calibration

= Implement the IDM in the QEW network
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Discussion
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